
Convexification in Unconstrained Continuous Optimization

by

Lingzhou Hong

A thesis submitted to The Johns Hopkins University in conformity with the

requirements for the degree of Master of Science in Engineering.

Baltimore, Maryland

December, 2014

c� Lingzhou Hong 2014

All rights reserved



Abstract

In this Master’s thesis, we study the role of convexification as it is used in un-

constrained optimization of smooth functions. Many variants of convexification exist,

but a detailed study of their practical performance has not been performed. We com-

plete such a study in this thesis since the performance of an optimization algorithm

is greatly a↵ected by the convexification used. We also propose and validate a new

convexification procedure by comparing it with commonly used schemes through a

series of extensive numerical experiments; the new procedure performs the best. The

results we obtained will likely aid in the design of future optimization algorithms.

Advisor: Dr. Daniel P. Robinson
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Chapter 1

Introduction

In this chapter we lay the foundation for the thesis by first introducing in Sec-

tion 1.1 the optimization problem that we study. In Section 1.2 we give the contribu-

tions of this thesis and explain why they are important. In Section 1.3 we summarize

the notation used throughout, and in Section 1.4 provide definitions and state well-

known results related to solutions of the optimization problem under study.

1.1 The Problem Formulation

We consider the unconstrained optimization problem

minimize
x2Rn

f(x) (1.1)

1



CHAPTER 1. INTRODUCTION

where f : Rn ! R is a twice-continuously di↵erentiable function, i.e., f and its

first two derivatives are continuous. Problems of this type include nonlinear least-

squares,1,2 polynomial functions,3 among others. It is worth mentioning that uncon-

strained optimization problems arise in both academic and real-world problems.

For example, least-squares regression models obtain parameters by minimizing the

squared error between the values predicted by the model and the observed values.4

Consider the linear regression model in matrix form given by y = Xb + e, where

X is the matrix of independent variables, y is a vector of dependent variables, b is

the unknown parameter vector, and e is an error residual vector. In least squares

regression, the parameter vector b is chosen to produce the ”best fit” model, which

means the residuals should be as small as possible, i.e., we can minimize the squared

error function f(b) = ky � Xbk22. It is well-known that the vector that minimizes

f(b) is, when XTX is invertible, given by b = (XTX)�1XTy. In the real world, many

business decisions are based on optimization problems of this form, e.g., maximizing

profit,5 minimizing lost,6 constructing optimal investment portfolios,7 and designing

supply chains.8

Many optimization problems involve objective functions that are not twice con-

tinuously di↵erentiable; problems of that type will not be addressed in this thesis.

2



CHAPTER 1. INTRODUCTION

1.2 Contributions

Problem (1.1) is usually solved by an iterative algorithm, i.e., a method that

uses an initial estimate of a solution x0 to generates a sequence of iterates {x
k

} that

hopefully converges to a solution of x⇤. The various known algorithms may broadly be

classified as either line-search or trust-region methods. These two classes of algorithms

are similar in many aspects, but do di↵er in certain key ways. One key di↵erence

concerns convexification, which is a major contributor to the overall e�ciency of the

algorithm. Broadly speaking, convexification is a notion used by every line-search and

trust-region method to ensure that each subproblem used during the solution process

is well-defined and emits a useful solution (perhaps an approximate solution). In this

thesis, we will only consider convexification as it pertains to line-search methods.

This thesis has three contributions: (i) To present and summarize the most com-

monly used line-search procedures used by modern algorithms; (ii) To present a new

convexification scheme that performs the best on a certain subclass of problems; and

(iii) To provide the results of extensive numerical experiments concerning the various

approaches. Since the best criteria used to compare algorithms varies based on prob-

lem size, availability and sparsity of the derivatives of the objective function, and the

goal of the user, we consider multiple measures of performance.

3



CHAPTER 1. INTRODUCTION

1.3 Notation

The notation that we use is standard and listed here for convenience to the reader.

• The objective function is denoted by f : Rn ! R.

• The gradient of f is denoted by g := r
x

f : Rn ! Rn.

• The Hessian function of f is denoted by H := r2
xx

f : Rn ! Rn ⇥ Rn.

• Given an iteration x
k

, we let f
k

= f(x
k

), g
k

= g(x
k

), and H
k

= H(x
k

) denote

the objective function and its first two derivatives, respectively, evaluated at x
k

.

• The kth search direction is p
k

with step length ↵
k

so that x
k+1 = x

k

+ ↵
k

p
k

.

• The matrix B
k

is a symmetric positive-definite matrix that is intended to ap-

proximate (perhaps poorly) the Hessian matrix H
k

.

• For any matrix M , we use M � 0 to mean that M is positive definite, M ⌫ 0

to mean that M is positive semidefinite, M 6� 0 to mean that M is not positive

definite, and M 6⌫ 0 to mean that M is not positive semidefinite.

• The sequence of iterates generated by an algorithm are denoted by {x
k

} ⇢ Rn.

• The vector x⇤ 2 Rn is a local minimizer for problem (1.1) (see Definition 1.4.2).

• The secant equation is B
k+1sk = y

k

, where s
k

:= x
k+1� x

k

and y
k

:= g
k+1� g

k

.

4



CHAPTER 1. INTRODUCTION

1.4 Definitions and Optimality Conditions

Various standard optimization terms are used in this thesis and, for ease of later

reference, are stated in this section. We note that we only focus on minimization

since finding a maximizer may be done by minimizing the negative of the objective

function. We begin with global and local minimizers.

Definition 1.4.1 (global minimizer) A point x⇤ is a global minimizer if and only

if f(x⇤)  f(x) for all x 2 Rn.

Definition 1.4.2 (local minimizer) A point x⇤ is a local minimizer if and only if

there exists " > 0 so that f(x⇤)  f(x) for all x 2 B(x⇤, ") := {x 2 Rn : kx�x⇤k  "}.

The previous definitions are not practical since the conditions that define them are

rarely verifiable. Necessary and su�cient optimality conditions, on the other hand,

provide us with a means to tell when a point is optimal (su�cient conditions) or is not

optimal (necessary conditions). We begin with the first-order necessary conditions.

Theorem 1.4.1 (first-order necessary conditions) Suppose that f : Rn ! R is

once continuously di↵erentiable. If x⇤ is a local minimizer of f , then g(x⇤) = 0.

The contrapositive of the previous theorem allows us to deduce that if g(x̂) 6= 0,

then x̂ is not a minimizer. However, g(x̂) = 0 does not necessarily mean that x̂

is a minimizer, e.g., it could be a saddle point or even a maximizer. Consider the

simple example f(x) = x3 for which x̂ = 0 satisfies g(x̂) = 0, but clearly x̂ does

5



CHAPTER 1. INTRODUCTION

not minimizer f(x). Since first order information cannot provide us with enough

information to determine when a point is a minimizer (at least when f is nonconvex),

we also consider second order information (curvature information) for the function.

Theorem 1.4.2 (second-order necessary conditions) Suppose that f : Rn ! R

is twice continuously di↵erentiable. If x⇤ is a local minimizer of f , then g(x⇤) = 0

and H(x⇤) is positive semi-definite, i.e., sTH(x⇤)s � 0 for all s 2 Rn.

