
 

 

CTA CORONARY LABELING THROUGH EFFICIENT 

GEODESICS BETWEEN TREES USING ANATOMY PRIORS 

 

by 

MEHMET AKIF GULSUN 

 

 

 

 

 

 

A thesis submitted to Johns Hopkins University in conformity with the 

requirements for the degree of Master of Science in Engineering 

 

Baltimore, Maryland 

October, 2014 

 

  



ii 
 

Abstract 

We present an efficient realization of recent work on unique geodesic paths between 

tree shapes for the application of matching coronary arteries to a standard model of 

coronary anatomy in order to label coronary centerlines extracted in cardiac Computed 

Tomography (CT) Angiography (CTA) data. Automatically labeled coronary arteries 

would speed reporting coronary diseases for physicians, be used for building patient 

specific myocardial segment models for the correct integration of coronary anatomy 

with myocardial function and guide segmentation algorithms for extracting the 

centerline representation of coronary arteries in CTA data.  

Our approach builds on Quotient Euclidean Distance metric that leverages both 

geometric and topological information in order to compute unique natural and 

continuous geodesic deformations between tree-shapes. The efficiency of our approach 

and the quality of the results are enhanced using the relative position of detected 

cardiac structures including four chambers and pericardium. We explain how to 

efficiently compute the geodesic paths between tree shapes using Dijkstra's algorithm 

and we present a methodology to account for missing side branches during matching. 

We address computational difficulties for labeling large and complex coronary arteries 

and present evaluation results on 50 expert annotated and 20 automatically detected 

coronary centerlines in CTA data. For nearly all labels our approach shows promise 

compared with recent work and we show results for 12 additional labels. The results 
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show the practicality and accuracy of our approach for labeling patient specific coronary 

centerlines extracted in CTA. 
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1 Introduction 
 

1.1 Motivation / Significance 

According to American Heart Association, coronary artery disease (CAD) is a leading 

cause of death among cardiovascular diseases in the United States [1]. Coronary arteries 

extracted from CT angiography (CTA) are used for advanced visualization and 

quantification purposes to facilitate the diagnosis and treatment workflow for 

radiologists and cardiologists. Automated coronary labeling can be used to facilitate this 

workflow for time efficient reporting, examining the correlation of coronary arteries 

with myocardial function and guiding coronary segmentation algorithms. 

It is critical that an imaging physician report the anatomical location of pathology in a 

standard way to the referring physician. A principle goal of automated medical image 

analysis is the efficient reporting of such findings following established medical 

guidelines. Criteria have been established for how lesions along the coronary arteries 

should be reported from CT angiography (CTA) [2, 3]. The number of coronary labels 

varies in different standards but there is agreement on the major labels. The AHA 

established a standard 15 segment model in 1975 [2]. Our model follows more closely 

the more recent and more complete models of [3, 4]. The physician generally knows 

which coronary segment contains a lesion but it is time consuming to label images when 

more than a few labels must be applied due to the large variability in coronary anatomy. 
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Therefore, one of the goals of automatic coronary labeling is to speed the preparation 

of a report. 

Coronary arteries have an important role in keeping the cardiovascular system 

functioning by feeding heart muscles. Correct integration of coronary anatomy with 

myocardial segments can be used to infer the presence, severity and location of 

coronary disease based on the myocardial function and perfusion which can be non-

invasively evaluated using ultrasound or magnetic resonance imaging. Standard 

practices rely on empirical and population based models such as 17 segment myocardial 

model to define the correspondence between coronary arteries and myocardial 

segments which is not sufficient for personal medicine due to the large variability in 

coronary anatomy [5, 6]. Automated coronary labeling can provide an efficient way to 

build patient specific models to relate coronary anatomy with myocardial segments. 

Detection of coronary arteries in CTA is a challenging task due to irregularity of their 

anatomy, diseases such as stenosis and occlusion, and imaging artifacts. Most of 

previous approaches are data-driven and do not exploit any high level coronary prior 

model. A recent work [7] uses a model-driven algorithm to extract major coronary 

branches to constraint the segmentation and reports very promising results. Similarly, 

automated labeling can be used to build coronary models from partially recovered trees 

to guide the segmentation by predicting the location of missing branches and leakages. 
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1.2 Background 

In order to label the coronaries, our approach will leverage both geometric and 

topological information and incorporate coronary anatomy priors to define the 

correspondence between a labeled model and unlabeled data. We only consider the 

centerlines of the coronaries and not the coronary lumen. Most prior work labeling 

vascular or airway trees extracts an abstract graph that captures the topology of the 

tree but uses limited or no geometric information. A graph matching algorithm is then 

run to define the best correspondence between nodes in the model and in the 

unlabeled graph [8, 9].  This is a natural approach when attempting to label coronaries 

in 2D X-ray angiograms where the 3D geometry has been lost as in [8, 9]. 

