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Abstract

In this thesis, I will establish the mixed norm Strichartz type estimates for the

wave and Schrödinger equations on certain Riemannian manifold (Ω, g). Here Ω is the

exterior domain of a smooth, normally hyperbolic trapped obstacle in n dimensional

Euclidean space. I studied the case when n ≥ 3 is odd. As for the normally hyperbolic

trapped obstacles, I got local Strichartz estimates for wave and Schrödinger equations

with some loss of derivatives for the initial data. I also got a global Strichartz type

estimates for the wave equation. In this case, I need two different Lp
tL

q
x norms of the

forcing term to bound the solution of the inhomogeneous equation.
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Chapter 1

Introduction

1.1 Some Classical results for Strichartz

Estimates

In this dissertation, we want to prove Strichartz-type estimates for wave and

Shrödinger equations on the Riemannian manifold (Ω, g), where Ω is the region out-

side a normally hyperbolic trapped obstacle.

The Strichartz-type estimates was brought into interest by the study of the well-

posedness for small data semilinear wave and Schrödinger equations. Based on the

Strichartz-type estimates, a series of systematic techniques and theories has been

developed to prove the global well-posedness or blow-up properties of wave and

Schrödinger equations. Survey articles as [21] and [8] provide great introductions
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CHAPTER 1. INTRODUCTION

for the history and recent developments of such topics.

In particular, Strichartz estimates are well understood for Euclidean space. Here

we mean Ω = R
n and gij = δij. See for example Strichartz [18], Fritz John [9],

Y. Zhou [24], Lindblad and Sogge [12], Georgiev and Lindblad and Sogge [5], D.

Tararu [20], Ginibre and Velo [6], Keel and Tao [11], Smith and Sogge [16] and the

references therein. In section 1.1.1, we will illustrate the basic idea using a classical

example in three dimensional Euclidean space. For more details about this example,

please refer to Christopher D. Sogge’s book on wave equations [17].

Since 2008, the study of the problem on non-trapping manifolds also got many

interesting results. For example Y. Du, J. Metcalfe, C. Sogge and Y. Zhou in [4];

K. Hidano, J. Metcalfe, H. Smith, C. Sogge and Y. Zhou in [7]; D. Tataru [19]; etc.

In section 1.1.2, we will also illustrate the local-global idea in the proof of abstract

Strichartz estimate in [7].

1.1.1 On Euclidean Space

Now let us start by considering the example of an wave equation on the Minkowski

space R1+3. For readers that are interested in more details, please refer to Christopher

D. Sogge’s book [17] Lectures on Nonlinear Wave Equations.

Let Δ =
3∑

i=1

∂2

∂x2
i
be the standard Laplacian on R

3. Then consider the following

wave equation

2



CHAPTER 1. INTRODUCTION

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(∂2

t −Δ)u(t, x) = F (t, x) (t, x) ∈ R
1+3

u(0, x) = f(x), ∂tu(0, x) = g(x) x ∈ R
3.

(1.1.1)

In 1977, Strichartz [18] proved that, if u = u(t, x) is a solution for (1.1.1), we have

‖u‖L4(R1+3) ≤ C(‖f‖Ḣ1/2(R3) + ‖g‖Ḣ−1/2(R3) + ‖F‖L4/3(R1+3)). (1.1.2)

So if we consider the following semilinear Cauchy problem on R
1+3,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(∂2

t −Δ)u(t, x) = |u(t, x)|3 (t, x) ∈ R
1+3

u(0, x) = f(x), ∂tu(0, x) = g(x) x ∈ R
3,

(1.1.3)

we have that

‖u‖L4(R1+3) ≤ C(‖f‖Ḣ1/2(R3) + ‖g‖Ḣ−1/2(R3) + ‖u‖3L4(R1+3)). (1.1.4)

This suggests that, if the initial data ‖f‖Ḣ1/2(R3) and ‖g‖Ḣ−1/2(R3) are both small

enough, estimate (1.1.4) provides sufficient criterion for the convergence of Picard

iteration. In fact, this will deduce the global well-posedness for equation (1.1.3).

1.1.2 On Non-trapping Domain

In this section, we will give a brief review of the Local-Global Analysis Theory

that will be used in later chapters.

3



CHAPTER 1. INTRODUCTION

The idea was originated from H. F. Smith and C. D. Sogge in [16] to deal with

the non-trapping perturbation of Laplacians. J. Metcalfe and C. D. Sogge [13] used

the Local-Global analysis and proved the long-time existence of quasilinear wave

equations exterior to star-shaped obstacles in 2006.

In particular, the theory has been used to get the breakthrough results in the

global well-posedness of 3 dimensional and 4 dimensional small data semilinear wave

equations on non-trapping exterior domains by K. Hidano, J. Metcalfe, H. F. Smith,

C. D. Sogge and Y. Zhou in [7]. Later in [23], Xin Yu generalized the theory so that it

can deal with Strichartz estimates with derivative loss, as we will see later in Chapter

2.

Let n ≥ 2 and u = u(t, x) be the solution of the wave equation on the exterior

domain Ω ∈ R
n of a compact obstacle:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
t −Δg)u = F (t, x) (t, x) ∈ R

+ × Ω

u(0, x) = f(x), ∂tu(0, x) = g(x) x ∈ Ω

u(t, x) |∂Ω= 0 (t, x) ∈ R
+ × ∂Ω,

(1.1.5)

where B is either the identity operator or the inward pointing normal derivative

∂ν . The operator Δg is the Laplace-Beltrami operator associated with a smooth,

time-independent Riemannian metric g(x) on Ω. For some fixed R > 0, assume that

gij(x) = δij(x) when |x| ≥ 2R and the compact obstacle K = R
n \ Ω is contained in

{x ∈ R
n : |x| < R}. That is, the metric coincides with the Euclidean metric near

4



CHAPTER 1. INTRODUCTION

infinity.

The following hypothesis is a local energy decay estimate for the solution u:

Hypothesis B. [7] Fix the boundary operator B and the exterior domain Ω ∈ R
n as

above. We then assume that given R0 > 0

∞∫
0

(
‖u(t, ·)‖2H1(|x|<R0)

+ ‖∂tu(t, ·)‖2L2(|x|<R0)

)
dt

� ‖f‖2H1 + ‖g‖2L2

∞∫
0

‖F (s, ·)‖2L2ds, (1.1.6)

whenever u is a solution of (1.1.5) with data (f(x), g(x) and forcing term F (t, x) that

both vanish for |x| > R0.

Let X be an abstract norm, and here is the definition of abstract admissibility.

Definition 1.1.1 (Definition 1.2 in [7]). Let q ≥ 2 and γ ∈ R. We say that (X, γ, q)

is an admissible triple if the following two inequalities holds: (i) the Global Minkowski

Abstract Strichartz Estimates

‖v‖Lq
tX(R×Rn) � ‖v(0, ·)‖Ḣγ(Rn) + ‖∂tv(0, ·)‖Ḣγ−1(Rn), (1.1.7)

assuming that

(∂2
t −Δ)v = 0 in R× R

n. (1.1.8)

(ii) Local Abstract Stichartz Estimates for Ω

‖u‖Lq
tX([0,1]×Ω) � ‖v(0, ·)‖Ḣγ

B(Ω) + ‖∂tv(0, ·)‖Ḣγ−1
B (Ω), (1.1.9)

provided that

(∂2
t −Δg)u = 0 in [0, 1]× Ω. (1.1.10)

5



CHAPTER 1. INTRODUCTION

The result of Local-Global analysis for the abstract Strichartz estimates gives

Theorem 1.1.1 (Corollary 1.5 in [7]). Let n ≥ 2. Assume that (X, γ, q) and (Y, 1−

γ, r) are admissible triples and that Hypothesis B is valid. Also assume that

q ≥ 2 and γ ∈ [0, 1]. (1.1.11)

Then we have the following global abstract Strichartz estimates for the solution u of

(1.1.5)

‖u‖Lq
tX(R+×Ω) � ‖f‖Ḣγ

B(Ω) + ‖g‖Ḣγ−1
B (Ω) + ‖F‖Lr′

t Y ′(R+×Ω), (1.1.12)

where r′ denotes the Hölder conjugate exponent to r and ‖ · ‖Y ′ is the dual norm to

‖ · ‖Y

Notice that, Theorem 1.1.1 derived Global Strichartz estimates from Local Strichartz

estimates. The key idea is to bound the interaction terms generated when we decom-

pose a global solutions into the sum of finite-time solutions.

And in fact, when n = 3, 4, if we take the following abstract norm Xγ,q, one can

prove the global well-posedness for semilinear wave equations on Ω with supercritical

exponent. [7]

‖h‖Xγ,q(Ω) = ‖h‖Lsγ (|x|<2R) + ‖|x|n/2−(n+1)/q−γh‖Lq
rL2

ω(|x|>2R), (1.1.13)

with n(1
2
− 1

sγ
) = γ.

6



CHAPTER 1. INTRODUCTION

1.2 The Hyperbolic Trapped Domain

In this section, we want to describe the geometric set-ups for Chapter 3 and

Chapter 2. Throughout Chapter 3 and Chapter 2, we will restrict the dimension of

the manifolds to be odd integers greater than 3.