Similar to the first-order necessary condition, the contrapositive of the previous

result allows us to deduce that if g(x̂) = 0 but H(x̂) 6⌫ 0, then x̂ is certainly not a

local minimizer. However, even if the Hessian is positive semi-definite, we still can

not guarantee that x̂ is a minimizer. Again, for the problem f(x) = x3, the point

x̂ = 0 satisfies g(x̂) = 0 and H(x̂) = 0 � 0, but x̂ = 0 is not a minimizer.

We now develop su�cient optimality conditions. Before stating such conditions,

we give two definitions associated with di↵erent types of local minimizers.

Definition 1.4.3 (isolated local minimizer) The vector x⇤ is an isolated local min-

imizer if and only if there exists " > 0 so that x⇤ is the only local minimizer in B(x⇤, ").

Definition 1.4.4 (strict local minimizer) The vector x⇤ is a strict local mini-

mizer if and only if there exists " > 0 so that f(x⇤) < f(x) for all x⇤ 6= x 2 B(x⇤, ").

An isolated local minimizer is a strict local minimizer, but a strict local minimizer is

not necessarily an isolated local minimizer. For example, it is possible to construct

6



CHAPTER 1. INTRODUCTION

functions that oscillate infinitely often as x ! 0, which means that every neighbor-

hood of 0 contains infinitely many local minimizers.

We may now state the su�cient optimality conditions. Specifically, the next result

gives conditions that allow us to assert that a point is a strict local minimizer.

Theorem 1.4.3 (second-order su�cient conditions) Suppose that f : Rn ! R

is twice continuously di↵erentiable. If x⇤ satisfies g(x⇤) = 0 and H(x⇤) is positive

definite, i.e., sTH(x⇤)s > 0 for all s 6= 0, then x⇤ is a strict local minimizer of f.

The idea of a descent direction will be important for finding minimizers. In par-

ticular, they represent directions for which lower values of the objective function are

guaranteed to exist. Such directions are critical to line search methods.

Definition 1.4.5 (descent direction) We say that p is a descent direction at x for

the objective function f of problem (1.1) if g(x)Tp < 0.

7



Chapter 2

Popular Convexification Schemes

As mentioned in Section 1.2, non-convexity has a substantial impact in optimiza-

tion. In particular, it plays a critical part in the overall e↵ectiveness of optimization

algorithms, and its influence is, in some ways, more direct for line-search methods.

The sections in this chapter describe various popular linear-search convexification

procedures. Before discussing them, however, we describe the basic iteration scheme

as well as standard conditions used by line-search methods, for completeness.

Line search methods are typically descent methods in the sense that the generated

iterates {x
k

} ⇢ Rn satisfy f(x
k+1) < f(x

k

). To ensure this property, line search

methods update the estimate of solution by the formula

x
k+1 = x

k

+ ↵
k

p
k

, (2.1)

8



CHAPTER 2. COMMONLY USED CONVEXIFICATION SCHEMES

where p
k

is a descent direction (i.e., g(x
k

)Tp
k

< 0) and ↵
k

> 0 is a step length chosen

to ensure f(x
k+1) < f(x

k

). Since p
k

is a descent direction, one may use Taylor’s

Theorem to show that f(x
k

+ ↵p
k

) < f(x
k

) for all su�ciently small ↵ > 0.

Although many minor algorithmic variants exist, the two key di↵erences between

line-search methods are in calculating the descent direction p
k

and the step length ↵
k

.

Loosely speaking, most (if not all) choices of p
k

can be described as being approximate

solutions to the optimization problem

minimize
p2Rn

f
k

+ gT
k

p+ 1
2p

TB
k

p (2.2)

for some choice of symmetric matrix B
k

that is positive definite when restricted to

some subspace of Rn. In Sections 2.1–2.6 we consider the most popular choices for

choosing the matrix B
k

in addition to describing the exact meaning of what we mean

by an approximate solution to (2.2).

Once a descent direction p
k

is calculated, we must compute the step length ↵
k

,

either exactly or inexactly. By exactly, we mean that ↵ is computed as the exact

minimizer of h(↵) := f(x
k

+ ↵p
k

), which is expensive and ine�cient to compute.

Thus, the search steps are normally determined inexactly by identifying an ↵
k

that

satisfies certain su�cient decrease conditions on f that are satisfied by many values

of ↵, not just by minimizing ones. The two most popular choices are the backtracking

Armijo line-search method9 and a line-search based on satisfying the (strong) Wolfe

9



CHAPTER 2. COMMONLY USED CONVEXIFICATION SCHEMES

conditions .10 Although the precise nature in which ↵
k

> 0 is chosen is important,

it is not the focus of this thesis; we focus on the e↵ects that the di↵erent convexifi-

cation procedures have on the e�ciency and robustness of the algorithm. Still, for

completeness we briefly describe these two procedures.

Definition 2.0.6 (Armijo condition) Given a constant ⌘ 2 (0, 1) and a descent

direction p
k

at x
k

, we say that the step length ↵
k

> 0 satisfies the Armijo condition

if and only if

f(x
k

+ ↵
k

p
k

)  f(x
k

) + ⌘↵
k

gT
k

p
k

.

A backtracking Armijo line-search method finds a valid step length ↵
k

by starting

with some guess (typically the value 1), and gradually shrinking its size until the

Armijo condition is satisfied. This procedure is described in Algorithm 1.

Algorithm 1 A backtracking Armijo line-search.
1: input x

k

and descent direction p
k

.
2: Choose ↵

int

> 0, ⌘ 2 (0, 1), and ⌧ 2 (0, 1).
3: Set ↵(0)  ↵

int

and l 0.
4: while f(x

k

+ ↵(l)p
k

) > f(x
k

) + ⌘↵(l)gT
k

p
k

do
5: Set ↵(l+1)  ⌧↵(l).
6: Set l l + 1.
7: return ↵

k

 ↵(l).

In contrast to the backtracking Armijo line search, a line search based on satisfying

the Wolfe conditions seeks better approximations to an exact line-search by combining

the Armijo condition with other conditions that hold near a local minimizer. It is

worth commenting that the Wolfe conditions are especially popular for the BFGS

10



CHAPTER 2. COMMONLY USED CONVEXIFICATION SCHEMES

quasi-Newton updating method since they ensure that the updates will be successful.

Definition 2.0.7 (weak Wolfe conditions) Given constants 0 < c1 < c2 < 1 and

a descent direction p
k

at x
k

, we say that the step length ↵
k

> 0 satisfies the weak

Wolfe conditions if and only if

f(x
k

+ ↵
k

p
k

)  f(x
k

) + c1↵k

g(x
k

)Tp
k

and

g(x
k

+ ↵
k

p
k

)Tp
k

� c2g(xk

)Tp
k

. (2.3)

The strong Wolfe conditions impose, not surprisingly, stronger conditions than

those given by the weak Wolfe conditions.

Definition 2.0.8 (strong Wolfe condition) Given constants 0 < c1 < c2 < 1 and

a descent direction p
k

at x
k

, we say that the step length ↵
k

> 0 satisfies the strong

Wolfe conditions if and only if

f(x
k

+ ↵
k

p
k

)  f(x
k

) + c1↵k

g(x
k

)Tp
k

and (2.4)

��g(x
k

+ ↵
k

p
k

)Tp
k

��  c2
��g(x

k

)Tp
k

�� . (2.5)

One can see that in comparison to the weak Wolfe conditions, the strong Wolfe

conditions ensures that the directional derivative at the updated point is smaller than

at the initial point in absolute value (see (2.5)), not just greater than a fraction of

the directional derivative at the initial point (see (2.3)).