The best known method for computing geodesic deformation between tree shapes is 

the tree edit distance (TED) [11]. TED defines the geodesic distance as the minimum cost 

for deforming one tree to the second by simple tree operations such as adding, 

removing or deforming a branch. This metric was previously used for matching cerebral 

vessels [12] although it was not used for labeling. [12] uses a bidirectional deformation 

between two cerebral trees in which both trees are edited concurrently by only 

removing their branches until they represent the same topology where the pruned trees 

are then deformed to match each other. With the TED metric there are frequently 

infinitely many geodesic paths between two tree-shapes and therefore a TED based 

geodesic does not satisfy the local uniqueness property which is required for assigning 

unique labels or performing a sound statistical analysis. 
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Recent work by [10] labels 3D CTA in 2 steps based on an anatomical model derived 

from [8]. First, a reduced coronary model is rigidly aligned using a point-set registration 

method and labels for the major branches are assigned based on proximity. Second, the 

side branches are labeled based on iteratively reducing a cost function which penalizes 

unlabeled centerline points. Our approach can handle more complete coronary trees. In 

the results section, we compare our results with theirs. 

Our solution builds on the recent work defining unique geodesic paths between trees 

[13], specifically, the proposed Quotient Euclidean Distance (QED) metric to compute 

unique natural and continuous geodesic paths between tree-shapes by concatenating 

local tree deformations [13]. The paths are defined in a high dimensional space that 

captures the topology and geometry of the tree. The QED geodesic was previously 

applied to the computation of an average airway tree [14] and to matching airway trees 

[15]. In [15], a novel method for the automated labeling of an unseen airway tree was 

proposed by first finding its correspondence to labeled airway trees in a training set and 

then assigning a label to each branch of the unseen tree based on a majority vote 

scheme. It establishes the branch correspondence between two airway trees by QED 

deformation. Similarly, our approach uses QED deformation for propagating labels from 

an atlas coronary model to unseen coronary tree.  
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1.3 Summary of Contributions 

The main contributions reported in this thesis are 1) practical definition of the 3D QED 

geodesic space for coronary trees based on automatically detected cardiac anatomy, 2) 

an efficient approximation of the QED geodesic using Dijkstra's algorithm, 3) explicit 

explanation of our heuristic in the QED framework to handle missing side branches, 4) 

the use of a coronary territory prior to augment the shape and topology information 

and to label large and complex coronary trees. 
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2 Method 
 

2.1 Overview 

The focus of this thesis is to label coronary centerlines that are either annotated by 

experts or automatically detected in cardiac CTA data which were acquired from 

patients known or suspected to have coronary artery disease. These patient CTA data 

were acquired with contrast agent for the purpose of diagnosing coronary artery disease 

in order to rule out the coronary artery catheterization.  

In our method, we label a target coronary tree by finding a minimum cost deformation 

from a coronary atlas model. We define the deformation cost between two coronary 

trees as the weighted sum of a labeling cost term and a regularization term using a tree-

shape metric. Specifically, the labeling cost term is based on the likelihood of the labels 

assigned to the target coronary branches and this likelihood is computed from the 

spatial distribution of coronaries over the heart surface. One labeling approach would 

be to only use the spatial distribution of coronaries and assign labels to coronary 

branches based on maximum likelihood. However, this approach can easily over fit the 

training data and may produce unrealistic labeling results that do not take the coronary 

topology and branch geometry into account. Therefore, we introduce a regularization 

term in our deformation cost using the QED metric between the coronary atlas model 

and the target coronary tree. We will refer to the minimum cost deformation between 

two coronary trees as the coronary geodesic in this thesis. 



7 
 

  
 

 
 

Figure 1: Automatically detected heart models visualized in (a) anterior and (b) posterior views. (c) 
Detected pericardium mesh. (d) Average heart model with two aligned left coronary trees overlaid. 

We first explain how we compute coronary territory prior which is used in various steps 

of our method. Following the coronary territory section, we explain the traditional QED 

metric, its incorporation into our coronary geodesic formulation and our heuristic 

method to handle missing side branches. Finally, we present our coronary atlas model 

and explain how we address computational difficulties in applying QED for labeling large 

complex coronary trees.  

 

 

b) a) 

c) d) 
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2.2 Statistic On Coronary Territories 

Coronary arteries lie roughly on the surface of the heart between the heart chambers 

and the pericardium. Our labeling method uses the spatial distribution of coronary 

branches in 3D space as anatomy priors for computational efficiency and improved 

labeling results. We compute the spatial distribution of coronary branches based on the 

average density of coronary branches over the population.    

