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Abstract

An upper-limb amputation is a life-changing procedure severely impacting the in-

dividual’s ability to perform every-day tasks. Prosthetic devices have been designed

to provide some relief to these individuals. Myoelectric prostheses have received sig-

nificant attention in recent years as they have been designed to look more natural and

provide the user with enhanced degrees of freedom (DoF) over the traditional body-

powered prostheses. Myoelectric prostheses rely on the acquisition and processing of

signals attributable to muscle activity within the residual limb. This signal is known

as the electromyogram (EMG), representing the surface recording of electrical activ-

ity of muscle fibers. EMG signals recorded from an array of electrodes on forearm are

used as signals to decode patterns of dexterous hand movement. Specifically among

the myoelectric-based control schemes, pattern recognition-based approaches provide

the user with immediate access to multiple DoFs. This functionality promotes a more

intuitive experience over those schemes which provide the user with access to only one

DoF at a time. In the case of pattern recognition-based prostheses, a set of features

are extracted from the EMG signal recorded from the user’s residual limb from one
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or more sites and patterns of muscle activity are “learned”. Subsequently, when a

known pattern of muscle activity is observed, the prosthetic device is actuated and

moved appropriately.

Despite the advantages of pattern recognition-based prostheses over other pros-

thetic control methods, the robustness of the control scheme in real-world use remains

an issue. Many factors experienced during real-world use have been shown to nega-

tively impact the ability of the system to correctly predict the intended action of the

user. This work is dedicated to enhancing the robustness of pattern recognition-based

myoelectric prostheses thereby making the devices more reliable, useful, and accepted

by those using the devices. The specific focus of the work is to improve the robustness

of the devices pertaining to variations in limb position. In the introduction, back-

ground information regarding myoelectric prostheses and previous work to improve

their robustness is presented. Following this introductory information and having

established the need to address the robustness of myoelectric prostheses, an analysis

of the effect limb position has on extracted features of EMG from able-bodied sub-

jects is discussed. Subsequently, a thorough investigation of this effect is presented

through an experiment conducted with able-bodied subjects and amputee subjects

both wearing and not wearing their prostheses. It is found that a particular strategy

of training in multiple positions should be employed to optimally reduce the negative

effects of the limb’s position on EMG features. Specifically, it is concluded that when

using Linear Discriminant Analysis to classify time-domain features of EMG during
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discrete hand and wrist actions, a two-stage position specific classification method

does not outperform a system in which data from multiple positions are aggregated

to form a single classifier. After a discussion of the impact of this research, directions

of future research are suggested with supporting preliminary experimentation.

Primary Reader: Nitish V. Thakor, Ph.D.

Secondary Reader: Alcimar B. Soares, Ph.D.

Tertiary Reader: Albert Chi, M.D.
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Chapter 1

Introduction

Controlling myoelectric prosthesis by way of pattern recognition has attracted

significant attention for decades. Since 1967, myoelectric signal patterns have been

recorded and employed in aiding prosthetic arm movements [1]. Pattern-recognition

based myoelectric systems are intended to provide the user immediate access to more

than two degrees of freedom (DoF), or movements, at any moment. This is beneficial

over the standard system of myoelectric control (direct two-site control) in which

prosthetic users only have access to one DoF at a time. For devices using direct

two-site control, signals from the users flexor and extensor muscle groups are used

to control the currently active DoF. To close one’s prosthetic hand for example, the

user would contract their flexor muscles in their residual limb and to open their hand

they would contract their extensor muscles. Access to other movements or “modes”

such as pronation and supination is achieved by contracting the flexor and extensor
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muscles simultaneously in what is termed a ‘co-contraction.’ In doing so, the user can

navigate to a desired mode [4]. A subsequent contraction of the flexor or extensor

muscles in the residual limb would produce a movement of the selected mode. Systems

that employ co-contraction for mode selection are non-intuitive and time-consuming.

In contrast, pattern recognition-based prostheses provide the user with immediate

access to multiple degrees of freedom. This functionality makes controlling the pros-

thesis more intuitive [5]. The user activates the muscles of their residual limb as if they

were performing the intended action. Additionally, many pattern recognition-based

myoelectric prostheses have been reported as having extremely high classification ac-

curacy and thus they illustrate the potential for highly reliable control of a prosthetic

device [6]. Another advantage of pattern recognition systems is that they account for

individual patient anatomy. In regards to the EMG recorded from the residual limb

of an amputee, Herberts et al. reported that “the myoelectric patterns from various

electrodes in the stump region show considerable individual variations due to, for

instance, the methods used in surgery” [1]. Where the unique anatomy of amputees

may be detrimental to other control methods, individual anatomic variations do not

significantly negatively impact pattern recognition systems.