11
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2.1 Steepest Descent

The steepest descent direction is given by p
k

= �g
k

. It is simple in this case to

see that gT
k

p
k

= �gT
k

g
k

= �kg
k

k2 < 0 (provided g
k

6= 0) so that the steepest descent

direction is, in fact, a descent direction. It is less commonly known that the steepest

descent direction is the solution to (2.2) with the choice B
k

= I. Thus, the steepest

descent direction is the trial step that minimizers a model of f(x
k

+ s) given by (2.2)

defined using the simple Hessian approximation B
k

= I. It should, therefore, not

be a surprise that the steepest descent direction is often a poor direction to use in

the sense that many iterations are often required before near optimality is reached.

Nonetheless, the simplicity of the steepest descent direction is a great advantage that

should not be overlooked, nor should the fact that it often achieves fast decrease

in the objective function initially. The main weakness, i.e., slow convergence, is

(typically) most evident during later iterations because it is di�cult to obtain the

final termination tolerance that is often requested by the user.

We may conclude from the previous paragraph that the convexification used by

the steepest descent method is to use the matrix B
k

= I rather than the exact second

derivative matrix H(x
k

). This is clearly a very simple convexification procedure.

12
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2.2 Shifted Spectra

To obtain, in general, a better search directions p
k

, we should search for better

matrices B
k

(as opposed to B
k

= I associated with the steepest descent direction)

that, in some sense, more accurately approximates the curvature of the objective

function. Since we know that second-derivate information is more accurately obtained

from H
k

, we seek a procedure that chooses B
k

by using the matrix H
k

, as opposed

to completely discarding it as is done with the steepest descent direction.

One such strategy is what we call the shifted spectra method (see Algorithm 2).

The goal of this strategy is to shift the spectrum ofH by adding to it a diagonal matrix

with large enough positive elements. In this strategy, if the smallest eigenvalue of H
k

is greater than the ✏ that is input, no modification will take place so that B
k

= H
k

.

In this case, the solution to (2.2) satisfies H
k

p
k

= �g
k

, which is the Newton iteration

for finding a zero of g(x) from the base point x
k

.

Algorithm 2 Shifted spectra method
1: Input H and " > 0.
2: Compute the spectral decomposition H = V ⇤V T.
3: Find the minimum eigenvalue �

min

among the diagonal elements of ⇤.
4: if �

min

� " then
5: Set ⇤̄ ⇤.
6: else
7: Set ⇤̄ ⇤+ ("� �

min

)I.

8: return B = V ⇤̄V T � 0

Algorithm 2 results in a matrix B
k

� 0. This ensures that the direction p
k

that

solves (2.2) is a descent direction. It is readily seen that B
k

� 0 implies that B�1
k

� 0

13
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since if (v,�) is an eigenpair of B
k

(� must be strictly positive) that

B
k

v = �v if and only if
1

�
v = B�1

k

v

from which it follows that B�1
k

is also positive definite. Thus, we know that p
k

is

a descent direction anytime g
k

6= 0 (i.e., anytime x
k

does not satisfy the first-order

necessary optimality condition) since

gT
k

p
k

= �gT
k

B�1
k

g
k

< 0.

We mention this since line-search methods require p
k

to be a descent direction.

We finish this section with a few comments. First, as described above, when H
k

is su�ciently positive definite, Algorithm 2 will produce B
k

= H
k

and the resulting

step p
k

will be the Newton step. Thus we would expect local fast convergence of a line

search method based on the shifted spectra convexification procedure, at least near a

minimizer x⇤ that satisfies second-order su�cient conditions. Globally, however, there

is no guarantee about the size of the modification that is produced by Algorithm 2.

Intuitively, however, one might suspect that this procedure would often lead to a

Hessian matrix approximation B
k

that is more accurate and informative than the

simple choice of B
k

= I used by the steepest descent direction.

14



CHAPTER 2. COMMONLY USED CONVEXIFICATION SCHEMES

2.3 Modified Newton

The modified Newton procedure for obtaining the matrix B
k

is more refined than

simply shifting the spectrum of H
k

as is done in the previous section by the shifted

spectra scheme. The idea behind modified Newton is to change only the eigenvalues

that are not su�ciently positive, which is reasonable since the matrix B
k

is positive

definite if and only if the eigenvalues of B
k

are all strictly positive.

The eigenvalues of H
k

are obtained, and ultimately modified, by performing a

spectral decomposition of H
k

. Several strategies for modifying the eigenvalues are

known, and here we present two of them; see Algorithms 3 and 4. We also mention

that a related strategy based on using a symmetric block factorization is also possible

and is more relevant when the number of variables n becomes larger than is practical

for computing the spectral decomposition in Algorithms 3 and 4.

Algorithm 3 A modified Newton method: variant 1
1: Input a symmetric matrix H.
2: Choose � > 1 as the desired bound on the condition number of B.
3: Compute the spectral decomposition H = V ⇤V T.
4: if H = 0 then
5: Set " 1.
6: else
7: Set " kHk2/� > 0.

8: Compute

⇤̄ = diag(�̄1, �̄2, . . . , �̄n

) with �̄
j

=

⇢
�
j

if �
j

� ",
" otherwise.

return B = V ⇤̄V T � 0, which satisfies cond(B)  �.

In Algorithm 3, the eigenvalues ofH that are smaller than " are replaced by ". The

15



CHAPTER 2. COMMONLY USED CONVEXIFICATION SCHEMES

resulting positive-definite matrix B is then the sum of H and a positive semidefinite

matrix E, where the ith eigenvalue of E is the maximum of zero and " � �
i

, where

�
i

is the ith eigenvalue of H.

In contrast to Algorithm 3, Algorithm 4 only modifies eigenvalues with absolute

value less than ". This strategy may result in better approximations B to H (in com-

parison with Algorithm 3) since large negative eigenvalues are preserved in magnitude,

but not sign.

Algorithm 4 A modified Newton method: variant 2
1: Input a symmetric matrix H.
2: Choose � > 1 as the desired bound on the condition number of B.
3: Compute the spectral decomposition H = V ⇤V T.
4: if H = 0 then
5: Set " 1.
6: else
7: Set " kHk2/� > 0.

8: Compute

⇤̄ = diag(�̄1, �̄2, . . . , �̄n

) with �̄
j

=

8
<

:

�
j

if �
j

� ",
��

j

if �
j

 �",
" otherwise.

return B = V ⇤̄V T � 0, which satisfies cond(B)  �.

Modified Newton methods typically produce iterates with a fast local rate of con-

vergence, and are e�cient on small to medium size problems. However, computation

of the required spectral decomposition is generally very expensive and makes these

methods not suitable for large scale problem.
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CHAPTER 2. COMMONLY USED CONVEXIFICATION SCHEMES

2.4 Quasi-Newton

Quasi-Newton and other related methods have been well studied.11–15 Here, we

focus on quasi-Newton methods that are most applicable to line search methods and,

in particular, aim to have a positive-definite matrix B
k

during each iteration. (This

contrasts, e.g., the SR1 quasi-Newton update16 that only aims for symmetry). Unlike

the modified Newton paradigm in which the Hessian matrix H
k

is modified to obtain

B
k

, quasi-Newton methods maintain a positive-definite matrix by updating (in a

simple way) the previous approximation B
k�1 in a manner that forces B

k

to have

reliable curvature information along certain directions.