The shape and size of coronary trees may vary depending on the patient specific 

anatomy of the heart. Therefore, it is necessary to first align the coronary trees in a 

canonical coordinate system. We segment the heart structures in patient cardiac CTA 

dataset that is the same volume used for the extraction of coronary arteries. 

Specifically, we automatically detect the patient heart model including cardiac 

chambers, aortic root, left atrial appendage and pericardium mesh models in patient 

CTA dataset using the method [16, 17], Figure 1a, b, c. The method in [17] is a two-step 

approach where it first localizes heart structures by predicting their position, orientation 

and scale using marginal space learning, and then estimates their 3-D mesh models 

through a learning-based boundary delineation algorithm. In addition, we compute a 

reference heart model by first segmenting the patient specific heart structures from 50 

CTA datasets in our training set using the same method in [17] and then averaging them. 

Each mesh point of these heart structures has correspondence through the training set. 

We achieve alignment of a patient specific coronary tree by using a thin-plate spline 

(TPS) interpolation [18] defined between the patient specific heart model and our 
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reference heart model as data points. TPS is a spline-based technique for two 

dimensional data interpolation that has been widely used for non-rigid image alignment 

and shape matching. Given a set of data points, TPS fits an interpolation function that 

passes through the points exactly while minimizing the smoothness (bending) energy 

defined as the integral of the square of second derivatives of interpolation function. The 

smoothing variant of TPS uses a regularization parameter in order to relax the exact 

data fit requirement. In our work, no smoothness regularization is used such that the 

TPS interpolation function passes through the points exactly. Figure 1d shows two 

aligned coronary trees overlaid on our reference heart model. 

Aligned coronary trees are used to compute average density map of coronary branches 

in a discrete volume bounding the reference heart model. Specifically, for each aligned 

coronary tree in the training set, we first compute a coronary tree distance map   by 

running Dijkstra’s algorithm on a graph         with nodes   that correspond to 

discrete voxels and edges   that connects each voxel to its    neighbors and are 

assigned with a weight as the Euclidean distance to its neighboring voxels. The distance 

map is initialized to infinity for all voxels in the volume except the voxels intersecting 

with coronary tree points and the distance map for intersecting voxels are initialized 

with their distance to closest coronary tree point. The labels along the branch points are 

propagated during the Dijkstra’s algorithm in order to assign a label to each voxel in the 

distance map, Figure 2. The density value       of label   at voxel   is then computed 

from Gaussian weighting of distance value      with standard deviation   in a local  
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Coronary Distance Map Computation 
 
Input: 3D coronary centerlines and discrete volume bounding the heart model. 
 

Let   =        be an undirected graph with nodes   that correspond to discrete voxels and 
edges   that connect each node to its 26 neighbors with Euclidean distance weight. 
 
1) Initialize distance map   with infinity and label map   with blank values. 
2) Find nodes         intersecting input coronary centerline points and initialize their 

distance map            with their distance to closest centerline point and their label map 
           with the label of closest centerline point. 
3) Run Dijkstra’s algorithm: 

     Let   be a minimum priority queue 

     Add all nodes   in graph   to   with priority   

     While   is not empty: 
          Let   be the node in   with minimum distance 
          Remove   from   
          For every neighbor of   of  : 

               If      >      + Euclidean length between   and  : 

                          =       + Euclidean length between   and    // update neighbor’s distance 

                           =                         // update neighbor’s label 

                      Update priority of   in   with                      // update priority queue   

      
      Figure 2: Pseudo code of our algorithm for computing coronary distance map using Dijkstra. 

neighborhood. Average density values  ̅     are obtained over   coronary samples in 

the population:   

       
( 

     

  )
                  ̅     

 

 
∑      

 
    

Major side branches could be missing in some coronary samples due to anatomical 

variation or image acquisition issues, and using samples with missing branches in 

averaging lowers density values. Therefore, we normalize the average density map of 

each label by the 90 percentile of the densities. Specifically, for each label  , we consider 

its non-zero average densities in all discrete voxels in order to compute a histogram. We  
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Figure 3: Spatial distribution of (a) right posterior descending artery and (b) left circumflex 
posterolateral branches.  

then use the 90 percentile of this histogram to normalize average density map of that 

label. 

Let   and   be discrete and continuous random variables and take labels and voxel 

location as values, respectively. We assume that labels at different voxel locations are 

independent. We obtain the conditional distribution of   given   based on its average 

density as follows where the density is linearly interpolated at continuous location  . 