Despite the advantages of pattern recognition-based prostheses over other pros-

thetic control methods, the robustness of the control scheme in real-world use remains

an issue. Many claims of high accuracy were drawn from the results of controlled ex-

periments including those in which the limb was held in static positions or stick-on
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electrodes were used. It has since been shown, however, that many factors experi-

enced in real-world use negatively impact the robustness of the system. For example,

training and evaluating a system with the limb in a single static position may yield

excellent classification accuracy when tested or used in that position, yet when the

limb is moved to a position other than where the system was trained, classification

accuracy significantly degrades [7]. This fact typifies an important discrepancy be-

tween research and real-world use. Many other factors influence the robustness of

myoelectric prostheses in real-world use including changes in the condition of the

electrode-skin interface and changes in the load placed on the limb. These and other

inciting factors will be discussed and elaborated upon throughout this work. It is

necessary that the upper-limb prosthetic device maintain its functionality in a wide

range of positions and environments for it to be a useful rehabilitative device.

This thesis is devoted to addressing and presenting solutions for improving the

robustness of these prostheses in real-world use. Specifically, this thesis will present

the fundamentals of pattern recognition theory and myoelectric prosthesis control,

elucidate the current state of upper-limb pattern recognition prosthesis, discuss av-

enues for improving the robustness of these systems, present previous work by others

in this area, and fully address my work to improve the reliability of the prosthesis

throughout the user’s entire physical working space. I will conclude by discussing the

major findings of my work and propose directions forward.
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CHAPTER 1. INTRODUCTION

1.1 Components of a Pattern Recognition

System

The process of controlling myoelectric prostheses via pattern recognition consists

of multiple components. In the initial training phase, EMG data are collected while

the subject performs specific grasping tasks. Following training, parameters of the

classifier are “learned” or estimated from the data collected during training. Finally a

test phase is conducted to determine the ability of the classifier to generalize, or cor-

rectly label data that it was not exposed to during training. Each of these components

has been a focus of dedicated research intended to maximize the performance of the

system. For example, significant work has been conducted to determine the optimal

number of electrodes to use, the optimal electrode spacing, and the optimal features

to extract from the recorded EMG. As for the classification component of a pattern

recognition system, work has been conducted to determine the optimal method to

employ. Finally, others have analyzed particular metrics to determine the accuracy

and robustness of their system during the testing phase. The following sections will

explore the details of the training, classification, and testing phases of myoelectric

pattern recognition-based prostheses. A brief introduction to virtual environment

use is also provided.
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1.1.1 Training

The first process of a pattern recognition system is the collection of training data.

During training, the individual performs prompted actions while EMG signals are

collected and associated with the prompt. The data to be collected are dependent

on the type of classification to be subsequently performed. Thus, a thorough un-

derstanding of the chosen classification method is required before collecting training

data. The data collected during training must be representative of the data observed

during testing. Significant efforts have been reported to collect or process the data

received during training to improve subsequent classification accuracy [8–12].

1.1.2 The Classifier

Pattern recognition, as its name implies, involves learning the pattern or structure

of a given set of data and subsequently using that learned knowledge to predict the

group to which incoming data most likely belong [13, 14]. The method is a form of

supervised learning in which a mapping is learned from one or many inputs to a single

output variable or class. The input variables are known as features. When classifying

a person as being either male or female, for example, informative input features could

be the person’s height and weight. In the case of myoelectric prostheses, the features

are attributes of the recorded EMG such as its mean absolute value (MAV) and

variance. The ability of a classifier to predict the class of a previously unseen data

5



CHAPTER 1. INTRODUCTION

sample is known as generalization. A metric of a classifier’s ability to generalize is

given by its classification accuracy or error and will be a metric reported throughout

this work. The ability of a classifier to generalize well and correctly classify incoming

data is critical in the case of myoelectric prostheses. Following training, the user

should be able to use the device throughout the day to perform tasks of daily living.

Within the field of machine learning and statistics, many classification methods

exist for classifying data of this type (continuous input features and discrete output

classes). A few examples include: decision trees, K-nearest neighbor (KNN), sup-

port vector machine (SVM), artificial neural network (ANN), and linear discriminant

analysis (LDA). Interested readers are referred to [13] and [14] for detailed infor-

mation regarding these and other classification methods. Significant research has

been conducted to determine the optimum classifier to use in real-time myoelectric

pattern-recognition control. Some of the methods explored include: multilayer per-

ceptron neural networks [15], Gaussian mixture models [16], LDA [12, 17], hidden

Markov models [18], dynamic artificial neural networks [19], genetic algorithms [20]

and fuzzy logic classifiers [21].

Although reported with slight variability among researching groups, LDA has

consistently been shown to yield maximal classification accuracy of the tested meth-

ods [12,17]. In addition to its high accuracy, other benefits of LDA include the min-

imal storage required to run the classifier and relatively fast and efficient method of

prediction. Its high accuracy, low storage requirement, and minimal processing time

6
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all contribute to the method being widely used for real-time myoelectric pattern-

recognition control.