2.4.1 BFGS

In this thesis, we focus on the most popular quasi-Newton updating scheme known

as the BFGS update,17–20 which is also generally accepted as the best update for line

search based algorithms. We comment, however, that an entire class of updates (the

Broyden class21) has been studied. The BFGS algorithm for computing the sequence

of matrices {B
k

} is given by Algorithm 5.

Algorithm 5 The BFGS update.

1: Input vectors x
k�1, xk

, g
k�1, and g

k

, and symmetric matrix B
k�1 � 0.

2: Set s
k�1  x

k

� x
k�1 and y

k�1  g
k

� g
k�1.

3: Set B
k

 B
k�1 � B

k�1sk�1(Bk�1sk�1)T

s

T

k�1Bk�1sk�1
+

y

k�1y
T

k�1

y

T

k�1sk�1
.

4: return B
k

17



CHAPTER 2. COMMONLY USED CONVEXIFICATION SCHEMES

Rather than computing B
k

directly from H
k

, the BFGS update obtains B
k

by

updating the previous approximation B
k�1 with a rank-2 matrix. In fact, the BFGS

update may be derived by seeking a rank-2 update to B
k�1 that is symmetric and

satisfies the secant equation B
k

s
k�1 = y

k�1. Of course, the matrix B
k

should also be

positive definite so that the subsequent search direction p
k

computed via B
k

p
k

= �g
k

is a descent direction for f at x
k

. With this in mind, we mention that the step length

↵
k

is usually chosen to satisfy the Wolfe conditions since it may be shown that in

that case the updated matrix B
k

will be positive definite.22

Since the BFGS update does not require the Hessian matrix, it is an attractive

option when second derivative matrices are either unavailable or very expensive to

compute. Since the BFGS updated matrix contains some curvature information, a

line search method based on BFGS usually converges faster than the steepest descent

method, which implicitly uses the identity matrix to approximate H
k

.

2.4.2 LBFGS

To use the approximation B
k

resulting from the BFGS update requires either

the explicit formulation of the matrix, which is likely to be dense, or the ability to

compute the action of B
k

on any given vector, which may be computed as a sequence

of products with rank-two vectors. The bottom line is that this approach is generally

too expensive for large scale problems. Limited Memory BFGS (LBFGS) 23 is a

truncated version of BFGS: the formulation of B
k

only requires the most recent rank-

18
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2 update vectors, and is typically only represented implicitly by storing these pairs.

In Algorithm 6, we present the ”two loop recursion” for LBFGS as presented

in [16, Algorithm 9.1]. We note that this form directly approximates the inverse of

B
k

. To be more precise, the output of the algorithm is the vector p
k

= �W
k

g
k

, where

W
k

is the LBFGS update to the inverse of H
k

. We note that the secant equation for

the approximation of the inverse of the Hessian isW
k

y
k�1 = s

k�1. This scheme is quite

e↵ective for unconstrained optimization. (We also note that it has been extended to

bound-constrained problems16 since it directly outputs the search direction p
k

.)

Algorithm 6 The LBFGS two-loop recursion.
1: Input the gradient g

k

and memory length m � 1.
2: Set q  g

k

.
3: for i=k � 1, k � 2, . . . , k �m do
4: Set ⇢

i

 1/(yT
i

s
i

).
5: Set ↵

i

 ⇢
i

sT
i

q.
6: Set q  q � ↵

i

y
i

.

7: Set W (0)
k

 yT
k�1sk�1/(yT

k�1yk�1).

8: Set z  W
(0)
k

q.
9: for i= k �m, k �m+ 1,. . . , k � 1 do
10: Set � ⇢

i

yT
i

z.
11: Set z  z + s

i

(↵
i

� �).

12: return the search direction p
k

 �z, i.e., p
k

= �W
k

g
k

.

Although the LBFGS method may not approximate the Hessian (more accurately

its inverse) as well as BFGS, it is far less expensive to obtain when the memory length

m > 0 is small (typically m is chosen to be between 3 and 10). This is the primary

reason why methods based on LBFGS are common in many large-scale applications

in machine learning.24
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2.5 Linear Conjugate Gradient Method

The linear conjugate gradient (CG) method is a popular choice for approximately

solving large-scale and sparse linear systems of equations. It was first introduced by

Magnus Hestenes and Eduard Stiefel25 to solve linear systems of equations defined by

a positive-definite matrix, and later generalized by Fletcher and Reeves26 to handle

more general nonlinear problems, with much related work following.27–31 In this thesis

only the linear CG method is relevant, and is the topic of this section.

The linear CG method is used to approximately solve the linear system Ax = b,

where A 2 Rn⇥n is symmetric and positive definite, x 2 Rn, and b 2 Rn. This problem

is equivalent to finding the minimizer of q(x) := 1
2x

TAx�bTx sincerq(x) = Ax�b and

r2q(x) ⌘ A � 0. If we define the residual of the system to be r := rf(x) = Ax� b,

then when r is approaching zero, Ax is approaching b.

The linear CG algorithm for solving Ax = b is given by Algorithm 7. In short,

linear CG iteratively computes estimates of a solution to Ax = b by minimizing

q over a sequence of expanding subspaces (Krylov subspaces). These subspaces are

determined through the computation of A-conjugate (sometimes called A-orthogonal)

directions {s
k

}, which satisfy sT
i

As
j

= 0 for all i 6= j. The dominant cost during

each iteration of linear CG is a single matrix-vector product, which makes this a

particularly attractive option for large-scale sparse problems.
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Algorithm 7 The CG method.
1: Input a symmetric matrix A � 0 and vectors x0 and b.
2: Set r0  Ax0 � b, s0  �r0, and k  0.
3: while kr

k

k � 10�8 max (1,kr0k2) do
4: Set ↵

k

 (rT
k

r
k

)/(sT
k

As
k

).
5: Set x

k+1  x
k

+ ↵
k

s
k

.
6: Set r

k+1  r
k

+ ↵
k

As
k

.
7: Set �

k+1  (rT
k+1rk+1)/(rT

k

r
k

).
8: Set s

k+1  �rk+1 + �
k+1sk.

9: Set k  k + 1.
10: return x

k

It remains to show how the linear CG method, which is defined for solving positive-

definite linear systems of equations, can be used to solve unconstrained nonlinear

optimization problems. This can be motivated by problem (2.2) for which we assume

(temporarily) that H
k

⌘ B
k

. With this choice, if the solution to (2.2) exists, then it

also solves the linear system of equations H
k

p = �g
k

. It is then tempting to apply

the linear CG method to this system of equations, but one must be careful because

H
k

is not necessarily positive definite. In particular, it is possible that Algorithm 7

might not succeed because some of the denominators may be zero, for example. Even

if it does not ”crash”, there is no reason to suspect that the output is of any real use.