Ω0 is assumed to be a smooth compact Riemannian manifold with boundary. For

fixed R > 0, B(0, R) is the ball of radius R centred at the origin in R
n. Then

R
n \B(0, R) is the exterior domain in R

n outside the ball B(0, R).

The ambient space (Ω, g) we will work on is taken to be Ω = Ω0 � (Rn \B(0, R))

with Riemannian metric g. The metric g equals to the Euclidean metric in the infinite

end R
n \B(0, R). Moreover, we want the trapped set K for the geodesic flow on the

cosphere bundle S∗Ω to be normally hyperbolic, as it is defined in section 1.2 of [22].

We are now describing the geometric set up for the normally hyperbolic trapped

domain Ω.

1.2.1 Trapped Set K
First we have to specify the definition of trapped set of Ω.

Let π denote the projection from the cotangent bundles to Ω. Let Uα for some

indices α ∈ A form a covering to Ω. Now let ϕt denote the geodesic flow on Ω. We

fix a point x0 ∈ Ω, and let r(x) be the distance from x ∈ Ω to x0. Now for each Uα,

we can define its backward/forward trapped sets Γα
+/Γ

α
− by:

7



CHAPTER 1. INTRODUCTION

Γα
± = {ρ ∈ π−1(Uα) : lim

t→∓∞
r(ϕt(ρ)) �= ∞}.

Actually Γα
+ consists of the cotangent vectors for Uα, for which its geodesic flow

was trapped in a bounded subset of Ω if we trace backward in time infinitely. And Γα
−

consists of those cotangent vectors whose geodesic flows will be trapped in a bounded

subset of Ω when being traced forward in time infinitely.

Then we can define the backward/forward trapped sets Γ+/Γ− respectively by:

Γ± =
⋃
α∈A

Γα
±.

These two sets consist of all the cotangent vectors that corresponds to geodesics

on Ω that are trapped forward or backward respectively.

Now we can give the definition of the trapped set based on the above set-up.

Definition 1.2.1. Let Γ+ and Γ− be the forward and backward trapped set for the

Riemannian manifold (Ω, g), as it is described above. Then K is called the trapped

set for Ω if

K = Γ+ ∩ Γ−.

In fact, the trapped set K is a subset of the cosphere bundle S∗Ω. A cotangent

vector is in K if and only if its corresponding geodesic flow is bounded in a compact

subset of Ω. If the wave propagate along a trapped geodesic, other than flow to the

space infinity, it will stay inside a compact subset. This means the energy will not

8



CHAPTER 1. INTRODUCTION

disperse for such waves. As a result, it is possible to cause accumulation of energy in

a small region, and break the well posedness of a wave or Schrödinger equation.

1.2.2 Hyperbolic Dynamical Assumptions

Then definition in 1.2 characterizes the feature of a general trapped set. The

trapped set of a normally hyperbolic trapped domain has some particular dynamical

assumptions, which restrict the problem into relatively weaker cases. And we describe

those dynamical assumptions here. In the following chapters, we will always assume

these Dynamical assumptions are satisfied.

Let Δg be the Laplace-Beltrami operator associated with the metric g. And let

p be the principle symbol of Δg. Let Γλ
± = Γ± ∩ p−1(λ) be the level set of the

backward/forward trapped set, and Kλ
± = K±∩p−1(λ) be the level set of the trapped

set. Then the dynamical hypotheses are

Dynamical Hypothesis

1, There exists δ > 0 such that dp �= 0 on p−1(λ) for |λ| < δ.

2, Γ± are codimension-one smooth manifolds intersecting transversely at K.

3, The flow is hyperbolic in the normal direction to K within the energy surface.

This means that there are subbundles E+ (or E−) of TKλ
Γλ
+ (or TKλ

Γλ
−), which is

∪q∈Kλ
TqΓ

λ
+ (or ∪q∈Kλ

TqΓ
λ
−), have the following three properties:

(i) TKλ
Γλ
+ (or TKλ

Γλ
−) can be decomposed into the direct sum of the tangent space

9



CHAPTER 1. INTRODUCTION

of Kλ and the subspace of normal directions E+ (or E−). That is,

TKλ
Γλ
± = TKλ ⊕E±.

(ii) For the gradient flow of ϕt, we have

dϕt : E± → E±.

(iii) There exists θ > 0 such that for all |λ| < δ,

dϕt(v) ≤ Ce−θ|t|‖v‖

for all v ∈ E∓, ±t ≥ 0.

1.2.3 Sobolev Spaces on Ω

Before stating the main theorems, we have to specify some function spaces over

(Ω, g) that we shall consider. So in this section, we will give those definitions. Such

Sobolev spaces were also used in [7] and [23].

Recall that the metric g described in previous sections is a smooth, time inde-

pendent Riemannian metric. And the operator Δg is the Laplace-Beltrami operator

associated with g. In section 1.1.1, we used Δ to denote the standard Laplacian on

the Euclidean space R
n. As before, f̂ denotes the Fourier transform of f , if f is any

10



CHAPTER 1. INTRODUCTION

function on R
n. And the homogeneous Sobolev space Ḣγ(Rn) on the Euclidean space

has norm defined to be

‖f‖2
Ḣγ(Rn)

= ‖(√−Δ)γf‖2L2(Rn) = (2π)−n

∫
Rn

||ξ|γf̂(ξ)|2dξ.

While the inhomogeneous Sobolev space Hγ(Rn) on the Euclidean space has norm

defined by

‖f‖2Hγ(Rn) = ‖(1−Δ)γ/2f‖2L2(Rn) = (2π)−n

∫
Rn

|(1 + |ξ|2)γ/2f̂(ξ)|2dξ.

We can also define a Sobolev space on a compact manifold, with or without

boundary.

Let (Ω̃, g̃) be a compact manifold (with or without boundary), and Δg̃ be the

associated Laplace-Beltrami operator. Then Δg̃ has a discrete spectrum. Assume

ei
∞
i=0 are the eigenfunctions for Δg̃, with eigenvalues 0 ≤ λ1 ≤ λ2 ≤ . . . . Then

for each function f on Ω̃ and each i, we can project it onto the i-th eigenspace

corresponding to ei. We denote the projection by Eif . Then f can be written as an

spectral decomposition

f =

∞∑
i=1

Eif =

∞∑
i=1

< f, ei >g̃ ei.

So the Sobolev spaces on (Ω̃, g̃) is defined using this spectral decomposition.

In particular, the homogeneous Sobolev space Ḣγ(Ω̃) has a norm given by

11
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‖f‖2
Ḣγ(Ω̃)

= ‖(√−Δg̃)
γf‖2

L2(Ω̃)
=

∞∑
i=1

|λγ
iEif |2.

And the inhomogeneous Sobolev space Hγ(Ω̃) has a norm defined to be

‖f‖2
Hγ(Ω̃)

= ‖(1−Δg̃)
γ/2f‖2

L2(Ω̃)
=

∞∑
i=1

|(1 + λ2
i )

γ/2Eif |2.

Now we can define the Sobolev spaces on Ω that we will use later.

Take a cut-off function β on R
n. That is, β is a compactly supported smooth

function on R
n. Let R be the same as we used in section 1.2.1. Assume β is supported

in {x ∈ R
n : |x| < 2R}, and β(x) = 1 when |x| < R. Let Ω′ = Ω∩{x ∈ R

n : |x| < 2R}.

Notice that by our choice of R, Ω is contained in Ω′. Moreover, the metric g is the

same as the Euclidean metric on Ω\Ω′. Let Ω̃ be the embedding of Ω′ into a compact

manifold with boundary, so that ∂Ω̃ = ∂Ω.

Then for any function f on Ω, we can write it as f = βf + (1 − β)f . Then βf

is supported on Ω′, so it can be identified with its pull-back function on Ω̃. And

the second part (1 − β)f is supported outside the ball of radius R. By its support

property and the definition of g, (1−β)f can be think as a function on the Euclidean

space R
n.

So we can define a homogeneous Sobolev norm for f by

‖f‖Ḣγ(Ω) = ‖βf‖Ḣγ(Ω̃) + ‖(1− β)f‖Ḣγ(Rn), (1.2.1)

and an inhomogeneous Sobolev norm by

12



CHAPTER 1. INTRODUCTION

‖f‖Hγ(Ω) = ‖βf‖Hγ(Ω̃) + ‖(1− β)f‖Hγ(Rn), (1.2.2)

The function spaces on Ω equipped with the norms given by (1.2.1) and (1.2.2)

are the homogeneous Sobolev space Ḣγ(Ω) and inhomogeneous Sobolev space Hγ(Ω)

respectively.

Back to the geometric property of Ω, we need to point out that when Ω has non-

trivial trapped set, our estimates will contain some extra derivative loss. In order to

deal with those loss, we introduce a Sobolev-type norm, as it described in [23].

Let us start with the Euclidean space R
n with the standard Laplacian Δ. For all

ε and γ in R, we define H̃γ
ε (R

n) to be the space equipped with norm

‖h‖H̃γ
ε (Rn) = ‖|√−Δ|γ(1−Δ)ε/2h‖L2(Rn)

=

(∫
Rn

||ξ|γ(1 + |ξ|2)ε/2ĥ(ξ)|2dξ
)1/2

.