Note that, we normalize the density at a location   by the sum of densities from all 

labels at that location so that their values sum to one in order to have a valid probability 

distribution: 

             ̅ 
    ∑  ̅ 

   

   

 

 Figure 3 illustrates the computed probability map from a few sample labels.  

a) b) 
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2.3 QED Geodesics 

 

2.3.1 Tree-Shape Representation 

As in [13], our vessel tree representation consists of a description of the branch 

topology and the shape of the branches which together correspond to a point in high 

dimensional space  . We represent a tree-shape as a pair       consisting of first, an 

ordered binary tree         with branches   and a root point   which together 

represent the tree topology, and second, branch attributes   that map each branch in   

to   landmark points sampled along the branch geometry. In this tree-shape model, 

tree-shapes with non-binary topology are represented via binary trees with collapsible 

zero-length internal branches. Figure 4c, d makes it clear that the same tree-shape may 

correspond to different points in our space. 

2.3.2 Quotient Space and QED Metric 

We are interested in finding the geodesic path between two tree-shape points defined 

in the Euclidean space  . However, geodesic paths in such a high dimensional space do 

not necessarily give continuous and natural deformations, since these geodesic paths do 

not contain equivalent tree-shapes with different binary representations, Figure 4a. 

Therefore, it is important to identify all the points in this space representing the same 

tree-shape. In [13], a quotient space  ̃ is defined to glue all points in the space   that 

correspond to the same tree-shape. In the quotient space, two tree-shape 

representations are considered to be identical, after collapsing their zero-length  
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Figure 4: (a) T1 and T2 are tree-shape points in a high dimensional space. A third tree shape can be 
obtained by removing the internal branch of T1. Path 1 is the geodesic path in the original space X. Path 

2 is a continuous deformation but not a minimum cost path. (b) In Quotient space  ̃, Path 2 is a feasible 
geodesic path because two different representations of the same tree-shape are allowed along the path 
with zero cost between them. Note that Path 2 goes through an internal topology change. (c) Tree-
shapes (top) and their representations (bottom) along the geodesic Path 2. Note that the side branches 
are switched along the geodesic path. (d) Another example of QED geodesic computation. In this 
example, the side branches are grown along the geodesic path. Midpoint along the geodesic path is also 
illustrated. 

 

a) b) 

c) 

d) 
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branches, if the corresponding combinatorial, ordered, rooted and attributed trees are 

exactly the same, Figure 4c,d.  The geodesic metric in this space is called the Quotient 

Euclidean Distance (QED) where the distance between glued points corresponding to 

same tree-shape is considered to be zero. 

The QED geodesic between two tree-shape points in quotient space is the path with 

minimum distance cost over all possible paths, Figure 4b, c, d. It was shown in [13] that 

the geodesic path in quotient space follows the tree-shapes which only differ from each 

other with internal topological changes, Figure 4c. The distance cost         between 

two non-identical tree-shape representations   and   is defined as the L2 norm of the 

deformation costs between corresponding branches in two tree-shapes. This branch 

deformation cost is computed as the Euclidean distance between landmark points of the 

two branches with their first points aligned. The cost of removing an internal branch is 

same as deforming it to a zero length branch.  

In general, finding geodesic paths in QED space is computationally very expensive. One 

algorithm for approximating QED geodesic is to explore all paths following all possible 

internal topology changes and choose the one with minimum cost among them, Figure 

5. However, the number of all possible internal topology changes grows exponentially 

with the total number of internal branches of the tree-shape. In fact, some sequences of 

internal topology changes may have a cost larger than the geodesic cost. In order to 

eliminate redundant paths containing such sequences, we propose to use Dijkstra's 

shortest path algorithm which is guaranteed to compute the shortest path in a graph 
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QED Geodesic Approximation 
 
Input: Source tree-shape    and target tree-shape   . 
 

Let  ̃  and  ̃ be set of tree-shapes in QED equivalent classes of    and   , respectively. 
Let    be set of tree-shapes including all possible combinations of internal topology 
changes (removal of internal branches) in    and including   itself. 
 
Let  ̃ and    ̃  be geodesic path and its distance, respectively. 
Initialize  ̃     and    ̃     
For each tree-shape   in   : 

     Let  ̃  be tree-shapes in QED equivalent class of    
     For each tree-shape    in  ̃ : 

           For each tree-shape   in  ̃ : 

                 Set   =             
                 Compute path length      ‖     ‖  ‖    ‖  
                 If      <    ̃ : 
             ̃  =         // update geodesic distance 
           ̃ =                  // update geodesic path 

Figure 5: Pseudo code of an exhaustive search algorithm for approximating QED geodesic. 

with non-negative metric. We construct a graph         where each node   in this 

graph corresponds to a tree-shape and are connected with edges  . An edge connecting 

two nodes with identical tree-shape representations is assigned with zero cost and an 

edge connecting two nodes with different tree-shape representations is assigned with 

the distance cost between them, Figure 6. The cost of an internal topology change is the 

removal cost for the corresponding internal branch. The edge costs are computed only 

when they are needed in Dijkstra's propagation for efficiency. Note that our Dijkstra 

based geodesic computation approach searches for “cone paths” that first go through 

internal topology transitions and then deform to match the target tree-shape. 