Algorithm 8 is a modification of the linear CG method that addresses the concerns

discussed in the previous paragraph. First, the comparison of Ax = b to the system

Hp = �g motivates the replacements A  H, b  �g, and x  p. Based on this

comparison, it makes sense that Algorithm 8 is called Newton CG (N-CG).
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Algorithm 8 The Newton CG method
1: Input a symmetric matrix H and vector g.
2: Set p0  0, r0  g, s0  �g and k  0.
3: while kr

k

k � 10�8 max (1,kr0k2) do
4: if sT

k

Hs
k

> 0 then
5: Set ↵

k

 (rT
k

r
k

)/(sT
k

Hs
k

).
6: else
7: if k = 0 then
8: return p

k

 �g
9: else
10: return p

k

11: Set p
k+1  p

k

+ ↵
k

s
k

.
12: Set r

k+1  r
k

+ ↵
k

Hs
k

.
13: Set �

k+1  (rT
k+1rk+1)/(rT

k

r
k

).
14: Set s

k+1  �rk+1 + �
k+1sk.

15: Set k  k + 1.
16: return p

k

In Algorithm 8, if negative curvature is never encountered, i.e., sT
k

Hs
k

> 0 for all

directions s
k

, then it reduces to exactly the linear CG method. However, if negative

curvature is detected, termination ensues with either the steepest descent step (if k =

0) or the previously computed CG iterate (if k � 1). Since there is no guarantee on

how many CG iterations may be performed before negative curvature is encountered,

it is a real possibility that early termination in Algorithm 8 will result in an poor

search direction p
k

. We provide a new approach in Chapter 3 based on linear CG

that appears to be more reliable and only slightly more expensive.
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2.6 Tensor Model Based Methods

Tensor methods for unconstrained optimization were first introduced by Schnabel

and Chow32 for small to moderate-sized problems. Their method was based on min-

imizing an approximation to the fourth-order tensor model subject to a trust-region

constraint. (Bouaricha33 later introduced a cheaper way to minimize the tensor model

that made the method suitable for large scale and sparse problems.) A second ap-

proach was taken by Biglari and Ebadian34 by using a fourth-order tensor model

to formulate a modified LBFGS update based on using higher-order derivatives to

formulate the secant equation. We now briefly describe these two approaches.

2.6.1 Tensor Model Minimization Methods

A less well-known, but interesting, method for unconstrained optimization may

be derived from fourth-order tensor model of the object function f given by

f(x
k

+ p) ⇡ f(x
k

) + g
k

· p+ 1

2
H

k

· p2 + 1

6
T
k

· p3 + 1

24
V
k

· p4, (2.6)

where g
k

· p denotes gT
k

p, H
k

· p2 denotes pTH
k

p, T
k

· p3 denotes T
k

· ppp, and V
k

· p4

denotes V
k

· pppp. The third and fourth order tensors T
k

and V
k

are approximations

to r3f(x
k

) and r4f(x
k

), and their actions are defined as follows.

Definition 2.6.1 (Third-order tensor term) Let T 2 Rn⇥n⇥n, then given the
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three vectors u, v, w 2 Rn, we define

T · uvw =
nX

i=1

nX

j=1

nX

k=1

T (i, j, k)u(i)v(j)w(k).

Definition 2.6.2 (Fourth-order tensor term) Let V 2 Rn⇥n⇥n⇥n, then given the

four vectors r, u, v, w 2 Rn, we define

V · ruvw =
nX

i=1

nX

j=1

nX

k=1

nX

l=1

V (i, j, k, l)r(i)u(j)v(k)w(l).

The choice of V
k

= r3f(x
k

) and T
k

= r4f(x
k

) in (2.6) leads to models that

are expensive and di�cult to optimize. Schnabel and Chow chose T
k

and V
k

to be

simple low-rank symmetric approximations to r3f(x
k

) and r4f(x
k

) that are formed

from previous function/gradient values. They then computed the search direction by

finding an approximate minimizer of the model subject to a trust region constraint.

Bouaricha extended their method to large sparse problems by only using the most

recent function/gradient values to formulate similar simple low-rank approximations.

They then proceed to find the search direction by using a Cholesky decomposition

instead of a QR factorization, which better utilizes the sparsity of the Hessian. Al-

gorithm 9 gives the basic idea of this general tensor model minimization framework.
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Algorithm 9 A tensor method framework.
1: Input x0 2 Rn, �0 > 0, and an integer n

p

� 1.
2: Choose stopping tolerance " > 0.
3: Set k  0.
4: loop
5: Compute f

k

, g
k

, and H
k

.
6: if kg

k

k < " then
7: return x

k

8: Select n
p

past points to use in the tensor model.
9: Compute the tensor matrices T

k

and V
k

.
10: Find p

tensor

as a solution to a trust-region problem with radius �
k

.
11: Find p

k

as the solution to (2.2) for some B
k

� 0.
12: Find ↵

k

> 0 such that the Armijo condition (see Definition 2.0.6) is satisfied.
13: if f(x

k

+ p
tensor

)  f(x
k

+ ↵
k

p
k

) then
14: Set x

k+1  x
k

+ p
tensor

and �
k+1  2�

k

.
15: else
16: Set x

k+1  x
k

+ ↵
k

p
k

and �
k+1  1

2�k.

17: Set k  k + 1.

Algorithm 9 requires the computation of the step p
tensor

based on the tensor

model (2.6) and the step p
k

based on the quadratic model (2.2). After a line search

along p
k

is permed, the update is then performed based on which one achieved a

greater function decrease. In this manner, it is not di�cult to see that global conver-

gence results may be established, but at the cost of additional computation.

2.6.2 Tensor Model Based Modified LBFGS

Biglari and Ebadian34 modified the secant equation used in the LBFGS framework

by employing the fourth order tensor model (2.6). Roughly speaking, they eliminate

the fourth order tensor V
k

by combining two equations: the equation that results from

25



CHAPTER 2. COMMONLY USED CONVEXIFICATION SCHEMES

substituting p = �s
k�1 into (2.6) and the equation obtained by taking the gradient

of both sides of (2.6) and then substituting p = �s
k�1. After this manipulation and

defining the auxiliary quantity

�
k�1 := 4(f

k�1 � f
k

) + 2(g
k

+ g
k�1)

Ts
k�1,

they arrived at the identity

sT
k�1Hk

s
k�1 = �

k�1 + yT
k�1sk�1 +

1

6
T
k

s3
k�1 +O(ks

k�1k5)

= �
k�1 + yT

k�1sk�1 +O(ks
k�1k3)

= eyT
k�1sk�1 +O(ks

k�1k3), (2.7)

where

ey
k�1 =

✓
1 +

�
k�1

yT
k�1sk�1

◆
y
k�1. (2.8)

(For more details of this derivation, see [34, Section 2].) We can use (2.7) to motivate

the use of the modified secant equation W
k

ỹ
k�1 = s

k�1, where W
k

(see Algorithm 6)

approximates the inverse of the Hessian. Specifically, if we multiply both sides byW�1
k

and then by sT
k�1, we arrive at s

T

k�1eyk�1 = sT
k�1W

�1
k

s
k�1. This can then be compared

with (2.7) to motivate the secant equation, if we keep in mind thatW�1
k

may be viewed

as an approximation to H
k

. Therefore, to implement their method one only needs to

base the LBFGS update on the modified secant equation W
k

ey
k�1 = s

k�1 instead of
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the traditional secant equation W
k

y
k�1 = s

k�1; this amounts to substituting ey
k�1 for

y
k�1 in the two loop recursion formula associated with LBFGS given by Algorithm 6.