Notice that, for all ε ∈ R, the norm defined above has the following equivalent

form:

‖h‖H̃γ
ε (Rn) ≈ ‖h‖Ḣγ(|ξ|<1) + ‖h‖Ḣγ+ε(|ξ|>1). (1.2.3)

And for ε ≥ 0,

‖h‖H̃γ
ε (Rn) ≈ ‖h‖Ḣγ(Rn) + ‖h‖Ḣγ+ε(Rn). (1.2.4)

13
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For compact manifolds (Ω̃, g̃), we can define the Sobolev-type norm H̃γ
ε (Ω̃) using

spectral decomposition similarly. That is, for function f on Ω̃, its H̃γ
ε norm is given

by

‖f‖H̃γ
ε (Ω̃) =

( ∞∑
i=0

(|λi|γ(1 + |λi|2)ε/2|Eif |)2
)1/2

. (1.2.5)

And for a normally hyperbolic trapped domain (Ω, g) we described in previous

sections, the Sobolev-type norm ‖ · ‖H̃γ
ε (Ω) is defined using a cut-off function β, as we

did earlier,

‖f‖H̃γ
ε (Ω) = ‖βf‖H̃γ

ε (Ω̃) + ‖(1− β)f‖H̃γ
ε (Rn). (1.2.6)

Notice that (1.2.3) and (1.2.4) also hold for ‖ · ‖H̃γ
ε (Ω) and ‖ · ‖H̃γ

ε (Ω̃) when ε ∈ R

and ε > 0 respectively.

1.3 Main Theorems

1.3.1 Main Theorems: Wave Equations

Now we can state our main result for the wave equations on the hyperbolic trapped

domain (Ω, g) we described above.

Consider the following wave equation on (Ω, g).

14
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
t −Δg)u(t, x) = F (t, x), (t, x) ∈ R+ × Ω

u(0, x) = f(x), x ∈ Ω

∂tu(0, x) = g(x), x ∈ Ω

u(t, x) = 0, on R+ × ∂Ω,

(1.3.1)

If the forcing term F (t, x) = 0 for all (t, x) ∈ R+×Ω, we get a homogeneous wave

equation on the ambient space. Our first result here is for the homogeneous wave

equation.

Theorem 1.3.1. Let n ≥ 3 be odd and Ω be a normally hyperbolic trapped domain

described above. Let u = u(t, x) be the solution of (1.3.1) with F (t, x) = 0. If p > 2,

γ ∈ (−n−3
2
, n−1

2
), and (p, q, γ) satisfies

1

p
+

n

q
=

n

2
− γ,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
p
+ 2

q
≤ 1, n = 3

2
p
+ 2

q
≤ 1, n > 3.

(1.3.2)

Then for all ε > 0,

‖u‖Lp
tL

q
x(R+×Ω) �ε ‖f‖H̃γ

ε (Ω) + ‖g‖H̃γ−1
ε (Ω). (1.3.3)

In section 1.2, we see that the wave propagating along trapped geodesics will stay

in a bounded subset. This could possibly cause energy concentration in a small region.

Above result shows that, in hyperbolic trapped case, the Lt
pL

q
x mixed norm Strichartz

estimate only needs an arbitrarily small derivative loss. This is understandable if
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we think about the dynamics for hyperbolic trapped set. From section 1.2.2, we see

that the trapped set of Ω is highly unstable. An arbitrary small perturbation with a

normal direction summand will result in an escaped geodesic.

Furthermore, we can get an estimate for the inhomogeneous problem. That is for

equation (1.3.1) when F (t, x) is not constantly zero.

Theorem 1.3.2. Let n ≥ 3 be odd, and Ω be the same as above. Assume p > 2,

γ ∈ (−n−3
2
, n−1

2
), and (p, q, γ) and (r, s, 1− γ) both satisfy (1.3.3). Let u = u(t, x) be

the solution of (1.3.1), then for any ε, δ > 0, we have,

‖u‖Lp
tL

q
x(R+×Ω) � ‖f‖H̃γ

ε (Ω) + ‖g‖H̃γ−1
ε (Ω)

+ ‖F‖Lr′
t Ls′

x (R+×Ω) + ‖F‖
Lr′
t Ls′−δ

x (R+×Ω)
. (1.3.4)

Here r′ and s′ are the Hölder’s conjugate of r and s respectively.

Compare our results with the classical mixed norm estimates for non-trapping

domain, it turns out that the forcing term F (t, x) needs to have better decay rates

when x approaches infinity.

We will prove theorem 1.3.1 and theorem 1.3.2 in Chapter 2.

1.3.2 Main Theorems: Schrödinger Equations

Now we can state our main results for the Schrödinger equations on the hyperbolic

trapped domain (Ω, g) we described above.

16
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Our goal here is to study the local well-posedness for the following nonlinear

Schrödinger Equation on Ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i∂t +Δg)u(t, x) = F (u(t, x)), (t, x) ∈ R+ × Ω

u(0, ·) = f

u(t, x) = 0, on R+ × ∂Ω,

(1.3.5)

The nonlinear interaction F is assumed to behave like |u|p when |u| is small. By

which we mean, there is a ε0 > 0 such that,

∑
0≤j≤2

|u|j|∂j
uFp(u)| � |u|p (1.3.6)

When |u| < ε0.

The main estimate we get for (1.3.5) is

Theorem 1.3.3. For every finite T > 0, assume (p, q) ∈ R
2, p > 2 satisfies

1

p
+

n

q
=

n

2
(1.3.7)

Then there esists C > 0 such that

‖u‖Lp
TW s,q(Ω) ≤ CT 1/(2p)‖f‖Hs+ε(Ω) (1.3.8)

Where s ∈ [0,∞), u(t) = eitΔgf . Moreover,

‖u‖Lp
TW s,q(Ω) ≤ CT 1/2p‖F‖L1

THs+ε(Ω) (1.3.9)

Where s ∈ [0,∞), u(t) =
∫ t

0
ei(t−τ)ΔgF (τ)dτ .

17



CHAPTER 1. INTRODUCTION

(1.3.8) is the Strichartz estimate for homogeneous Schrödinger equations. It is

the estimate for (1.2.1) when F = 0. (1.3.9) is the Stichartz estimate for the in-

homogeneous linear Schrödinger equations. It is the estimate for (1.2.1) when F is

independent of u.

We may notice that, the right hand side of both (1.3.8) and (1.3.9) depends on

the ending time T .

Using the estimates in Theorem 1.3.3, we can show the following local well-

posedness for (1.2.1).

Theorem 1.3.4. For n = 2, T > 0, and (p, q) ∈ R
2, p > 2, such that 1/p+1/q = 1/2.

If

XT = L∞
T H1(Ω) ∩ Lp

TW
1−1/p−ε,q(Ω),

and R < CT−1/p(p−1), then (1.3.5) has a solution in BR ∩XT .

For n ≥ 3, T > 0 and (p, q) ∈ R
2, p > 2 satisfies 1/p + n/q = n/2. We also

assume that s > n/q. If

Xs
T = L∞

T Hs+ε(Ω) ∩ Lp
TW

s,q(Ω)

and R < CT−1/p(p−1)(1 + T 1/(2p))−1/(p−1) is a positive radius. Then (1.3.5) has a

solution in BR ∩Xs
T .

We will prove Theorem 1.3.3 and Theorem 1.3.4 in Chapter 3
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Chapter 2

Global Strichartz Estimates for

Wave Equations

2.1 Introduction

In this chapter, we will focus on the wave equation 1.3.1. Same as before, (Ω, g)

is the normally hyperbolic trapped Rimannian manifold. Δg is the Laplace-Beltrami

operator associated with the metric g. Our goal is to prove theorem 1.3.1 and theorem

1.3.2 for Ω.

This work is based on X. Yu’s Generalized Strichartz estimates theory. In [23],

X. Yu generalized the abstract Strichartz estimate theory from [7] and developed the

Generalized Strichartz estimates theory that takes the derivative loss into account.

The idea is, if there are strong enough controls to the energy momentum of the
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CHAPTER 2. WAVE EQUATIONS

solutions local in time, as the wave flows have finite speed of propagation, we can get

a global estimate of the solution.

In particular, in order to get the desired global mixed norm estimate for wave

equations, we have to first prove a good enough time global bounds for the energy

momentum. So in section 2.2, we will derive a local energy estimate. It is important

in the sense that, such estimates provides the control for the solution near the trapped

set. It turns out that, no matter how long does the wave propagate, the bad behaviour

generated from the trapped set will be controlled by the initial values and the forcing

term. However, instead of using the classical Sobolev data, the data we need here

has to be in the Sobolev-type space we defined in Chapter 1.

The second essential estimate we need is the Strichartz estimate for finite time.