Therefore, our approach approximates QED geodesic rather than exactly computing it.  



16 
 

 
Figure 6: Our constructed graph for Dijkstra's algorithm to approximate QED geodesic from T1 to T2. An 
edge connecting two identical tree-shape representations is assigned with zero cost where an edge 
connecting two different tree-shape representations is assigned with the distance cost    between 
them. The path depicted with red color goes through internal topology change whereas the path 
depicted with green color only shrinks and grows side branches along the deformation 

2.4 Coronary Geodesic and Labeling 

The QED geodesic was applied to airway tree labeling in [15] by propagating labels from 

a labeled tree to an unlabeled tree along the geodesic deformation path where the 

labels on collapsed branches are dropped, Figure 7a.  

In this work, we know the underlying cardiac anatomy, so we can use it to compute the 

likelihood of where a particular coronary branch tends to lie. Therefore, we do not 

directly use QED geodesic deformation for labeling but rather use our coronary geodesic 

which combines traditional QED metric with a second term that accounts for the cost of 

assigning a label to a specified branch on the target tree based on its location over the  
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Figure 7: (a) Labels in T1 are propagated to T2 along the geodesic path. Label c on collapsed branch 
along the deformation is dropped. (b) T1 has a missing side branch. Its main branch is partitioned and 
mapped onto the equivalent second representation (middle) with two consecutive branches. This 
allows the side branch to grow naturally along the geodesic path. 

heart territory. Specifically, our coronary geodesic searches for a path from tree-shape 

  to tree-shape    among all possible paths with internal topological transitions in QED 

space that minimizes the total deformation cost. This problem can be formulated as an 

optimization problem as follows: 

                                                    
     ̃

                    
                           eq. 1 

where  

         : Coronary geodesic cost between   and    

 ̃ : Set of all possible paths with internal topological transitions between    and    in 

QED space 

 : Regularization term 

         : Length of path   between   and    in QED space 

      : Likelihood for assigning labels to    that are propagated from    along path   

a) b) 
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The labeling cost term       
   is computed from the log likelihood of labels assigned 

to each point   in the coronary tree    based their joint probability: 

          (∏            

      

) 

where    is the label assigned to coronary tree point  .  

It should be clear that the solution to optimization problem in eq. 1 without the labeling 

cost term is the approximated QED geodesic. In order to solve this problem with the 

labeling cost term, we modify our Dijkstra graph for computing tree-shape geodesic in 

Figure 6 by adding the weighted labeling cost term          
   to all incoming edges of 

target tree-shape equivalent class. Note that, with this added cost term, the length of 

each path from tree-shape    to tree-shape    becomes a weighted sum of QED 

distance and the labeling cost. 

 Along the deformation between a coronary reference model and a target coronary tree, 

some of the target coronary branches may be grown without any assigned labels. This is 

possible, especially, when some branches in the target coronary tree are missing in the 

reference atlas model. One way of accounting for unlabeled branches is to assign zero 

labeling cost to them. However, this could bias the coronary geodesic computation to 

favor growing branches in order to minimize the total labeling cost. Therefore, for an 

unlabeled point   of the target coronary tree, we first find the label that has the 

maximum likelihood at that particular location among all possible labels and use this 
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label for computing the labeling cost term. Let            and              be the set of 

labeled and unlabeled points in   , respectively. Our labeling cost is then: 

          ( ∏            

              

∏    
   

          

                

) 

where    is the label assigned to coronary tree point   in           .  

2.4.1 Handling Missing Side Branches 

Major side branches of the coronaries could be missing in a sample due to anatomical 

variation, pathology, image acquisition issues, or segmentation errors. One major 

contribution of this work is to consider equivalent partitioned representations of source 

and target tree-shapes to account for missing side branches, Figure 7b. Given two tree-

shape representations, we collapse all zero-length branches and merge the branch 

geometry of consecutive branches without bifurcations to form a single branch in a new 

tree representation. If the two new representations are exactly the same, we consider 

these two tree-shape representations to be equivalent. This definition of identical tree-

shapes allows for partitioning a tree-shape branch into one or more consecutive 

branches in   to naturally account for missing side branches, Figure 7b. Specifically, we 

compute coronary geodesic between all possible partitioning of source and target tree-

shape branches into at most three equal length polylines. Note that the tree-shape 

partitioning is a heuristic step of our algorithm that uses the QED metric. 
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Figure 8: This figure illustrates the computed ordering of right coronary branches for a sample coronary 
tree. Branches with right and left ordering are shown in red and blue colors, respectively. The ostium is 
depicted as green point. 