The authors claim to use higher order information from the tensor model (2.6),

but it appears from the derivation that, in fact, they choose to ignore the third order

term. Thus, it is unclear whether this modified secant equation leads to an LBFGS

update that is any better than the traditional LBFGS update.
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Chapter 3

A New Convexification Procedure

In the previous chapter, we reviewed several commonly used line-search convex-

ification procedures, and in the process pointed out a shortcoming of N-CG (see

Section 2.5). In this chapter, we introduce a modification of N-CG that we call

MN-CG, which is more robust and requires very little extra computation.

The N-CG Algorithm 8 obtains the search direction by applying CG to the linear

system Hp = �g, where we use H = H
k

and g = g
k

since they are fixed throughout

the chapter. Also, recall that CG is only guaranteed to succeed if H � 0. To

avoid the failure that can arise from negative eigenvalues in H, N-CG terminates CG

if a direction of negative curvature is encountered. Although early termination does

ensure that the direction returned, i.e., the previous CG iterate, is a descent direction,

it is very possible that it is not a very good one. We provide a new method called

MN-CG (Modified Newton CG) that is designed to improve this situation.
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3.1 The Derivation of MN-CG

Inspired by N-CG and modified Newton methods, we modify H when negative

curvature within the CG iteration is encountered. At a high level, our method com-

putes a sequence of matrices {B(j)} from H with B(0) = H. In particular, B(j+1) is

obtained from B(j) by a rank-one modification along the first direction of negative

curvature encountered when CG is applied to the system B(j)p = �g. It is, there-

fore, convenient to define these directions as the set {s(j)} that depends on a set of

symmetric (not necessarily positive-definite) matrices {B(j)} with B(0) = H.

Definition 3.1.1 (The sequence {s(j)}) Define s(j) 2 Rn to be the first direction

of non-positive curvature found in the CG Algorithm 7 when applied to B(j)p = �g.

Since s(j) is a direction of negative curvature for B(j), we choose to define

B(j+1) = B(j) + ✓(j)s(j)s(j)
T

(3.1)

for some positive number ✓(j) chosen to ensure s(j)
T

B(j+1)s(j) > 0. To have a chance

of being practical, we choose to limit the number of times that CG must be restarted,

i.e., how large j may become. We accomplish this by simply including a hard upper

bound j
max

on the number of times for which the update (3.1) may be performed.

If the maximum allowed updates j
max

is reached, we obtain the search direction p
k

from algorithm N-CG with input matrix B(j
max

). There is no guarantee that this

will give a good search direction, but there is reason to believe that it may be more
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reliable than simply terminating as soon as any negative curvature is encountered

while solving the original system Hp = �g, as is done by N-CG, i.e., Algorithm 8.

Next, we discuss how to e�ciently calculate with B(j) as needed. To this end,

suppose that we have B(j) and call Algorithm 7 to solve the linear system B(j)p = �g.

Also, note that from (3.1) that

B(j) = H +
j�1X

l=0

✓(l)s(l)s(l)
T

(3.2)

so that, in particular, we have B(0) = H. It is then easy to see from (3.2) that matrix-

vector multiplications (as needed by the CG algorithm for solving B(j)p = �g) may

be cheaply computed since for any vector v we have

B(j)v = Hv +
j�1X

l=0

✓(l)(vT s(l))s(l), (3.3)

which requires a matrix-vector product with H, j inner products with v, and j + 1

vector additions. From this, it is also easy to see that

vTB(j)v = vTHv +
j�1X

l=0

✓(l)
�
vT s(l)

�2
, (3.4)
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which only requires one additional inner product calculation. Note, that this implies,

since s(j) is by definition a negative curvature direction for B(j), that

s(j)
T

B(j)s(j) = s(j)
T

Hs(j) +
j�1X

l=0

✓(l)
⇣
s(j)

T

s(l)
⌘2

< 0,

which implies, since all terms in the summation are positive, that

s(j)
T

Hs(j) < 0. (3.5)

We now discuss how to choose the positive sequence {✓(j)} in (3.1) appropriately.

In particular, we will simply show how to compute ✓(j) under the assumption that

{✓(l)}j�1
l=0 have already been computed. Motivated by (3.2), we choose ✓(j) such that

s(j)
T

B(j+1)s(j) = s(j)
T

B(j)s(j) + ✓(j)(s(j)
T

s(j))2 = �(j) > 0, (3.6)

which means that

✓(j) =
�(j) � s(j)

T

B(j)s(j)

ks(j)k4 =
�(j) � s(j)

T

Hs(j) �P
j�1
l=0 ✓

(l)
�
s(l)

T

s(j)
�2

ks(j)k4 . (3.7)

It follows from (3.6) that a su�cient condition for s(j)
T

B(j+1)s(j) = �(j) to be

positive is to choose �(j) at least as large as some fraction of �s(j)THs(j). There

are many such choices and we consider several. In an attempt to ensure su�cient
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directions of negative curvature, we first consider the following three choices of �(j):

�
(j)
1 = "ks(j)k � s(j)

T

Hs(j) for some choice of " > 0, (3.8)

�
(j)
2 = �s(j)THs(j), and (3.9)

�
(j)
3 = (1� a)s(j)

T

Hs(j) +
j�1X

l=0

✓(l)
�
s(l)

T

s(j)
�2

for some choice of a > 2, (3.10)

which in view of (3.7) lead to the updates

✓
(j)
1 =

"ks(j)k2 � 2s(j)
T

Hs(j) �P
j�1
l=0 ✓

(l)
�
s(l)

T

s(j)
�2

ks(j)4k , (3.11)

✓
(j)
2 =

�2s(j)THs(j) �P
j�1
l=0 ✓

(l)
�
s(l)

T

s(j)
�2

ks(j)4k , and (3.12)

✓
(j)
3 =

�asT
k

Hs
k

ks(j)k4 . (3.13)

Finally, we consider the choice of

✓
(j)
4 =

�2s(j)THs(j) � jmin0lj�1{✓(l)}min0lj�1{s(l)T s(j)}2
ks(j)k4 , (3.14)

which is a valid choice since ✓
(j)
4 � ✓

(j)
2 . In the next section we formally state our

complete algorithm.
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3.2 The Formal Statement of MN-CG

Our new algorithm, called MN-CG, is stated as Algorithm 10. The algorithm is

fairly simple. During each iteration, we apply linear CG to the system of equations

B(j)p = �g. Either the CG method finds an approximate solution p
k

that satisfies

its own termination conditions, or it encounters a direction s(j) of negative curvature

for B(j). In the latter case, we modify B(j) as described by (3.1) to obtain B(j). The

integer j
max

is used to limit the number of times that this process may be attempted.

We note that anytime CG is called in line 4 or 9, Algorithm 7 requires matrix vector

products with matrices of the form B(j), which can be e�ciently computed from (3.3)

provided j
max

is not chosen too large and H is sparse.

Algorithm 10 Our modified Newton CG algorithm (MN-CG).
1: Input matrix H, positive integer j

max

, and vector g.
2: Set j  0 and B(0)  H.
3: while j < j

max

do
4: Apply CG (Algorithm 7) to the linear system B(j)p = �g.
5: if Algorithm 7 encounters a direction of negative curvature, call it s(j) then
6: Compute B(j+1) from (3.1) with ✓(j) defined by any of (3.11)–(3.14).
7: else
8: return the vector p

k

that is returned by Algorithm 7.