And we will prove it in section 2.3. The problem here is that, as the wave propagate

to the space infinity, the bad behaviours generated near the trapped set will also

propagate and cause bad effect to the part of the solution near the infinity end of

the manifold. That is the reason we start with the Strichartz estimate for finite

time. Because of the superposition property of wave equations, we can decompose

the solution of our (1.3.1) into two parts: the part near the trapped set, and the part

near the infinity end. Since the wave has finite propagation speed, the bad effects

only propagated for finite distances in finite time. It is interesting to see that, in this

case, we do not need the data to have any extra derivative loss.

Then in section 2.4, we will prove two of our main theorems. That is the theo-
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rem 1.3.1 and the theorem 1.3.2. After proving the local energy decay and the local

Strichartz estimates, the global Strichartz estimates for homogeneous wave equation

follows by applying the theory of generalized Strinchartz estimates in [23]. The in-

homogeneous estimates is more interesting if we want to avoid loss of derivatives for

the forcing term. As you will see in section 2.4.2, we can hedge the derivative loss

using two parallel TT ∗ argument.

2.2 Local Energy Estimates

Consider Ω = Ω0

⊔
(Rn \B(0, R)) be a normally hyperbolic trapped domain, as it

is described in section 1.2 of Chapter 1.

Consider a distribution u = u(t, x) that solves (1.3.1) with f , g, F compactly

supported near Ω0.

Then a special case of Theorem 3 in Section 5 of [22] is,

Corollary 2.2.1. Supposed that Ω is a normally hyperbolic trapped domain as above.

Assume that, if for a fixed R > 0, u solves (1.3.1). Assume that F = 0 and f ,g

compactly supported in {|x| < R}. Then there exists α > 0, K ∈ Z
+ such that,

∫
|x|<R

(|u′(t, x)|2 + |∂tu(t, x)|2)dx ≤ Ce−αt(||f ||2HK+1(|x|<R) + ||g||2HK(|x|<R)), (2.2.1)

for some C = C(α,K,R).

Interpolate (2.2.1) with the energy estimate, we get the following lemma, which
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suggests the exponential decay for the local energy of the solutions with respect to

arbitrarily small derivative loss of the initial data.

Lemma 2.2.1. Fix R > 0. If u = u(t, x) solves (1.3.1) with f , g, F compactly

supported near ∂Ω, ∃c > 0, so that

‖u′(t, x)‖L2
x(|x|<R) � e−ct(‖f‖Ḣ1+ε(|x|<R) + ‖g‖Ḣε(|x|<R)) (2.2.2)

For any ε > 0

Using this estimate, we can get the local energy decay estimate, as it is stated in

the following proposition.

Proposition 2.2.1. Assume u = u(t, x) solves (1.3.1), and f , g, F vanishes for

|x| > R. Then we have

∫ ∞

0

(‖u(t, x)‖2
Ḣ1(|x|<R)

+ ‖∂tu(t, x)‖2L2(|x|<R))dt

� ‖f‖2
Ḣ1+ε(Ω)

+ ‖g‖2
Ḣε(Ω)

+

∫ ∞

0

‖F (s, x)‖2
Ḣε(Ω)

ds (2.2.3)

Proof:

Now let us prove Proposition 2.2.1.

Notice that the functions of both sides of the equation are compactly supported,

the left hand side of (2.2.3) is equivalent to,

A = ‖u′(t, x)‖2L2
tL

2
x(R+×{|x|<R}) (2.2.4)

When F = 0, square and integrate both sides of (2.2.2), we can get that
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A2 � ‖f‖2
Ḣ1+ε(Ω)

+ ‖g‖2
Ḣε(Ω)

(2.2.5)

Assume that Dg =
√−Δg. Take f = 0 in (2.2.2), we can see that

‖ sin(t|Dg|)h‖L2
x(|x|<R) � e−ct‖h‖Ḣε(Ω). (2.2.6)

for h ∈ Ḣε(Ω) Supported in |x| < R.

And take f = 0 in (2.2.2), we can get

‖ cos(t|Dg|)h‖L2
x(|x|<R) � e−ct‖h‖Ḣε(Ω). (2.2.7)

So by Euler’s equation,

‖eit|Dg|h‖L2
x(|x|<R) � e−ct‖h‖Ḣε(Ω). (2.2.8)

By Duhamel’s Principle, if we apply Minkowski inequality to

‖eit|Dg|h‖L2
x(|x|<R) � e−ct‖h‖Ḣε/2(Ω),

we get the desired estimate for F �= 0.

2.3 Local Strichartz Estimates

In order to prove the case global Strichartz estimates, we need to first prove a

Local Strichartz Estimate in this section. Because we are considering finite time
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estimate, the problem is relatively simple, as the trapped effect would not propagate

to infinity.

The main result for this section is the following estimate for homogeneous wave

equations.

Proposition 2.3.1. If u = u(t, x) solves (1.3.1) with F = 0. Assume that p > 2 and

γ ∈ (−n−3
2
, n−1

2
). Then for (p, q, γ) satisfying (1.3.2), we have,

‖u‖Lp
tL

q
x([0,1]×Ω) � ‖f(x)‖Ḣγ(Ω) + ‖g(x)‖Ḣγ−1(Ω) (2.3.1)

The idea of the proof is to decompose the solution u(t, x) into the sum of two parts,

because of the principle of superposition. The first part is supported near Ω0. We

will see that it is equivalent to a solution of a wave equation on a compact manifold

with boundary. The second part is supported near the infinity end R
n \B(0, R). This

part is, in fact, equivalent to a solution of a wave equation on the Minkowski space.

Now let us see the proof explicitly.

Proof of Proposition 2.3.1:

Consider a smooth cutoff function ϕ ∈ C∞
0 (Rn). We assume that ϕ(x) = 0 on

{x ∈ R
n : |x| > 2R} and ϕ(x) = 1 when |x| < R. Recall that in Section 1.2 of

Chapter 1, we assumed Ω ∈ {x ∈ R
n : |x| > 2R}.

For the u solving (1.3.1), let us take v = ϕu and w = (1−ϕ)u. Then we can write

u as
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u = v + w = ϕu+ (1− ϕ)u (2.3.2)

(i) Estimate w = (1− ϕ)u

As we assumed, F (t, x) = 0 for all (t, x) ∈ R+ × Ω. So

(∂2
t −Δg)w = (1− ϕ)∂2

t u− ϕΔgu− [ϕ,Δg]u

= −[ϕ,Δg]u.

Notice that gij = δij when |x| > R, and w = (1 − ϕ)u is supported away from

{x ∈ R
n : |x| > 2R}. This means that taking Δgw is the same as taking Δw, where

Δ is the standard Laplacian on the Euclidean space. So w solves the following wave

equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
t −Δ)w = −[ϕ,Δg]u

w(0, x) = (1− ϕ(x))f(x)

∂tw(0, x) = (1− ϕ(x))g(x)

(2.3.3)

In fact, as G(t, x) = −[ϕ,Δg]u is supported on the annulus {x ∈ R
n : R < |x| <

2R}, (2.3.3) is a wave equation on the Minkowski Space R+ × R
n.

Now we can write w as the sum of w0 and w1, the solution for the homogeneous

equation and a particular solution for the inhomogeneous equation.

So we want w0 to solve the corresponding homogeneous equation of (2.3.3), that

is,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
t −Δ)w0 = 0

w0(0, x) = (1− ϕ(x))f(x)

∂tw0(0, x) = (1− ϕ(x))g(x).

(2.3.4)

By Corollary 1.2 in chapter 4 of [17], we have,

‖w0‖Lp
tL

q
x([0,1]×Rn) � ‖(1− ϕ(x))f(x)‖Ḣγ(Rn) + ‖(1− ϕ(x))g(x)‖Ḣγ−1(Rn). (2.3.5)

for (p, q, γ) satisfying (1.3.2).

And for w1, it solves the inhomogeneous equation with zero initial data, that is,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
t −Δ)w1 = −[ϕ,Δg]u

w1(0, x) = 0

∂tw1(0, x) = 0

(2.3.6)

By (3.2.6) and Minkowski inequality, we have that

‖
∫ t

0

ei(t−s)|D||D|−1G(t, ·)ds‖Lp
tL

q
x([0,1]×Rn)

�
∫ t

0

‖ei(t−s)|D||D|−1G(t, ·)‖Lp
tL

q
x([0,1]×Rn)ds

� ‖G(t, x)‖L2
t Ḣ

γ−1([0,1]×Rn) (2.3.7)

Where |D| = √−Δ.
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So combine (3.2.6) and (2.3.7), we get that

‖w‖Lp
tL

q
x([0,1]×Ω) � ‖(1− ϕ)f‖Ḣγ(Rn) + ‖(1− ϕ)g‖Ḣγ−1(Rn)

+ ‖[ϕ,Δg]u‖L2
t Ḣ

γ−1([0,1]×Rn) (2.3.8)

As [ϕ,Δg]u = −(Δgϕ)u + ∇gϕ · ∇gu is supported on {x ∈ R
n : R < |x| < 2R},

and gij = δij on this annulus, we know that

‖[ϕ,Δg]u‖L2
t Ḣ

γ−1([0,1]×Rn) = ‖[ϕ,Δg]u‖L2
t Ḣ

γ−1([0,1]×Ω).