LDA classification involves using a set of training data to determine linear bound-

aries between classes. In other words, it is a method for finding a linear combination

of features which best separates two or more classes. Once these boundaries have

been learned from the training data, a novel data point can be classified according

to the side of the boundary on which it lies. If each class is associated with two

features, the separating boundary is a line; for classes with three features, the sep-

arating boundary is a plane; if the classes are defined by more than three features

the separation boundary is a hyperplane. The majority of classification presented in

this work is performed using 27 features of surface-recorded EMG. See section 3.3 for

more information regarding this feature set.

In the case of LDA, the linear combination of features to separate the classes is

found by maximizing the ratio of the variance between the classes to the variance

within the classes. An illustration of this idea is given in Fig. 1.1. A line is found

separating two classes of data which maximizes this ratio.

In their paper published in 1973, Herberts et al. laid the foundation for pattern

recognition myoelectric prostheses [1]. The basic process by which current pattern

recognition systems function rely on this established framework. Amputee subjects

were instructed to contract muscles in their residual limb in attempt to generate

in their phantom limb one of seven particular positions. The data from six EMG
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Figure1.1:Illustrationofalinearboundarybetweentwoclassesofdatagenerated
usingLDA.Theboundaryiscomputedbymaximizingthebetweenclassseparation
whileminimizingthewithinclassvariability.

channelswererecordedandusedtocreateaclassifierwhichseparatedthemulti-

channelinputsignalintobinscorrespondingtothedesiredoutput.Aftercreationof

theclassifier,thetestphasewasconductedbysuggestingpositionstotheamputee

whichtheywouldattempttoachieveintheirphantomlimb.Thesix-channelinput

signalwasmappedtoeachpositionusingtheclassifierandlabeledorclassifiedas

thatpositiontowhichitmostcloselymatched.Uponclassificationofaninputsignal,

themechanicalarmwasmovedaccordingly.Althoughthisisaverysignificantwork,

multipleclaimshavesincebeenrefutedincludingtheassertionthatclassification

accuracywasnotsignificantlyimpactedbychangingtheloadplacedontheprosthesis,

byhavingtheusermovetheirlimbtopositionsoutsideofthetrainingposition,or

byre-donningtheprosthesis.
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Figure 1.2: Figure shown in 1976 publication by Herberts et al. demonstrating the
classification process using a linear classifier. The original caption states, “Schematic
illustration showing the separation process. In this example, a hyperplane f(x) = O
separates grasp, belonging to class “A”, from the remaining five movements, lumped
in class “B”.” [1].

Fig. 1.2 is the diagram created by Herberts et al. to demonstrate this process. The

representation of each motion being contained in its own hyper-dimensional sphere

is highly idealistic. In actuality, these spheres are not so distinguishable resulting

in a difficult classification process. With overlapping spheres, any generated hyper-

plane will not perfectly separate one motion from the others. This, along with many

other factors, caused their system to have a less than perfect classification accuracy.

Improving classification accuracy remains today a significant issue with pattern recog-

nition based myoelectric prosthesis. The group did show however, “that control of

a below-elbow multifunctional prosthesis is indeed possible using myoelectric signal

patterns from the stump itself” [1].
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Foundational to pattern recognitions usability is the accuracy of the classifier. A

decade ago, Englehart and Hudgins reported that using time domain features includ-

ing mean absolute value (MAV), wave length (WL), zero crossing (ZC), and slope

sign change (SSC) with LDA classification, a prosthesis can effectively be controlled

using pattern recognition in a static environment [22]. Practical use however, requires

accurate classification with the prosthetic and the users residual limb in a wide va-

riety of positions, orientations, and under different loading conditions. Addressing

these conditions, it has been shown that the classifier is less accurate in a non-static

environment [23].

A recent study by Ashkan et al. demonstrated that by adding the Willison am-

plitude (WAMP) feature to the “commonly used [time domain] feature set com-

bined with [an] LDA classifier reduces the averaged absolute classification error by

1.4%” [12]. An even more recent publication introduces an extension to LDA classi-

fication that “generates bounded confidence scores” and compares those scores with

each classs unique rejection threshold. Scheme et al. named this technique LDAR

with the ‘R’ for ‘rejection’ [24]. Evidenced by the high volume of recent publica-

tions directed towards finding an optimal classification scheme, a single, accurate,

and accepted classifier has yet to be found.

10
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1.1.3 Evaluating a Classifier’s Performance

Central to the goal of the myoelectric system is its ability to correctly predict the

intended action, or inaction, of the user. Quantifying a particular method’s ability

to correctly predict the intended action of the user using classification accuracy is

simple and, if performed properly using methods such as cross validation, is generally

accepted as being representative of the classifier’s strength. Classification accuracy is

given by equation 1.1.

Number of samples correctly classified

Total number of testing samples
(1.1)

Other metrics of a pattern-recognition system, such as throughput, efficiency, and

task completion time, claiming to either support or undermine a pattern-recognition

system are useful as well. Throughput is a valuable metric in many studies as “sum-

marizes usability through the tradeoff of speed accuracy” [25]. Task completion time,

the time required for a subject to perform a given task, is useful again to directly

compare two methods within a particular study [26].