2.4.2 Coronary Tree-shape Representation 

Our coronary trees are given as a connected set of points in 3D space. However, it is not 

practical to apply QED to arbitrary trees embedded in 3D space because it requires 

considering all possible orderings of the child branches. Based on the fact that 

coronaries lie roughly on the surface of the heart, we can order the branches based on 

their position relative to the surface of the heart. Specifically, we use the automatically 

detected heart chambers to find branch orderings of right and left coronary trees 

relative to the right and left ventricles, respectively. 

For a given coronary bifurcation point, we compute the order of child branches as 

follows: Let  ⃗ ,  ⃗ and  ⃗  represent the vectors from the chamber center to bifurcation 

point and from the bifurcation point to the mean point of proximal part of first and 

second child branches, respectively. If  ⃗     ⃗    ⃗     then first and second child 

branch orders are right and left, respectively, otherwise the orders are vice versa. Note 

that our input coronary trees do not have trifurcation points and it is trivial to convert a 
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trifurcation point to two bifurcation points by adding a small intermediate branch.  

Figure 8 illustrates the detection of branch orders on a sample RCA coronary tree. 

2.4.3 Coronary Atlas Model 

Our coronary atlas model has a fixed topology described by [4] and we use mean branch 

shapes computed over the most complete 10 coronary trees in the training set.  Figure 9 

shows our coronary model in 3D space. Our coronary model is an instance of both right-

dominant and co-dominant circulation which are seen in 92% of the population [4]. This 

is why we excluded the CX posterior descending artery in our coronary model. A 

coronary tree typically has only one ramus intermediate branch. However, as it will be 

described in a latter section, we label LAD and CX tree separately. Therefore, the ramus 

intermediate branch appears in both trees in our atlas model. 

 

2.5 Efficient Computation of Coronary Geodesic 

The computational cost of QED metric exponentially increases with the number of 

generations of tree-shapes and therefore, coronary arteries may have more generations 

than what is practical with the QED metric. In our method, we exploit the topology of 

coronary arteries in order to reduce computational cost and label more complete 

coronary trees. We automatically preprocess the input coronary trees by splitting LCA 

into LAD/CX subtrees, partitioning RCA and simplifying the topology of trees based on a 

constraint on the number of bifurcations along their side branches. 
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Figure 9: The left coronary artery (LCA) has 19 labels: left main (LM), (a) three segments of the left 
anterior descending (LAD): proximal (LAD PROX), mid (LAD MID), and distal (LAD DIST), Ramus, 
diagonals (D1, D2, D3), septal perforating (SP1, SP2), (b) three segments of the circumflex (CX): proximal 
(CX PROX), mid (CX MID), and distal (CX DIST), Ramus, sinoatrial nodal (SANB), posterolateral (CX PLB), 
and obtuse marginals (OM1, OM2, OM3). (c) The right coronary artery (RCA) has 9 labels: three 
segments of the right coronary artery: proximal (RCA PROX), mid (RCA MID), and distal (RCA DIST), 
sinoatrial nodal (SANB), conus (CB), right ventricle marginal (RVM), acute marginal (AM), posterolateral 
(RCA PLB), and posterior descending (RCA PDA). Proximal and distal subtrees of RCA are separated by 
red lines. 

2.5.1 LAD/CX Tree Extraction 

The LM branch of LCA tree originates from left ostium and bifurcates into LAD and CX 

trees. The LM branch is short in length and does not have side branches. Therefore, we 

can label LAD and CX trees separately. Although the LM bifurcation point can be 

a) b) 

c) 
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detected as the first bifurcation in LCA tree, this may not be robust for detected 

coronary trees with false positive side branches along the LM. For this reason, we detect 

the LM bifurcation point using our coronary territory. Specifically, for each bifurcation 

point in LCA, we consider the downstream tree of right child branch as LAD candidate 

tree     , the downstream tree of left child branch as CX candidate tree     and the 

remaining points in LCA as LM candidate tree    . Let    ,       and      be a set of 

labels belonging to LM, LAD and CX trees, respectively, as shown in our coronary atlas 

model, Figure 9. We then compute a score based on the log likelihood of assigning 

labels    ,       and     to candidate trees    ,      and    : 

   ( ∏    
       

          

       

∏    
        

          

        

∏    
       

          

       

) 

 

We choose the bifurcation point with highest log likelihood score as the LM bifurcation 

point.  