So by energy inequality, we can get

‖[ϕ,Δg]u‖L2
t Ḣ

γ−1([0,1]×Rn) � ‖f‖Ḣγ(Ω) + ‖g‖Ḣγ−1(Ω) (2.3.9)

So plug (2.3.9) into (2.3.8), we can see that w is bounded by

‖(1− ϕ)f‖Ḣγ(Rn) + ‖(1− ϕ)g‖Ḣγ−1(Rn) + ‖f‖Ḣγ(Ω) + ‖g‖Ḣγ−1(Ω),

which is controlled by a constant times

‖f‖Ḣγ(Ω) + ‖g‖Ḣγ−1(Ω).

(ii) Estimate v = ϕu

Now let us consider v = ϕu.

Since v = ϕu,
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(∂2
t −Δg)v = ϕ∂2

t u− ϕΔgu+ [ϕ,Δg]u

= [ϕ,Δg]u.

So v is a solution to the following wave equation,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
t −Δg)v = [ϕ,Δg]u

v(0, x) = ϕ(x)f(x)

∂tv(0, x) = ϕ(x)g(x)

v(t, x)|∂Ω = 0

(2.3.10)

Since v itself, the forcing term [ϕ,Δg]u and the initial conditions are all compactly

supported in {x ∈ Ω : |x| < 2R}, (2.3.10) can be considered as a wave equation on

the compact manifold (Ω̃, g̃) with boundary. In particular, we can take Ω̃ so that

∂Ω̃ = ∂Ω, and g̃ coincide with g.

Now we can write v = v0 + v1, where v0 solves the corresponding homogeneous

equation and v1 solves the inhomogeneous equation.

More precisely, for v0 solves the homogeneous wave equation
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
t −Δg̃)v0 = 0

v0(0, x) = ϕ(x)f(x)

∂tv0(0, x) = ϕ(x)g(x)

v0(t, x)|∂Ω̃ = 0.

(2.3.11)

Then by Theorem 1.1 in [1], if (p, q, γ) satisfies (1.3.2), we have that

‖v0‖Lp
tL

q
x([0,1]×Ω) ≈ ‖v0‖Lp

tL
q
x([0,1]×Ω̃) (2.3.12)

� ‖ϕf‖Ḣγ(Ω̃) + ‖ϕg‖Ḣγ−1(Ω̃) (2.3.13)

≈ ‖ϕf‖Ḣγ(Ω) + ‖ϕg‖Ḣγ−1(Ω). (2.3.14)

Notice that, by Duhammel’s principle and (2.3.13) for f = 0, we get that

‖h‖Lp
tL

q
x([0,1]×Ω) � ‖G(t, x)‖L2

tH
γ−1([0,1]×Ω̃) (2.3.15)

If h solves (∂2
t − Δg)h = G(t, x) for (t, x) ∈ [0, 1] × Ω̃ with zero initial data and

zero boundary value.

In fact, v1 solves the inhomogeneous wave equation below:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(∂2
t −Δg̃)v1 = [ϕ,Δg]u

v0(0, x) = 0

∂tv0(0, x) = 0

v0(t, x)|∂Ω̃ = 0.

(2.3.16)

So by (2.3.15),

‖v1‖Lp
tL

q
x([0,1]×Ω) � ‖[ϕ,Δg]u‖L2

tH
γ−1([0,1]×Ω̃). (2.3.17)

So by (2.3.13) and (2.3.17), we have

‖v‖Lp
tL

q
x([0,1]×Ω) � ‖ϕf‖Ḣγ(Ω̃) + ‖ϕg‖Ḣγ−1(Ω̃) + ‖[ϕ,Δg]u‖L2

tH
γ−1([0,1]×Ω̃) (2.3.18)

where the right hand side of the inequality is bounded by ‖f‖Ḣγ(Ω) + ‖g‖Ḣγ−1(Ω),

as ‖[ϕ,Δg]u‖L2
tH

γ−1([0,1]×Ω̃) ≈ ‖[ϕ,Δg]u‖L2
tH

γ−1([0,1]×Ω).

Therefore, by Minkowski’s inequality, we got the desired local Strichartz estimate

for u solving (1.3.1).
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2.4 Global Strichartz Estimates

2.4.1 Homogeneous Wave Equation

Let us first prove Theorem 1.3.1, the global mixed norm estimates when F (t, x) =

0 in (1.3.1).

There is a long history of establishing the global Minkowski Strichartz estimate,

beginning with the original work by Strichartz [18]. Some subsequent works are done

by Genibre-Velo [6], Pecher [15], Kapitanski [10], Lindblad-Sogge [12], Mockenhaupt-

Seeger-Sogge [14], Keel-Tao [11], etc. One of the result is the following estimate,

which is Corollary 2.1 in chapter 4 of [17], as we used several times above.

Global Minkowski Strichartz estimates.

Let u = u(t, x) be a solution to (1.3.1) with F = 0, in the case of Ω = R
n and

gij = δij . Assume that p > 2, and (p, q, γ) satisfies (1.3.2). Then we have the following

mixed norm Strichartz estimate hold for u:

‖u‖Lp
tL

q
x(R1+n) � ‖f‖Ḣγ(Rn) + ‖g‖Ḣγ−1(Rn) (2.4.1)

Almost admissibility

As we mentioned in the introduction of this Chapter, in [23] Xin Yu developed gen-

eralized Strichartz estimate theory to deal with Strichartz estimates with derivative

loss on the initial data. A key definition in her theory is the almost admissibility

of function spaces. Let us quote the definition as follows.
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Definition 2.4.1 (Definition 1.4 in [23]). Let X be some Strichartz norm, and γ, η,

p are some real numbers. We say that (X, γ, η, p) is almost admissible if it satisfies

i), Minkowski almost Strichartz estimates

‖u‖Lp
tX([0,S]×Rn) � ‖u(0, ·)‖Ḣγ(Rn) + ‖∂tu(0, ·)‖Ḣγ−1(Rn) (2.4.2)

ii), Local almost Strichartz estimates for Ω

‖u‖Lp
tX([0,1]×Ω) � ‖u(0, ·)‖H̃γ

η (Ω) + ‖∂tu(0, ·)‖H̃γ−1
η (Ω) (2.4.3)

According to the generalized Strichartz estimate theory in [23], for almost ad-

missible spaces (X, γ, η, p), we have the following Local-global theorem for abstract

Strichartz estimates.

Theorem 2.4.1 (Theorem 1.5 in [23] for Dirichlet-wave equation). Let n > 2 and

assume that (X, γ, η, p) is almost admissible with

p > 2 and γ ∈ (−n− 3

2
,
n− 1

2
).

Then if there exists some ε such that the local smoothing estimate (2.2.3) is valid and

if u solves (1.3.1) with forcing term F = 0, we have the abstract Strichartz estimates

‖u‖Lp
tX([0,∞)×Ω � ‖f‖H̃γ

ε+η(Ω) + ‖g‖H̃γ−1
ε+η (Ω) (2.4.4)

End of proof for Theorem 1.3.1:

Now let us consider u = u(t, x) solves the (1.3.1) with F (t, x) = 0. From the result

of section 2.2, we can see that (2.2.3) is valid for u, f , and g. By proposition 2.3.1
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and (2.4.1), it follows that (Lq(Ω), γ, 0, p) is almost admissible, if γ ∈ (−n−3
2
, n−1

2
)

and (p, q, γ) satisfies (1.3.2). So our Theorem 1.3.1 follows directly from Theorem

2.4.1 above.

2.4.2 Inhomogeneous Wave Equation

The inhomogeneous estimate is interesting in the hyperbolic trapped case, because

the loss of derivative grows up when there are non-trivial forcing terms. In particular,

if the initial data f and g have ε-loss of derivative, the forcing term F will have 2ε-loss

of derivative. It is obvious to see that if we iterate for a non-linear equation, such

growing effect could accumulate and blow up and the number of iterations tends to

infinity. So we want to get rid of such effect.

In Theorem 1.3.2, we in fact get rid of the derivative loss by using two mixed

norms for the forcing term F (t, x). This means, the control for the inhomogeneous

solutions can be depend on F itself, which is independent of its derivatives. As you

can see in the following proof, it turns out that we can hedge the derivative loss by

using the two different mixed norms. You may also notice that, our main idea is still

the classical TT ∗ duality argument.

Another important ingredient is the Christ-Kiselev lemma [3]. We quote the

lemma here for completeness. A proof can be found in [16].

Lemma 2.4.1 (Christ-Kiselev Lemma [3]). Let X and Y be Banach spaces and

assume that K(t, s) is a continuous function taking its values in B(X, Y ), the space
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of bounded linear mappings from X to Y that −∞ ≤ a < b ≤ ∞, and set

Tf(t) =

b∫
a

K(t, s)f(s)ds. (2.4.5)

Assume that

‖Tf‖Lq[a,b],Y ≤ C‖f‖Lp([a,b],X). (2.4.6)

Set

Tf(t) =

t∫
a

K(t, s)f(s)ds. (2.4.7)

Then, if 1 ≤ p < q < ∞,

‖Wf‖Lq([a,b],Y ) ≤ 2−2(1/p−1/q) · 2C
1− 2−(1/p−1/q)

‖f‖Lp([a,b],X). (2.4.8)

Now let us prove the inhomogeneous estimate in Theorem 1.3.2.