Because of the variability of each study however, comparing metrics such as classi-

fication accuracy or task completion time of one study with another holds little value.

The classification accuracy reported by one group may vary considerably depending

on the specific task or experimental procedure. Some efforts have been made to facil-

itate the comparison of methods among researching groups. Ortiz et al. in an effort

11



CHAPTER 1. INTRODUCTION

to “provide a common research platform for the development and evaluation of algo-

rithms in prosthetic control,” released BioPatRec as open source software [27]. The

software is released with three fundamentally different classifiers including Regulatory

Feedback Networks (RFN), Multi-Layer Perceptron, and LDA. The group states the

transparent implementation aims to facilitate collaboration and speed up utilization.

Groups pursuing research in this field have yet to adopt one particular method for

evaluating the performance of their system. Arguably, this frustrates the advancement

of the field, making collaboration and meaningful comparisons between individual

investigations difficult. Other fields of research, such as arrhythmia detection using

electrocardiography (ECG), have had great success adopting standard test material

for evaluation of arrhythmia detectors [28]. With this factor in mind, it is suggested

that the metrics reported within a particular study best be used to compare the

methods or parameters varied within that particular study, rather than be strictly

compared to metrics reported within other works.

1.2 Virtual Environment Testing and Train-

ing

Many groups working to progress the state of the art of myoelectric prostheses

are utilizing virtual environments to move quickly through the development of their

pattern recognition systems. The virtual environment provides researchers the ability

12
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to test various control schemes efficiently using both able-bodied (both arms healthy

and fully functional) and amputee subjects [29–32]. Novel methods are most com-

monly evaluated with able-bodied subjects before expanding the patient population

to amputee subjects. Additionally, virtual environment systems benefit the research

community by decentralizing the work to groups without access to expensive physical

prostheses or amputee subjects.

Not only is the virtual environment system useful for research groups, but also

it has been shown to assist in patient training as well. Fig. 1.3 shows a virtual

environment simulating a prosthetic hand being controlled by pattern recognition in

real-time.

A B C

Figure 1.3: Images showing the testing of a pattern recognition system in a virtual
environment where (A) shows a hand close grasp, (B) shows a hand open grasp, and
(C) shows a wrist supinate grasp. The hand is controlled in the virtual environment by
means of EMG pattern recognition. The arm is controlled in the virtual environment
by means of the inertial measurement units (IMUs) worn by the subject as described
in Appendix A.

There are multiple benefits to having a virtual environment for testing and eval-

uating a person’s ability to control a pattern recognition device. It is possible to

evaluate a person’s ability to control a pattern recognition system before money and
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time is spent buying and making a device specific for that person. It would be evident

if the person’s anatomy is conducive to a pattern recognition system if tested using

the virtual environment. By training on a virtual system as soon as possible after

amputation, perhaps more users would accept the new limb once they received it and,

therefore, learn to use it more naturally.

An additional benefit of a virtual environment is had by amputees seeking Tar-

geted Muscle Reinnervation (TMR). TMR is a surgery in which the nerves of an

amputees residual limb are reassigned to alternative muscles. EMG activity from

the reinnervated muscles can then be recorded and used to control a myoelectric

device [26, 33]. The motivation then for such a surgery, is to enable the patient to

be successful with a myoelectric prosthetic system. By evaluating a potential TMR

candidate with a virtual pattern recognition system, it could be shown that TMR

either remains a potential useful surgery or that it is unnecessary. If the person ex-

hibits satisfactory control of the virtual prosthesis, perhaps the need for the surgery

is diminished.

Although a virtual environment for prosthesis control has many benefits to both

researchers and amputees, in some critical ways the virtual environment does not

represent or simulate the environment encountered during actual use of a prosthesis.

For example, analysis performed with electrodes mounted to a person’s arm may not

be representative of actual use when the electrodes are mounted to the inside of a

rigid prosthesis. By distancing the environment during testing from that encountered
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during actual physical use of the prosthesis, the system may be optimized for an

environment different from that for which it was intended. Geng et al. found for

example that “EMG signals acquired from an intact limb are more affected by limb

position variation [than the amputated limb]” [34]. Thus optimizing a system for

an intact limb may not be optimized for use with an amputated limb. Novel work

presented in chapter 4 reinforces this idea with a presentation of how for amputees,

wearing a prosthesis dramatically effects classification accuracy compared to when no

prosthesis is worn.
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Chapter 2

Previous Efforts to Improve the

Robustness of Pattern

Recognition-based Prostheses

The many aspects of a myoelectric prosthetic system illustrate the need to address

its many facets when looking to enhance the robustness of the system. In this case,

robustness refers to the ability of the pattern recognition system to provide accurate

commands to the terminal device in a wide variety of real-world, environments. Not

only can advancements be made by producing a more sophisticated control scheme

or finding features more robust to environmental changes, but work can and should

continue in all aspects of the myoelectric prosthetic system including patient training

and education, prosthesis fitting, hand design, etc. Addressing these various compo-
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nents of the system is the responsibility of multiple populations; namely: prosthetic

users, occupational therapists, prosthetists, engineers and researchers. The following

sections will discuss efforts made by these various groups primarily in regards to sub-

ject training and engineering efforts. The responsibilities of occupational therapists

and prosthetists is not the focus of this work, yet should not be excluded from a

discussion regarding the robustness of the system.