9: return the p
k

that is returned by N-CG Algorithm 8 with input H = B(j
max

).
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Numerical Experiments

In this chapter, we report the result of numerical experiments performed to eval-

uate the eight popular convexification schemes in Chapter 2 and the four variants of

our new scheme described in Chapter 3. The test problems consist of the 67 uncon-

strained optimization problems from the CUTEst35 collection with less than or equal

to 500 variables. Our implementation is written in Matlab 2013a, and the tests run

on a PC with a 2.4GHz CPU, 2GB of RAM, running the Ubuntu operating system.

In Section 4.1, we present the numerical experiments for only the most commonly

used convexification procedures. In Section 4.2, we give the numerical results for the

four variants of our newly proposed algorithm. Finally, in Section 4.3, we compare

the best performer among the commonly used convexification methods to the best

performer among our newly proposed variants, to arrive at the best overall scheme

for our specifically chosen selection of test problems.
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For every variant tested, the iterations were terminated if the condition

kg
k

k1  10�6 max(1, kg0k1) (4.1)

was satisfied, since it implied that x
k

was an approximate first-order solution to (1.1).

Since some test problems were unbounded below, we also terminated if the condition

f(x
k

)  �1014 (4.2)

were satisfied, which indicated that the problem was unbounded below. In our ex-

periments, a problem was deemed to have been successfully solved if either (4.1) or

(4.2) was verified to hold before the maximum allowed number of iterations of 1000

was reached or (in a few cases) a function/gradient/Hessian evaluation resulted in a

”NaN” value, i.e., not a number.

We had to choose other control parameters in addition to the maximum iteration

limit of 1000. In particular, in the backtracking line-search procedure (Algorithm 1),

we chose ⌧ = 0.5 and ⌘ = 10�3, and for the strong Wolfe conditions (2.4) and (2.5)

we chose c1 = 10�4 and c2 = 0.9. We also comment that we used [16, Algorithm 3.5]

for finding step lengths satisfying the strong Wolfe conditions, when needed. Finally,

we mention that other control parameters are still needed on a method-by-method

basis, and will be presented as needed.
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4.1 Popular Convexification Schemes

The convexification schemes from Chapter 2 that we tested are listed below. Each

method is also accompanied by an acronym that will be used throughout.

• SD: The steepest decent method (Section 2.1).

• MOD-1: modified Newton 1 method (Algorithm 3).

• MOD-2: modified Newton 2 method (Algorithm 4).

• SS: shifted spectra method (Algorithm 2).

• N-CG: Newton CG method (Algorithm 8).

• BFGS: BFGS method (Algorithm 5).

• LBFGS: limited memory BFGS method with memory m = 4 (Algorithm 6).

• M-LBFGS: tensor based BFGS method with memory m = 4 (Section 2.6.2).

We note that for LBFGS and M-LBFGS a memory of m = 4 was used since anything

greater was computationally more expensive and indistinguishable otherwise. Also,

we used a value of � = 108 as the bound on the condition number for the modified

matrices computed for MOD-1 and MOD-2 as needed by Algorithms 3 and 4.

We now clarify exactly the structure of the algorithms that we tested. Every

algorithm used the iterate updating formula (2.1). Moreover, they all used the back-

tracking Armijo linesearch (Algorithm 1), except for the BFGS method, which was
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based on satisfying the strong Wolfe conditions (2.4) and (2.5). Thus, it only remains

to discuss how the search direction p
k

was obtained for each algorithm. For SD this

amounted to p
k

= �g
k

. For MOD-1, MOD-2, SS, and BFGS, the search direction

p
k

was computed as the unique solution to B
k

p = �g
k

, where the symmetric matrix

B
k

� 0 was obtained from Algorithms 3, 4, 2, and 5, respectively. The search direction

for N-CG was obtained directly from Algorithm 8. The search direction for LBFGS

and M-LBGS were obtained from the two-loop recursion Algorithm 6. (For M-LBFGS

we replaced in Algorithm 6 the quantity y
k�1 by ey

k�1 as motivated by (2.8).)

Our first set of results are shown in Table 4.1. For each method we report the

following: the total number of problems successfully solved (#Succ), i.e., termination

occurred because either (4.1) or (4.2) was verified; the total number of problems for

which the maximum number of allowed iterations was reached (#Maxit); the total

number of problems for which a NaN was encountered when evaluating the objective

function or its derivatives (#NaN) ; and the average number of iterations (µ(iter)) and

function evaluations (µ(feval)) with the average only including those problems that

were successfully solved. Based on these results, it appears that the MOD-2 and N-CG

methods provide the best balance between robustness (i.e., solving the most problems)

and e�ciency (i.e., requiring the fewest iterations and function evaluations). Also,

it appears that the higher-order tensor information used in M-LBFGS has a positive

e↵ect, when compared to is parent algorithm LBFGS, especially for the number of

required function evaluations.
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Table 4.1: Results for popular convexification methods on the CUTEst problems.

Schemes SD MOD-1 MOD-2 SS N-CG BFGS LBFGS M-LBFGS

#Succ 32 63 63 61 63 59 61 62
#Maxit 34 3 4 5 4 7 6 3
#NaN 1 1 0 1 0 1 0 2
µ(iter) 143 42 37 35 51 40 64 56
µ(feval) 1140 246 81 186 133 117 401 149

Next, we present the results from the numerical tests in the form of performance

profiles, as introduced by Dolan and Moré.36 Consider a performance profile that

measures performance in terms of the number of iterations until a solution is found.

If the graph associated with an algorithm passes through the point (↵, 0.�), then it

means that on �% of the test problems, the number of iterations required by the

algorithm was less than ↵ times the number of iterations required by the algorithm

that required the fewest. This means that an algorithm with a higher value on the

vertical axis may be considered as more e�cient, whereas an algorithm on top at the

far right may be considered as more reliable or robust. We note that for every profile,

a problem was considered to be successfully solved if termination occurred because

either (4.1) or (4.2) was verified to hold.

For the same algorithms as in Table 4.1, the performance profile that measures

the number of iterations is given by Figure 4.1, whereas the performance profile that

measures the number of function evaluations may be found in Figure 4.2.
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Figure 4.1: Performance profile for iterations on the CUTEst problems.
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Figure 4.2: Performance profile for function evaluations on the CUTEst problems.
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We see from Table 4.1 and Figures 4.1 and 4.2 that algorithms MOD-2 and N-CG

performed the best. With respect to the number of problems successfully solved,

Table 4.1 shows that MOD-1, MOD-2, and N-CG are tied as the best, followed by

M-LBFGS. Although N-CG often requires more iterations and function evaluations

than MOD-2, it does not need to factorize the Hessian matrix while MOD-2 does (so

do MOD-1 and SS), which is very computationally expensive. We also observe that

M-LBFGS is generally more e�cient than its parent algorithm LBFGS with respect

to the number of required average iterations and average function evaluations, and the

number of problems successfully solved. The BFGS algorithm requires fewer iterations

and function evaluations (but solver fewer problems) when compared to M-LBFGS

and LBFGS, which is not particularly surprising since BFGS keeps full memory in

computing the matrix B
k

. Unfortunately, this also means that the computations

for BFGS are more expensive than both LBFGS and M-LBFGS; in particular, this

means that it is not practical for large-scale problems. Finally, algorithm SD failed on

roughly half of the test problems, which is not surprising since is uses the very simple

search direction p
k

= �g
k

. One must keep in mind, however, that its computation is

the cheapest among all of the methods and, in practice, often produces iterates that

satisfy a relaxed stopping condition (e.g., condition (4.1) with 10�6 replaced by 10�2)

in a modest number of iterations. Among all of these methods, we recommend the

use of MOD-2 for problems that are small enough to allow for spectral factorizations

to be computed, but otherwise recommend N-CG.
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4.2 Various Instances of MN-CG

The four instances of MN-CG that were introduced in Chapter 3 are listed below.