Proof of Theorem 1.2:

Comparing Theorem 1.3.1 and Theorem 1.3.2, we can see that it suffices to show

the case in which f = g = 0.

By Duhammel’s Principle, we have to show,

‖
∫ t

0

ei(t−s)|D||D|−1F (s, ·)ds‖Lp
tL

q
x(R+×Ω)

� ‖F (t, x)‖Lr′
t Ls′

x (R+×Ω) + ‖F (t, x)‖
Lr′
t Ls′−δ

x (R+×Ω)
, (2.4.9)

for (p, q, γ) and (r, s, 1− γ) satisfying (1.3.2) respectively, and any δ > 0

Taking T to be the operator
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TF (t, ·) =
∫ t

0

ei(t−s)|D||D|−1F (s, ·)ds (2.4.10)

in Lemma 2.4.1, we can see that it suffices to show

‖
∫ ∞

0

ei(t−s)|D||D|−1F (s, ·)ds‖Lp
tL

q
x(R+×Ω)

� ‖F (t, x)‖Lr′
t Ls′

x (R+×Ω) + ‖F (t, x)‖
Lr′
t Ls′−δ

x (R+×Ω)
(2.4.11)

By theorem 1.3.1, the left hand side of (2.4.11) is bounded by

‖
∫ ∞

0

e−is|D||D|−1F (s, ·)ds‖H̃γ
2ε(Ω), (2.4.12)

for any ε > 0.

According to (1.2.3), (2.4.12) equals to

‖
∫ ∞

0

e−is|D|F (s, ·)ds‖Ḣγ−1(|ξ|≤1) + ‖
∫ ∞

0

e−is|D|F (s, ·)ds‖Ḣγ+2ε−1(|ξ|≥1) (2.4.13)

So in order to prove the theorem, we need to show that

‖
∫ ∞

0

e−is|D|F (s, ·)ds‖Ḣγ−1(|ξ|≤1) + ‖
∫ ∞

0

e−is|D|F (s, ·)ds‖Ḣγ+2ε−1(|ξ|≥1)

� ‖F (t, x)‖Lr′
t Ls′

x (R+×Ω) + ‖F (t, x)‖
Lr′
t Ls′−δ

x (R+×Ω)
(2.4.14)

In fact, if (r, s, 1− γ) satisfies (1.3.2), by Theorem 1.3.1, for all ε > 0,
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‖eit
√

−Δgf‖Lr
tL

s
x(R+×Ω) � ‖f‖H̃1−γ

ε (Ω). (2.4.15)

By duality,

‖
∫ ∞

0

e−is|D|F (s, ·)ds‖H̃γ−1
−2ε (Ω) � ‖F (t, x)‖Lr′

t Ls′
x (R+×Ω) (2.4.16)

According to the definition of the H̃γ
ε norm, the left hand side of (2.4.16) is

equivalent to

‖
∫ ∞

0

e−is|D|F (s, ·)ds‖Ḣγ−1(|ξ|≤1) + ‖
∫ ∞

0

e−is|D|F (s, ·)ds‖Ḣγ−2ε−1(|ξ|≥1) (2.4.17)

So the first term in (2.4.14) is bounded by ‖F (t, x)‖Lr′
t Ls′

x (R+×Ω), which is exactly

the first term on the left hand side of the inequality (2.4.14).

Then consider (r, s̃, 1− (γ + 4ε)) satisfying (1.3.2). Similar as (2.4.15), we get

‖eit
√

−Δgf‖Lr
tL

s̃
x(R+×Ω) � ‖f‖

H̃
1−(γ+4ε)
2ε (Ω)

. (2.4.18)

Then the duality of (2.4.18) gives

‖
∫ ∞

0

e−is|D|F (s, ·)ds‖H̃γ+4ε−1
−2ε (Ω) � ‖F (t, x)‖Lr′

t Ls̃′
x (R+×Ω) (2.4.19)

And the left and side of (2.4.19) turns out to be,
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‖
∫ ∞

0

e−is|D|F (s, ·)ds‖H̃γ+4ε−1
−2ε (Ω) ≈ ‖

∫ ∞

0

e−is|D|F (s, ·)ds‖Ḣγ+2ε−1(|ξ|≥1)

+ ‖
∫ ∞

0

e−is|D|F (s, ·)ds‖Ḣγ+4ε−1(|ξ|≤1), (2.4.20)

which provides the bound for the second term in (2.4.14). Notice that ε can be

arbitrarily small, it follows that we can choose s̃′ = s′ − δ, for arbitrarily small δ > 0.

And this completes the proof for Theorem 1.2.
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Chapter 3

Local Strichartz Estimates for

Schrödinger Equations

3.1 Local Strichartz Estimates

Let us prove the Strichartz type estimate in Theorem 1.3.3 first.

Using the result in Corollary 2 of Wunsch and Zworski [22], we can prove the

following lemma.

Lemma 3.1.1. Let u = u(t, x) solves (1.3.5) with forcing term F = F (t, x) indepen-

dent of u. Let ρ(x) ∈ C∞
0 (Rn), and ρ = 1 on {x ∈ R

n : |x| < 2R}. Then we have the

following local energy decay estimates. If f , F are supported in |x| < 2R,

‖ρu‖L2
tH

γ([0,T ]×Ω) � ‖f‖
Hγ+ε− 1

2 (Ω)
+ ‖F‖L2

tH
γ+2ε−1([0,T ]×Ω), (3.1.1)
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and

‖ u ‖L∞
t Hγ�‖ f ‖Hγ + ‖ F ‖

L2
tH

γ+ε− 1
2
. (3.1.2)

For all γ ∈ R.

Proof:

(i).Firstly, let us consider (3.1.1).

Recall that, by Corollary 2 of [22], we have that for any ε > 0,

T∫
0

‖(1 + |x|2)−1/3eitΔgf‖2H1/2−ε(Ω) � ‖f‖2L2(Ω). (3.1.3)

So we can take ρ(x) ∈ C∞
0 (Rn) such that ρ = 1 on {x ∈ R

n : |x| < 2R}. Since

f(x) = 0 when |x| ≥ 2R, it follows that

‖ρeitΔgf‖2L2
tH

1/2−ε([0,T ]×Ω) �
T∫

0

‖(1 + |x|2)−1/3eitΔgf‖2H1/2−ε(Ω)

� ‖f‖2L2(Ω).

By Duhammel’s principle and Minkowski inequality, if F (t, x) = 0 when |x| ≥ 2R,

we have that by TT ∗ argument

‖
t∫

0

ρei(t−s)ΔgF (t, ·)ds‖2L2
tH

1/2−ε([0,T ]×Ω) � ‖
t∫

0

‖ρei(t−s)ΔgF (t, ·)‖H1/2−ε(Ω)ds‖2L2[0,T ]

� ‖
T∫

0

‖ρei(t−s)ΔgF (t, ·)‖H1/2−ε(Ω)ds‖L2[0,T ]

�
T∫

0

‖ρei(t−s)ΔgF (t, ·)‖L2
tH

1/2−ε([0,T ]×Ω)ds

� ‖F‖L2
tH

−1/2+ε([0,T ]×Ω).
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So we proved (3.1.1) for γ = 1/2− ε.

Then by elliptic regularity of Δg

‖ ρu ‖
L2
tH

5
2−ε
x

�‖ �g(ρu) ‖
L2
tH

1
2−ε
x

+ ‖ ρu ‖
L2
tH

1
2−ε
x

�‖ ρ�gu ‖
L2
tH

1
2−ε
x

+ ‖ [�g, ρ]u ‖
L2
tH

1
2−ε
x

+ ‖ ρu ‖
L2
tH

1
2−ε
x

Since �gu solves the equation with initial data �gf and forcing term �gF , we

get

‖ρΔgu‖
L2
tH

1
2−ε
x

� ‖Δgf‖L2
x
+ ‖ΔgF‖

L2
tH

− 1
2+ε

x

� ‖f‖H2
x
+ ‖F‖

L2
t Ḣ

3
2−ε
x

Notice that [�g, ρ] = ρ1∂xu + ρ2u, where ρ1, ρ2 ∈ C∞
0 have support belonging to

supp(ρ). Thus,

‖ [�g, ρ]u ‖
L2
tH

1
2−ε
x

�‖ ρ3u ‖
L2
tH

3
2−ε
x

�‖ ρ3u ‖θ
L2
tH

1
2−ε
x

‖ ρ3u ‖1−θ

L2
tH

5
2−ε
x

Where ρ3 ∈ C∞
0 has support in supp(ρ1) ∩ supp(ρ2), and θ is any real number in

(0, 1).

Hence the L2 part (3.1.1) is true for γ = 5
2
− ε. Similar arguments hold for

γ = 9
2
− ε, 13

2
− ε, 17

2
− ε, . . .. So by interpolation and duality, we proved (3.1.1) for all
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γ ∈ R.

(ii).To show (3.1.2), we use the result of part (i).