The following items contain brief descriptions of the sections of this chapter.

Section 2.1: Focused subject training can significantly improve the robustness of

pattern recognition-based myoelectric prostheses. Subjects can learn to create

consistent and reliable contractions optimal for pattern recognition systems.

Section 2.2: Users of pattern recognition-based prostheses need to understand and

apply correct working principles of their system. Not doing so will unnecessarily

lead to significant degradation of performance.

Section 2.3: Electrode pairs ought to be placed longitudinally to muscle fibers, yet

the optimal spacing between electrode pairs remains unclear. Most recently, it

was found that increasing inter-electrode distance from 2 cm to 4 cm made a

pattern recognition system less sensitive to electrode shift [35].

Section 2.4: Accepting that misclassification of intended hand or wrist actions will

occur, many groups have worked to assuage its effects. Limiting the movement

speed of the prosthetic hand when there is a change in classifier decision, im-
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posing majority vote methods or confidence thresholds, or rejecting unknown

data patterns are all methods explored to limit the impact of incorrectly pre-

dicted active grasps. A tradeoff exists between accuracy and responsiveness in

the application of these methods.

Section 2.5: Rather than deal with errors after they have occurred it is logical to

work to improve the classifiability of the incoming data before classification.

Efforts in this direction include applying filtering methods to the raw EMG,

extracting new features, using high-definition EMG arrays, or by recording in-

tramuscular EMG as opposed to recording from the skin’s surface.

Section 2.6: Increasingly, researchers have sought to more specifically address one

of the major factors influencing their robustness: limb position variation. Ad-

dressing this source of variability is the focus of all subsequent chapters of this

work.

2.1 Subject Training

Users of myoelectric prostheses, the amputees, have the ability to improve the

robustness of their system through training and by applying correct usage principles.

It has been shown that focused subject training can significantly enhance a subject’s

ability to control a pattern recognition device [2,36]. A subject can learn to improve

their ability to create consistent muscle contractions by applying feedback received
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following practice sessions. The ability to do this is essential for control of a pattern

recognition device. The effect of training on a subject’s ability to create consistent

muscle contractions is illustrated in Fig. 2.1. Over the course of a 10-day period,

an amputee subject learned to generate more consistent muscle contractions. This

ability resulted in an increase in classification accuracy when the device was used.

Powell et al. state, “the training focus for this subject was primarily to generate

more consistent muscle patterns. The denser class clusters in the final evaluation

session illustrate the accomplishment of this first goal of pattern recognition training:

developing consistent muscle patterns” [2].

Day 1 Day 10

 

 

Rest
Open Hand
Close Hand
Index Point
Fine Pinch
Forearm Pronation
Forearm Supination
Wrist Flexion
Wrist Extension

Figure 2.1: Illustrations of the data collected during initial and final evaluation
sessions from a transradial amputee who completed 10 training sessions with a pattern
recognition training system. Individual movement classes are depicted in unique
colors with a superimposed confidence ellipse for cluster identification and visual
contrast. The axes’ ranges and units have no significance. Used with permission
from [2]
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2.2 Subject Application of Correct Work-

ing Principles

Along with training to produce consistent and reliable muscle patterns, it is crit-

ical for a user of a myoelectric system to be educated and understand the working

principles of the system. Such an understanding will allow the user to correctly

control the device and achieve maximum functionality. Although not a complete dis-

cussion of the topic, one such example is the importance of understanding the time

course of the electrode-skin interface. The impedance between the user’s skin and

the electrodes within the prosthesis decreases significantly in the time following the

donning of the prosthesis. Because of this change, data collected immediately after

donning a prosthesis are not representative of the data collected a short time later.

Thus, a classifier trained on data collected immediately after donning will do poorly

in classifying data collected even a short time later. Because the interface reaches a

steady state after only a few minutes ( [37,38]), a classifier trained on data collected

just a few minutes after donning however, will generalize well to future data assuming

the other conditions at the time of training are kept constant. Preliminary research

in this area is shown in Fig. 2.2, demonstrating the negative impact of training a

classifier immediately after donning a prosthesis.