2.5.2 RCA Tree Partitioning 

We partition the RCA into proximal and distal subtrees by maximizing the likelihood of 

their locations on the coronary territory, and label each subtree separately. We found 

that it is non-trivial to partition CX and LAD tree due to large variation of the location of 

side branch bifurcations. Therefore, we consider labeling them without partitioning.  
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Let       and        be a set of labels for proximal and distal subtrees of RCA, 

respectively. For each point in the tree, we consider the downstream tree as distal 

subtree candidate       and the remaining points as proximal subtree candidate      . 

We then compute a score based on the log likelihood of assigning labels       and 

      to candidate trees       and      : 

   ( ∏    
         

          

         

∏    
         

          

         

) 

We choose the point with highest log likelihood score for splitting the RCA tree into 

proximal and distal subtrees.  Figure 9c shows the labels for proximal and distal subtrees 

of RCA separated by red lines. 

2.5.3 Simplification of Topology Complexity 

Even though partitioning coronary trees into subtrees reduces their complexity, it is still 

computationally expensive to compute coronary geodesic between them due to 

complexity of side branches. In addition, we do not partition CX and LAD trees which 

may have more than five generations. Here, we explain how we simplify a subtree by 

reducing its topological complexity. 

A typical coronary tree has a main branch that originates from the ostium and travels 

along the atrioventricular and interventricular sulcus of the heart. The main coronary 

branch gives off side branches which can further bifurcate into secondary branches in 

order to reach to the heart muscles, Figure 10a, b, c. Assigning a distinct label to the 
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downstream vessels originating from side branches is of less clinical importance. 

Therefore, we simplify our input coronary trees by reducing the complexity of side 

branches.  

Let    and       be the set of all possible labels in tree   and along its main branch, 

respectively. For each branch       in   from the root point to distal points, we 

compute a score based on the likelihood of assigning labels       and its complement 

         to       and its complement        , respectively: 

   ( ∏    
         

          

         

∏    
            

          

           

) 

We choose the branch that maximizes this log likelihood score as the main branch. We 

consider proximal, mid and distal segments of the coronary tree as belonging to the 

main branch. In addition, we consider PLB as a label along the main branch of RCA and 

CX trees. 

We fix the detected main branch and extract the subtree with maximum size that 

satisfies the topology requirement with constraint on the number of bifurcations along 

side branches. For RCA, we allow only one bifurcation along side branches. Since the 

side branches of LAD and CX are usually not complex, we do not allow any bifurcation 

along their side branches, Figure 10a, b, c.  
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Figure 10: This figure illustrates our method for simplifying input coronary trees. Red trees show the 
simplified maximal subtrees where the pruned branches are depicted with arrows. (a) Second obtuse 
marginal branch of CX gives off multiple secondary branches. CX is simplified to satisfy a topology 
without any bifurcation along side branches. (b) First septal and second diagonal branches of LAD give 
off one secondary branch. LAD is simplified to satisfy a topology without any bifurcation along side 
branches. (c) Posterior descending branch of RCA gives off multiple secondary branches. RCA is 
simplified to satisfy a topology with at most one bifurcation along side branches. 

 

 

Figure 11: Our LAD model (T1) matched to a sample LAD tree (T6). Trees are first simplified such that 
they have single side branches (T2, T5). T3 and T4 are intermediate trees along the coronary geodesic 
path from T2 to T5. Labels in model tree are propagated along the path except SP2 and D3 which are 
dropped. 

a) b) 

c) 
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3 Results 

Our coronary geodesic implementation supports 4 generations for trees that have side 

branches with at most one bifurcation and 6 generations for trees that have side 

branches without any bifurcation.  We keep a table for quick look-up of equivalence 

classes of tree shapes for computational efficiency. 

We consider searching for geodesic path in QED space among all possible paths that 

allow up to 2 internal topological transitions. We cache computed branch deformation 

and label assignment costs. Our parallelized implementation with OpenMP labels both 

left and right coronary trees in 15 seconds on average on an Intel Core i7 2.8GHz 

processor and 32 GB RAM.  

We assume that the left main (LM) and the proximal branches of the RCA, LAD and CX 

always exist. To make the input centerlines suitable for use in our QED implementation, 

input trees were preprocessed by iteratively pruning their shortest branches until they 

had a maximum 4 generations for proximal and distal subtrees of RCA and 6 generations 

for CX and LAD.   