In fact, by (i) above, if v solves the inhomogeneous equation with 0 initial data,

v satisfies

‖ρv‖L2
tH

γ
B(R+×Ω) � ‖F‖

L1
tH

γ+ε− 1
2

B (R+×Ω)
(3.1.4)

By duality, energy estimate and elliptic regularity, we get

‖u‖L∞
t Hγ

B(R+×Ω) � ‖f‖Hγ(Ω) + ‖F‖
L2
tH

γ+ε− 1
2 (R+×Ω)

(3.1.5)

And we proved (3.1.2).

In the next proposition we show that away from the trapped set, the free evolution

satisfies a Strichartz estimate with loss.

Proposition 3.1.1. Let n ≥ 2. Suppose u = u(t, x) solves (1.3.5), with F = 0. Let

χ ∈ C∞
0 and χ(x) = 1 when |x| < R.

Then there exists C > 0 such that

‖(1− χ)u‖LpW s,q(R+×Ω) ≤ C‖f‖Hs+ε (3.1.6)

where s ∈ R+, u(t) = eitΔgu0 and (p, q), p > 2, is an Strichartz admissible pair,

i.e.

2

p
+

n

q
=

n

2
(3.1.7)
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and ε is the one in (3.1.1) and (3.1.2).

Proof:

Set v(t) = (1− χ)eitΔgu0. Then v satisfies the equation

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(i∂t +Δg)v = [Δg,−χ]u,

v(0) = (1− χ)u0

(3.1.8)

Since χ = 1 when |x| < R, 1 − χ = 0 when |x| ≥ R. Remember that the metric

g is assumed to be the same as the Euclidean metric when |x| > R, Δgv = Δv on

its support. So equation (3.1.8) can be regarded as a Schrödinger equation on the

Euclidean space R
n.

Hence

v(t) = eitΔ(1− χ)u0 +

∫ t

0

ei(t−τ)Δ[Δg,−χ]u(τ)dτ (3.1.9)

where Δ is the standard Laplacian on R
n. Therefore, the first term on the right

hand side satisfies the usual Strichartz estimate. And it is suffices to study the second

term, i.e.

w(t) =

∫ t

0

ei(t−τ)Δ[Δg,−χ]u(τ)dτ (3.1.10)

Notice that, by lemma 3.1.1, we get

‖[Δg,−χ]u‖
L2
TH− 1

2
� ‖f‖Hε (3.1.11)
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Let Tf(t, x) = eitΔf(x). We now investigate the smoothing effect for the operator

T . Using (1.10) and (3.4) in [2], we have, for every cutoff function χ0 in R
n,

‖(1−Δ)
1
4 (χ0Tf)‖L2(R+×Rn) � ‖f‖L2(Rn) (3.1.12)

The dual version is,

‖T ∗(χ0(1−Δ)1/4g)‖L2(Rn) � ‖g‖L2(R+×Rn) (3.1.13)

Applying Strichartz estimates on R
n for T , we can get

‖TT ∗(χ0(1−Δ)1/4g)‖Lp
TLq(Rn) � ‖g‖L2(R+×Rn) (3.1.14)

Notice that

TT ∗(f)(t) =
∫ T

0

ei(t−τ)Δf(τ)dτ (3.1.15)

Taking H(t, x) = (1−Δ)−1/4[Δg,−χ]u, we get

‖
∫ T

0

ei(t−τ)Δ(1−Δ)1/4H‖Lp
TLq(Rn) � ‖H‖L2(R+×Rn)

� ‖[Δg,−χ]u‖L2
TH−1/2(Rn) � ‖u0‖Hε (3.1.16)

Hence by Christ-Kiselev lemma, we completed the proof for s = 0.
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The case s = 1, 2, 3... can be treated similarly by differentiationg the first equation

of (3.1.8), considered as an equation on the Euclidean space R
n. Then interpolate

between s = k and s = k + 1, we can get the inequality for all s ∈ R+.

Now we can deal with the Strichartz estimate for eitΔg .

Proposition 3.1.2. There exists C > 0 such that

‖u‖Lp
tW

s,q ≤ C‖f‖
H

s+1
p+ε (3.1.17)

where ε satisfies (3.1.1) and (3.1.2), u(t) = eitΔgf and (p, q), p > 2, satisfies

(3.1.7).

Proof:

Take a cut-off function χ ∈ C∞
0 (Rn) which equals to 1 when |x| < R. We can

write u(t) as

u(t) = χeitΔgf + (1− χ)eitΔgf = v(t) + w(t) (3.1.18)

Due to Proposition 3.1.1, we know that w(t) satisfies the desired Strichartz es-

timate with loss. So by Minkowski inequality, it suffices to show the estimate for

v)(t).

Using lemma 3.1.1, we get

‖v‖L2
tH

1(Ω) � ‖f‖H1/2+ε(Ω) (3.1.19)
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Then using energy argument, we can deduce,

‖v‖L∞
t L2(Ω) � ‖f‖L2(Ω) (3.1.20)

Interpolate between (3.1.19) and (3.1.20) gives

‖v‖Lp
tH

2/p(Ω) � ‖f‖
H

1
p+2ε

p
(3.1.21)

By Sobolev embedding theorem, H2/p(Ω) ⊂ Lq(Ω) if 2
p
+ n

q
= n

2
, we completed the

proof for s=0.

Then we consider s = 1. By energy inequality, we get

‖v‖L∞
t Hp/(p−2)(Ω) � ‖f‖Hp/(p−2) (3.1.22)

Interpolate between (3.1.19) and (3.1.22), we get

‖v‖Lp
tH

1+2/p(Ω) � ‖f‖H1+1/p+ε(Ω) (3.1.23)

So by Sobolev embedding theorem, H1+2/p(Ω) ⊂ W 1,q(Ω), we get that (3.1.17)

holds for s = 1. Interpolate between s = 0 and s = 1, we get the case s ∈ [0, 1].

Similarly, we can get s = 2, 3, 4..., and interplation gives us for all s ∈ R+.

Now we can state the time-dependent Strichartz type estimate, which is key to

the local existence theorem.
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Proposition 3.1.3. For every finite T > 0, there esists C > 0 such that

‖u‖Lp
TW s,q(Ω) ≤ CT 1/(2p)‖f‖Hs+ε(Ω) (3.1.24)

Where s ∈ [0,∞), u(t) = eitΔgf , and (p, q),p ≥ 2 satisfies

1

p
+

n

q
=

n

2
(3.1.25)

Moreover,

‖u‖Lp
TW s,q(Ω) ≤ CT 1/2p‖F‖L1

THs+ε(Ω) (3.1.26)

Where s ∈ [0,∞), u(t) =
∫ t

0
ei(t−τ)ΔgF (τ)dτ , and (p, q), p > 2 satisfies (3.1.25).

Proof:

Firstly, let us study u(t) = eitΔgf .

Let χ ∈ C∞0(Rn) be the cut-off function such that χ = 1 when |x| < R. Similarly

as it is in the proof of Theorem 1.3.1, we can write u(t) as

u(t) = χu(t) + (1− χ)u(t) = v(t) + w(t) (3.1.27)

Hence Minkowski’s inequality implies

‖u‖Lp
TW

s,q(Ω) ≤ ‖v‖Lp
TW s,q(Ω) + ‖w‖Lp

TW s,q(Ω) (3.1.28)

So we evaluate each term on the right hand side separately.
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By lemma 3.1.1, we have

‖v‖L2
THs+1/2(Ω) � ‖f‖Hs+ε(Ω) (3.1.29)

Then an energy argument yields,

‖v‖L∞
T Hs(Ω) � ‖f‖Hs(Ω) (3.1.30)

Interpolate between (3.1.29) and (3.1.30), we can get,

‖v‖Lp
THs+1/p(Ω) � ‖f‖Hs+ε(Ω) (3.1.31)

By Sobolev embedding thoerem, if (p, q) and p > 2 satisfies (3.1.25), we have

Hs+1/p(Ω) ⊂ W s,q(Ω). Hence we obtain,

‖v‖Lp
TW s,q(Ω) � ‖f‖Hs+ε(Ω) (3.1.32)

Then we investigate w(t) = (1− χ)u(t).

Let p∗ = 2p, then for (p, q), p > 2 satisfying (3.1.25), we have p∗ > 2 and (p∗, q)

satisfies (3.1.7). Hence by Hölder’s inequality and Proposition 3.1.1, we get,

‖w‖Lp
TW s,q([0,T ]×Ω) � T 1/(2p)‖w‖Lp∗W s,q([0,T ]×Ω) � T 1/(2p)‖f‖Hs+ε(Ω) (3.1.33)

This completes the proof of (3.1.24).
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Estimate (3.1.26) comes from (3.1.24), Christ-Kiselev lemma and Minkowski in-

equality in time variable.

‖
∫ t

0

ei(t−τ)ΔgF (τ)dτ‖Lp
TW s,p(Ω) � ‖

∫ T

0

ei(t−τ)ΔgF (τ)dτ‖Lp
TW s,p(Ω)

� T 1/(2p)‖
∫ t

0

e−iτΔgF (τ)dτ‖Hs+ε(Ω)

� T 1/(2p)‖F‖L1
THs+ε(Ω).