(In addition, we include the N-CG method as a baseline for comparison.) Each

method is also accompanied by an acronym that will be used throughout.

• N-CG: the Newton CG method (Algorithm 8).

• MN-CG-1: the MN-CG method with ✓(j) defined by (3.11).

• MN-CG-2: the MN-CG method with ✓(j) defined by (3.12).

• MN-CG-3: the MN-CG method with ✓(j) defined by (3.13).

• MN-CG-4: the MN-CG method with ✓(j) defined by (3.14).

Every algorithm used the iterate updating formula (2.1) with step length ↵
k

calculated

from the back-tracking Armijo linesearch (Algorithm 1). The search direction p
k

for

MN-CG-1, MN-CG-2, MN-CG-3, and MN-CG-4 was computed by Algorithm 10 with

their respective choices of ✓(j), while N-CG calculated p
k

by Algorithm 8. (Note that,

in fact, Algorithm 8 is equivalent to Algorithm 10 with the choice j
max

= 0.)

Instance MN-CG-1 required a choice for the parameter " in the update (3.11) to

✓(j). We tested multiple values and settled on " = 0.1, which seemed to perform the

best in our experiments, and is therefore the value used to generate the results in this

section. In a similar vein, instance MN-CG-3 also required a choice for the parameter
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a used in the update (3.13). Based on preliminary testing, the value a = 10 performed

the best and is the value used in the results that we present.

The outcomes on the CUTEst collection of problems may be found in Table 4.2.

The meaning of every row is the same as that for Table 4.1 in Section 4.1.

Table 4.2: Results for various instances of MN-CG on the CUTEst problems.

Schemes N-CG MN-CG-1 MN-CG-2 MN-CG-3 MN-CG-4

#Succ 63 61 65 64 66
#Maxit 4 6 2 3 1
#NaN 0 0 0 0 0
µ(iter) 51 24 34 38 48
µ(feval) 134 59 86 84 116

For the algorithms in Table 4.2, a performance profile that measures the number

of iterations is given by Figure 4.3, whereas a performance profile that measures the

number of function evaluations may be found in Figure 4.4. (See Section 4.1 for an

explanation on how to interpret such performance profiles.)
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Figure 4.3: Performance profile for iterations on the CUTEst problems.
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Figure 4.4: Performance profile for function evaluations on the CUTEst problems.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

N−CG

MN−CG−1

MN−CH−2

MN−CG−3

MN−CG−4

43



CHAPTER 4. NUMERICAL RESULTS

We now make some observations about Table 4.2 and the performance profiles

in Figures 4.3 and 4.4. First, the four instances of the new method (i.e., MN-CG-1,

MN-CG-2, MN-CG-3, and MN-CG-4) improved upon the baseline algorithm N-CG

in terms of the average number of iterations and function evaluations. All of them,

except MN-CG-1, also improved upon N-CG in the sense of successfully solving more

problems. Second, MN-CG-4 solved the most problems (66/67), with the second

best being MN-CG-2 (65/67). The extra problem solved by MN-CG-4 (which took

many iterations) was included in the averages µ(iter) and µ(feval), and accounts for

why they are lower for MN-CG-2 than for MN-CG4. In summary, we conclude that

instances MN-CG-2 and MN-CG-4 perform essentially the same, and are superior to

the other instances including the baseline method N-CG.

4.3 The Best Overall Methods

We now compare the best method from Section 4.1, namely MOD-2, with the best

method from Section 4.2, namely MN-CG-4. Tables 4.1 and 4.2 show that MN-CG-4

solves more problems than MOD-2, but requires a greater average number iterations

and function evaluations (computed over the problems that they solved). This latter

fact is caused from the fact that the extra problem solved by MN-CG-4 required many

iterations and function evaluations, which biased the averages.

Performance profiles that only include algorithms MOD-2 and MN-CG-4 are given
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by Figures 4.5 and 4.6. These seem to indicate that MN-CG-4 is better than MOD-2

in terms of iteration and function evaluation counts. This may appear to contradict

our claim in the previous paragraph, but one must recall that the performance profiles

present a more overall picture of performance for a desired quantity of interest. This

contrasts the average number of iterations needed for the problems solved, which can

easily be biased. The performance profiles simply highlight this fact.

Figure 4.5: Performance profiles for iterations on the CUTEst problems.
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It is interesting to see that NM-CG-4 performed better than MOD-2 in our nu-

merical experiments. This is interesting because the implementation of NM-CG-4

only requires the computation of matrix-vector products, which makes it practical for

small and large-scale sparse problems. In contrast, algorithm MOD-2 has to compute

a spectral decomposition of the Hessian matrix during each iteration, which generally
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Figure 4.6: Performance profile for function evaluations on the CUTEst problems.
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makes it practical for only small and medium-scale problems. We are quite content

with these results since it is great when a single method (e.g., NM-CG-4) performs

the best on a large class of problems (e.g., small-, medium-, and large-scale problems).
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Conclusions

In this thesis we studied the e↵ect that convexification methods had on the com-

puted search directions used within line search methods for unconstrained optimiza-

tion. In Chapter 2 we presented the most commonly used methods, one of which was

based on the linear CG method and called N-CG (see Section 2.5). In Chapter 3

we presented a new algorithm based on linear CG that we called MN-CG since it

was a modification of the N-CG algorithm. This new method allowed for sequential

convexification of the Hessian matrix along certain carefully chosen directions. These

directions were chosen as directions of negative curvature encountered during the CG

method. The new method was applicable to large scale problems for which Hessian

vector products were cheap to compute, such as when the Hessian was sparse. In

Chapter 4 we performed numerical experiments that showed that our new method

was slightly more expensive per iteration compared to N-CG, but was more reliable.
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More generally, our experiments revealed that N-CG and MN-CG, which are both

applicable to large-scale problems, were competitive with methods such as modified

Newton (Section 2.3) and BFGS (Section 2.4.1), which are both only practical on

small to medium scale problems. A variant of BFGS, called LBFGS (Section 2.4.2),

which is a common choice for large-scale problems, was not as robust or e�cient as

N-CG or MN-CG on our collection of test problems.

The new method described in Chapter 3 may be extended easily to equality con-

strained optimization problems. For example, augmented Lagrangian methods solve

general nonlinear equality constrained problems by solving a sequence of related non-

linear unconstrained optimization problems. Thus we may use our new convexification

scheme to solve this sequence of unconstrained optimization problems.

It may also be possible to extend our ideas to optimization problems with inequal-

ity constraints. Again, using an augmented Lagrangian approach would mean that a

sequence of nonlinear objective functions would be minimized subject to bounds on

the optimization variables. Our new convexification scheme is not directly applicable

because of the bound constraints. Nonetheless, it may be possible to adapt the ideas

developed here by replacing the directions of negative curvature computed during CG

with directions of negative curvature that arise while solving the bound-constrained

quadratic problems commonly used with, for example, a projected gradient solver.

We leave this as a direction of future research.
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