This example illustrates the need for the user to be educated and understand the

working principles of the system to maximize functional use. Training immediately
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Figure 2.2: This figure illustrates the negative impact of training a classifier imme-
diately after donning a prosthesis. In this preliminary experiment I conducted, an
electrode cuff was applied to an able-bodied subject at time t = 0. Unique classifiers
were created with data obtained at each marked point in time. Test data were gath-
ered 301 minutes after donning the cuff. It is evident that the classifiers trained with
data obtained directly after donning and two minutes after donning yielded higher
classification error than classifiers trained with data obtained after this time.

after donning is devastating to classifier performance during use. Knowing this fact

and simply waiting a few minutes after donning a prosthesis however, can mitigate the

issue. Although not discussed further here, how the amputee receives this information

illustrates one of the responsibilities of prosthetists and occupational therapists.

2.3 Optimize Electrode Placement

As mentioned previously, a significant issue in a pattern recognition-based pros-

thetic system is the initial acquisition of EMG signals. From the initial work of

Herberts et al. in 1973, electrode placement has been a concern [1]. They chose par-

ticular locations “by careful clinical examination, based on anatomical landmarks.”

Many pattern recognition systems today employ a greater number of signals (6-10)
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spread around the residual limb in attempt to measure all electrical activity in the

area. In an effort to gather even more data from the contracting muscles, some re-

search groups have employed the use of high-density surface EMG arrays [39]. These

arrays consisted of up to 120 electrodes. In a currently available prosthesis how-

ever, such a configuration is not ideal as the setup requires meticulous placement and

preparation.

Another concern regarding the electrodes used in pattern recognition systems is

electrode movement. Because the system must be trained upon first use to generate

classifier parameters for future classification, keeping the electrodes fixed to their ini-

tial positions is paramount. It has been shown that “a shift of 1 cm of four electrodes

placed circumferentially about the forearm [increases] classification error in a 10-class

experiment from roughly 5% to 20% (if shifted distally) and to 40% (if rotated about

the forearm)” [40].

Work by Young et al. continued this investigation of electrode shift. They con-

cluded that electrodes placed longitudinally to muscle fibers were less sensitive to

electrode shift [35]. They also found that increasing inter-electrode distance from 2

cm to 4 cm made the system less sensitive to electrode shift [41].
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2.4 Limit the Effect of Misclassification

Another approach to improving the robustness of pattern recognition systems is

to limit the effect of misclassification. Conceding that misclassification will occur,

multiple groups have worked to assuage its effects. One such method involves limit-

ing the movement speed of the prosthetic hand when there is a change in classifier

decision [26]. During the use of a prosthetic limb, the “true” class label of incoming

data is unknown. Because of this, it is not possible to determine if the predicted

class was correctly or incorrectly classified. By limiting the movement speed of the

prosthesis when a particular grasp is predicted filters the responsiveness of the hand

making small glitches of misclassification less influential. Such a method also however

reduces the responsiveness of the device for desired actions. This tradeoff between

accuracy and responsiveness arises in multiple efforts to improve the robustness of

the prostheses.

A clear demonstration of this tradeoff is when imposing majority vote techniques

to limit the impact of incorrectly predicted grasps [42, 43]. Rather than filter the

mechanical system’s response as previously mentioned, imposing a majority vote to

the classification stream filters the input to that mechanical system. The class which

is predicted most prevalently over a defined window of time is selected and is relayed

to the actuators of the device. If the window is long, glitches of incorrectly classified

grasps will be ignored as desired, but the time for the system to initiate a newly-

desired grasp is lengthened. Such a delay may be frustrating for the user.
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Similar efforts to limit the effect of misclassification involve imposing confidence

thresholds or rejecting unknown data patterns in such a way as to limit the impact

of incorrectly predicted active grasps. Scheme et al. imposed confidence thresholds

utilizing the assumption in LDA that the conditional probability density for all classes

is Gaussian [25, 44]. In the case of highly dimensional data, this is a multi-variate

normal distribution. The threshold was set independently for each class as a specified

distance from the class-specific mean according to the class-specific covariance. If

a particular class was predicted but the threshold was exceeded, regardless of the

prediction, the data were classified as belonging to the “no action” or “rest” class.

Thus, for any threshold level, the active motion classification accuracy was shown to

outperform the unmodified LDA [25].

2.5 Improve Classifiability

Rather than deal with errors after they have occurred as was described in the

previous section, it is logical to work to improve the classifiability of the incoming

data before it is classified. Efforts in this direction include applying filtering methods

to the raw EMG, extracting new features, using high-definition EMG arrays, or by

recording EMG activity from within the muscle as opposed to recording from the

skin’s surface.

Rehbaum et al. proposed applying a filter based on the common average refer-
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ence (CAR), which is often used in EEG processing [9]. By imposing this filter, the

group reports in improved performance of “both pattern recognition and regression

methods for myoelectric control.” A different filtering method has been proposed

by Hargrove et al. aimed to minimize crosstalk between neighboring electrodes by

applying class-specific principal component matrices to the raw EMG to “spatially

decorrelate the measured data prior to feature extraction” [45]. The group reported

a significant reduction in classification error when this method was applied for both

able-bodied and transradial amputee subjects. Another approach involves removing

channels determined to be faulty. Zhang et al. have shown that by incorporating a

“sensor fault detector,” classification accuracy was less affected by disturbances to

those channels [46].