Proposition 3.1.4. For every T > 0, there exists C > 0 such that for all s ∈ R,

‖u‖Lp
TW s,q ≤ CT 1/(2p)+1/(2p̃)‖(1−Δg)

s+2ε
2 F‖Lp̃

TLq̃(Ω) , (3.1.34)

If the right hand side is finite. Here u(t) =
∫ t

0
ei(t−τ)ΔgF (τ)dτ , (p, q), p > 2

satisfies (3.1.25), and (p̃, q̃), with p̃ ∈ [1, 2), satisfies

1

p̃
+

n

q̃
= 1 +

n

2
(3.1.35)

Notice that (p, q) and (p̃, q̃) do not need to have any correspondence.

Proof:

Due to Christ-Kiselev lemma, it suffices to evaluate

w(t) =

∫ T

0

ei(t−τ)ΔgF (τ)dτ (3.1.36)
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Using (3.1.24), we can get

‖w‖Lp
TW

s,q(Ω) ≤ CT 1/(2p)‖h‖Hs+ε(Ω), s ∈ [0,∞) (3.1.37)

Where h =
∫ T

0
e−iτΔgF (τ)dτ .

The Dual of (3.1.24) gives

‖h‖Hs(Ω) ≤ CT 1/(2p̃)‖(1−Δg)
(s+ε)/2f‖Lp̃

TLq̃(Ω), s ∈ (−∞, 0) (3.1.38)

Where (p̃, q̃), p̃ ∈ [1, 2), satisfies (3.1.35). As eitΔg commutes with Δg, (3.1.38) is

also true for s ∈ [0,∞). This completes the proof.

3.2 Local Well-posedness of Schrödinger

Equations

Now let us consider the initial value problem (1.3.5). In this section, we always

assume ε > 0 be the small positive number in (3.1.1) and (3.1.2). And the initial

value f is small enough.

So by Duhamel’s principle, the solution of (1.3.5) can be written as

u(t) = eitΔgf +

∫ t

0

ei(t−τ)ΔgF (u(τ))dτ, (3.2.1)

Where F and Ω are described as they are in the Chapter 1.

49



CHAPTER 3. SCHRÖDINGER EQUATIONS

So F (u) satisfies the following point-wise estimate:

|F (u)| � |u|p (3.2.2)

and

|∇F (u)| � |∇u||u|p−1 (3.2.3)

Moreover, as F (u)− F (v) =
∫ 1

0
F ′(tu+ (1− t)v)(u− v)dt, it follows that

|F (u)− F (v)| � |u− v|(|u|p−1 + |v|p−1) (3.2.4)

|∇(F (u)− F (v)| � |∇(u− v)|(|u|p−1 + |v|p−1) + |u− v|(|∇u|+ |∇v|)(|u|p−2 + |v|p−1)

(3.2.5)

Let Φ(u) = eitΔgf+
∫ t

0
ei(t−τ)ΔgF (u(τ))dτ , it suffices to show that Φ is a contraction

on some Hilbert Space X.

The next proposition is the result for 2 diminsion. The local well-posedness in 2d

follow from it.

Proposition 3.2.1. Let n = 2, and (p, q) ∈ R
2, p > 2, such that 1/p+1/q = 1/2. If

XT = L∞
T H1(Ω) ∩ Lp

TW
1−1/p−ε,q(Ω),

and

‖u‖XT
= ‖u‖L∞

T H1(Ω) + ‖u‖Lp
TW 1−1/p−ε,q(Ω)
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Then Φ is a contraction from XT to XT in a ball of XT

Proof:

By Proposition 3.1.1, the free Schrödinger propagator eitΔg is bounded. So it

suffices to show that Λ = Φ− eitΔg is a contraction.

So ΛG =
∫ t

0
ei(t−τ)ΔgG(τ)dτ . By Christ-Kieslev lemma, energy argument, Propo-

sition 3.1.1 and Minkowski inequality, we have

‖ΛG‖XT
≤ C‖G‖L1

TH1(Ω) (3.2.6)

On the other hand, we can bound F (u(t)), where F is the forcing term in (1.1),

satisfying the assumptions in the introduction. So using (3.2), we have

‖F (u(t))‖L1
TH

1(Ω) ≤ C

∫ T

0

‖|u(τ)|p‖H1(Ω)dτ (3.2.7)

≤ C

∫ T

0

‖u(τ)‖H1(Ω)‖u(τ)‖p−1
L∞(Ω)dτ (3.2.8)

≤ CT 1/p‖u(τ)‖L∞
T H1Ω‖u(τ)‖p−1

Lp
TL∞(Ω)

(3.2.9)

If we choose 1/p > ε > 0, we will have 1− 1/p− ε > 2/q, hence W 1−1/p−ε,q(Ω) ⊂

L∞(Ω). So we get

‖u‖p−1
Lp
TL∞(Ω)

≤ C‖u‖p−1
XT

(3.2.10)

So the forcing term satisfies
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‖F (u(t))‖L1
TH

1(Ω) ≤ CT 1/p‖u(t)‖pXT (Ω) (3.2.11)

Substitute (3.2.11) into (3.2.6), we get

‖ΛF (u(t))‖XT
≤ C‖F (u(t))‖L1

TH1(Ω) ≤ CT 1/p‖u(t)‖pXT
(3.2.12)

Similar to the above proof, we can show that

‖F (u)− F (v)‖L1
TH1(Ω) ≤ CT 1/p‖u− v‖XT

(‖u‖p−1
XT

+ ‖v‖p−1
XT

) (3.2.13)

Which completes the proof.

In conclusion, when n = 2, by Proposition 3.2.1, for any T > 0, in a ball BR of

radius R > 0 of XT , if R < CT−1/p(p−1), and the initial value f is small, then Φ is a

contraction on BR ∩XT . Hence there is a solution of (1.3.5) in BR ∩XT .

The higher dimensional case can be treated similarly.

Proposition 3.2.2. Let n ≥ 3, and (p, q) ∈ R
3, p > 2 satisfies 1/p+n/q = n/2. We

also assume that s > n/q. If

Xs
T = L∞

T Hs+ε(Ω) ∩ Lp
TW

s,q(Ω)

and

‖u‖Xs
T
= ‖u‖L∞

T Hs+ε(Ω) + ‖u‖Lp
TW

s,q(Ω)

We have

Φ(u) = eitΔgf +

∫ T

0

ei(t−τ)ΔgF (u(τ))dτ
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is a contraction in some ball of Xs
T .

Proof:

By Proposition 3.1.4, the free Schrödinger propagator eitΔg is bounded from Xs
T

to itself. So same as in Proposition 3.2.1, it suffices to show that Λ = Φ− eitΔg is a

contraction.

By Christ-Kieslev lemma, Proposition 3.1.4 and energy argument,

‖ΛG‖Xs
T
≤ C(1 + T 1/(2p))‖G‖L1

THs+ε(Ω) (3.2.14)

On the other hand, using (3.2.2) we can get,

‖F (u(t))‖L1
THs+ε(Ω) ≤ C

∫ T

0

‖|u(τ)|p‖Hs+εdτ (3.2.15)

≤ C

∫ T

0

‖u(τ)‖Hs+ε‖u(τ)‖p−1
L∞(Ω)dτ (3.2.16)

≤ CT 1/p‖u‖L∞
T Hs+ε(Ω)‖u‖p−1

Lp
TL∞(Ω)

(3.2.17)

As s > n/q, we have W s,q(Ω) ⊂ L∞(Ω) is a continuous embedding. So

‖u‖p−1
Lp
TL∞(Ω)

≤ C‖u‖p−1
Xs

T
(3.2.18)

It follows that the forcing term F (u) satisfies

‖F (u(t))‖L1
TH

s+ε(Ω) ≤ CT 1/p‖u‖pXs
T

(3.2.19)
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Substitute (3.2.19) into (3.2.14), we get

‖ΛF (u(t))‖Xs
T
≤ C(1 + T 1/(2p))‖F (u(t))‖L1

THs+ε(Ω) ≤ CT 1/p(1 + T 1/(2p))‖u‖pXs
T

(3.2.20)

Similarly, using (3.2.4) we can get,

‖F (u)− F (v)‖L1
THs+ε ≤ CT 1/p‖u− v‖Xs

T
(‖u‖p−1

Xs
T
+ ‖v‖p−1

Xs
T
) (3.2.21)

Hence

‖Λ(F (u)− F (v))‖Xs
T
≤ C(1 + T 1/(2p))‖F (u)− F (v)‖L1

THs+ε(Ω) (3.2.22)

≤ CT 1/p(1 + T 1/(2p))‖u− v‖Xs
T
(‖u‖p−1

Xs
T
+ ‖v‖p−1

Xs
T
) (3.2.23)

So for any T > 0, if R < CT−1/p(p−1)(1 + T 1/(2p))−1/(p−1) is a positive radius, then

Φ is a contraction on BR ∩Xs
T , which completes the proof.

By Proposition 3.2.2, when n ≥ 3, (1.1) has a solution in BR ∩Xs
T .
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