We evaluated our method for right and co-dominant dominant cases using leave-one-

out cross-validation where the coronary spatial distribution is re-computed for each 

training set. We experimentally chose the best weighting term between QED distance 

and label assignment likelihood terms. We used expert annotated coronary centerlines 

in 50 CTA datasets. We automatically detected the pericardium mask and four chamber 
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models to define our coordinate system [16, 17]. Each of the ground truth centerlines 

was labeled according to [4] where the same label of the side branch is used to label its 

children.  

For evaluation, labels corresponding to pruned branches are recorded as part of the 

missed results. Figure 11 illustrates the matching between the LAD model and a test LAD 

coronary tree. We calculated the overlap measures between automatic and expert 

annotated labels for each branch that exists in our coronary model. Branches that exist 

in our model but that are not labeled by the algorithm are counted as mislabeled. RCA 

was incorrectly partitioned below AM branch in 2 of the 50 datasets. Figure 12 

compares our results to those of [10]. Note that the two test datasets are different and 

so the results are suggestive rather than being directly comparable. 

We evaluated our labeling method on 20 patient cases of automatically detected 

coronary centerlines using [7] that combines a model driven approach for the three 

major coronary arteries with a data driven approach for the side branches and distal 

parts of the main branches. Because the method of [7] knows which of the three main 

coronary branches it has recovered, the label of these branches is known as part of the 

segmentation. However, in order to show the generality of our approach to labeling, 

these known labels are ignored and we present a method that can label the coronary 

tree without any known labels.  
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Figure 12: Comparison of our overlap measures to Yang et. al. [9]. Total count of each branch is 
depicted next to its label for our and their test set, respectively. Our results for branches that were not 
part of their results appear as single columns with the total count of branch is depicted next to its label. 

 

RVM RVM (89%), CB (4%), AM (2.7%), None (4.3%) 

AM AM (84%), PDA (6%), RVM (2%), None (8%) 

D1 D1 (81%), Ramus (19%) 

OM1 OM1 (88%), Ramus (12%) 

CX_SANB CX_SANB (86%), None (14%) 
Table 1: Label assignments as a percentage for those branches with the most mislabels. 

Our success rate is 96% for the right coronary and 97% for the left coronary for hand 

annotated centerlines, and 92% for the right coronary and 87% for the left coronary for 

detected centerlines. Without the anatomical location prior, the results for the hand 

annotated centerlines decrease to 93% for the right coronary and 94% for the left 

coronary. Table 1 shows the accuracy of our approach for branches that were assigned 

with the most mislabels.  

In the case of the automatically detected coronary branches, there are 14 instances of 

false positive detections which explain our reduced labeling performance. Specifically, in 

39% of these cases, the false positives are incorrectly given a label and the assigned 

label depends on the location. 
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4 Discussion 

We have presented an efficient method that determines a geodesic path between tree 

shapes in order to propagate labels from a standard model of the coronary arteries to 

unlabeled coronary centerlines. Our approach adapts the framework of [15] to work 

relative to the detected structures of the heart. For most of the labels assigned by [10] 

our approach produces equivalent or better results which are not directly comparable 

since the two methods were tested on different datasets. However, our approach can 

handle more general tree structures and we have shown results on 12 additional labels. 

Also, we show results for coronary trees produced by an automatic detection algorithm. 

Additional contributions include the efficient approximation of the QED geodesic using 

Dijkstra's algorithm, the use of a coronary territory location prior, and an explicit 

description of how to support missing side branches in the QED framework. Our 

approach with coronary tree partitioning and topology simplification allows us to label 

unseen coronary trees using a complete coronary atlas model without need to reduce 

its size. However, the computational complexity of QED metric for trees with large 

number of generations is the major limitation of our approach for applying it to other 

vascular anatomy.  

In future work, we will investigate how our QED geodesic approximation through cone 

paths affects the labeling results. We will consider having multiple coronary models in 

order to handle left dominant circulation (approximately 8% of the population [4]). 

Some branches such as CX obtuse marginal or LAD diagonal have similar shape to ramus 
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with a large overlap between their territories. In order to improve labeling results for 

such confusing branches, we will use other geometric features such as diameter and 

curvature information in our geodesic metric.  False positive centerlines in automatic 

coronary detections reduce the accuracy of labeling. Detection probabilities can be 

incorporated into our metric for encouraging the algorithm to grow branches for 

centerlines with low probabilities. In addition, we can generate confidence of labeling 

results based on the likelihood of assigned labels over the coronary territory. Our 

method for computing labeling likelihood assumes independence between labels at 

different locations in the tree. Another future work would be to investigate the 

correlation of labels along different branches.  
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