Another approach to improve the classifiability of EMG data is to extract fea-

tures of the signal which are more informative of the grasp being performed and

robust to variability in factors experienced during daily use. Initial work presenting

the real-time performance and high accuracy of pattern recognition systems by Hud-

gins et al. proposed the extraction of time domain (TD) features [15]. Subsequent

work with continuous classification of myoelectric signals suggested the extraction of

a wavelet-based feature set with dimensionality reduction by principal components

analysis (PCA) [47]. It has since been shown that “the performance of classifiers

degrades with PCA transformed time domain features compared to non-transformed

time domain features” [48]. Following the suggestion of extracting wavelet-based fea-
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tures, the extraction of a new set of TD features was proposed by Englehart et al.

which set continues to be commonly used by those working with myoelectric pattern

recognition systems today [22]. Researchers continue to look for features of EMG

that further improve classification accuracy and are less influenced by environment

variations experienced by a prosthetic user. As will be discussed in great detail here-

after, the limb’s position significantly influences these commonly extracted features.

Not specifically addressing the system’s robustness, Ashkan et al. suggest the addi-

tion of the Willison amplitude feature in conjunction with the commonly used time

domain features to improve classification accuracy [12]. Others have suggested that

Auto-regressive coefficients be included with the traditional time domain features for

maximal classification accuracy [8].

An additional area of research involves adapting the classifier over time. Incoming

data may more accurately be classified for example, if the classifier is able to recognize

variations in the incoming data from that seen during training and “re-center” or

calibrate itself to the current situation. In a recent publication, Liu presented an

implementation of an adaptive classifier based on support vector machine in which

it is argued that such a method can account for changes in “electrode [movement],

fatigue, impedance changes and physiological factors” [49].

Next, addressing the classifiability of the raw EMG signal, multiple groups have

reported success using high-definition (HD) EMG arrays [10, 11]. Rojas-Martinez

et al. show that the signal power obtained from single bipolar electrodes were sig-
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nificantly different from that obtained using an HD-EMG setup [11]. They report

increased accuracy with the HD-EMG configuration over the standard single-bipolar

setup. With the unique data set, they also suggest that intensity and spatial distri-

bution of HD-EMG maps could be useful features in identifying movement intention

and strength. This point highlights their work to utilize unique aspects of the new

signal. Stango et al. similarly extracted unique features of HD-EMG to achieve en-

hanced robustness [10]. They included a measure of the spatial correlation between

electrodes as a feature. The performance of their approach was “comparable to the

classic methods based on time-domain and autoregressive features,” and improved

the system’s robustness to the number of electrodes used and electrode shift.

Finally, a promising method of improving the classifiability of the EMG signal is

to record the signal from within the muscle as opposed to recording from the skin’s

surface. There are many potential benefits to using intramuscular EMG recordings

over surface EMG recordings for prosthesis control. A few examples of these benefits

include: increasing the signal-to-noise ratio of the signal, bypassing electrode slippage

effects, bypassing electrode-skin impedance variability, and minimizing crosstalk be-

tween channels. Ortiz-Catalan et al. have provided an in-depth presentation of

intramuscular EMG recording and its application in prosthesis control [50].

Initial work by Hargrove et al. did not suggest that using intramuscular EMG

enhanced prosthesis control over the use of surface EMG [51]. Recording simultane-

ously from intramuscular and surface electrodes and comparing classification accuracy
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achieved through each signal, they concluded “that there was no significant difference

in classification accuracy as a result of using the intramuscular [myoelectric signal]

measurement technique when compared to the surface [myoelectric signal] measure-

ment technique.” Others have continued work with fine-wire intramuscular EMG

recording testing new control schemes [52–54]. Smith et al. demonstrated that a

“parallel dual-site” control scheme yielded enhanced throughput over pattern recog-

nition control. It is therefore suggested that control schemes optimized for use with

surface EMG may differ from control schemes utilizing intramuscular EMG.

Weir et al. demonstrated the functionality of a multichannel EMG sensor sys-

tem “capable of receiving and processing signals from up to 32 implanted myoelec-

tric sensors” (IMES) [55]. They present the many benefits of IMES over fine wire

intramuscular recording methods arguing that “wireless telemetry of EMG signals

from sensors implanted in the residual musculature eliminates the problems associ-

ated with percutaneous wires, such as infection, breakage, and marsupialization.”

Tested initially in cats, the IMES system has since received FDA approval for human

use. Promising preliminary results have been presented demonstrating their use in

amputee subjects [56]. The use of intramuscular electrodes remains a promising po-

tential way forward. This thesis however, will continue to focus on EMG recordings

from the skin’s surface.
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2.6 Reduce the Limb Position Effect

The previous sections presented work intended to improve the general robustness

of myoelectric pattern-recognition systems. Increasingly, researchers have sought to

more specifically address one of the major factors influencing their robustness: limb

position variation. Addressing this source of variability is the focus of all subsequent

chapters of this work.

In 2010, Scheme et al. published an article illustrating the dependence of grasp

classification accuracy on limb position [57]. To address the issue, they integrate

accelerometers to support a dual stage classification process in which position is first

classified followed by a classification of the intended hand action using a position-

specific classifier. With data from eight able-bodied subjects they show this method

reduces classification error.

A subsequent study by the same group with 17 able-bodied subjects reported again

that “variations in limb position associated with normal use can have a substantial

impact on the robustness of EMG pattern recognition, as illustrated by an increase

in average classification error from 3.8% to 18%” [23]. The effect the limb’s position

has on classification accuracy they named the “limb position effect.” Using only

time domain features of EMG in grasp classification, average classification error was

reported as 5.2%. Applying a two-stage classification process as previously described

yielded an error of 3.7%. This error was further reduced to 3.4% by incorporating

the accelerometer data in grasp classification. The group proposes multiple causes of
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the limb position effect including: variations in muscle recruitment, electrode shift,

the force-length relationship of the muscle, and changes in the musculotendon lever

arm [23].

Geng et al. addressed the limb position effect by integrating a mechanomyo-

gram (MMG) signal with EMG. Their study was performed with five transradial

amputees [34]. They found that MMG was in fact more strongly influenced by limb

position than EMG and including its signals degraded classification accuracy. Inter-

estingly, using MMG to classify intended hand actions was equally as accurate as

when using EMG when trained and tested in the same location. An important, un-

intended finding from this work however, is that their results suggested for the first

time that the limb position effect was more prominent for an intact limb than an

amputated limb. Throughout the experiment, the amputee subjects elicited the con-

tractions with their intact and amputated limb simultaneously. Although statistically

insignificant, the group reported that average classification error for the amputated

limb was lower than that for intact limb.

In a subsequent publication, the same group confirmed that the limb position

effect was more substantial for an intact limb than an amputated limb [3]. Thus, they

suggest that “investigations associated with practical use of a myoelectric prosthesis

should use [amputee] subjects instead of using able-body subjects.” They also suggest

a two-stage cascade classifier to address the issue. As seen in Fig. 2.3, accelerometer

and MMG signals are used to classifying the current position of the hand following
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which a position-specific grasp classifier is applied to the EMG data.

Figure 2.3: Illustration of a two-stage classification method in which first the limb’s
position is classified using accelerometer and MMG signals following which a position-
specific grasp classifier is applied to the EMG data to predict the intended hand/wrist
action [3]. BioMed Central was the original publisher of this figure.

Other groups have addressed the limb position effect by increasing the number

of EMG channels with an HD-EMG array or by extracting different features of the

EMG. With one able-bodied subject, Boschmann et al. showed that by using an HD-

EMG array and training in multiple positions, they could minimize this effect [58].

With 11 able-bodied subjects, Khushaba et al. found that time dependent spectral

features were less dependent on limb position and thus resulted in a more robust

system to limb position variation [59].

Another report claiming enhanced robustness to positional variation suggested a

hybrid approach in which dual-stage classification is performed with the position spe-

cific classifiers having been trained on data from multiple neighboring positions [60].
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With data from 10 able-bodied subjects, they showed this method outperformed hav-

ing a single classifier trained on data from all positions and applying location specific

classifiers trained on data from only its respective position.

2.6.1 Limitations of Previous Work Aimed at Re-

ducing the Limb Position Effect

Although these promising solutions have been suggested, multiple critical factors

suggest weaknesses in the arguments aimed at reducing the limb position effect. First,

most studies were performed with able-bodied subjects. The limb position effect

however, has been shown to be different between able-bodied and amputee subjects.

Furthermore, the limb position effect was not observed or analyzed in its actual use-

case: when the amputees were wearing their prostheses. The potential causes of the

effect may vary for an amputee wearing a prosthesis compared to an able-bodied

subject. Electrode movement, for example, may be of much larger concern for an

amputee wearing a prosthesis than an able-bodied subject or amputee wearing stick-

on electrodes or a cuff with embedded electrodes. All groups referenced in this section

utilized one of these two methods for collecting EMG. A second critical weakness in

the presented works is the small number of discrete positions in which the system was

tested. For the device to be a useful rehabilitative tool, it need be applied to a wide

range of positions encompassing the user’s entire working space. Finally, recent work
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by Radmand et al. has suggested that the dual-stage classification method proposed

by multiple groups as being a potential solution to the limb position effect, may

not optimize classification accuracy [61]. The group reported that when not every

position explored during testing is explored during training, dual-stage classification

performs significantly worse than training in multiple positions and aggregating the

training data to form a single classifier.

These weaknesses in the aforementioned studies and the desire for the prosthesis

to be robust to limb position variation validate and support the continued research

of this phenomenon.
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Chapter 3

The Limb Position Effect

Adapted from the author’s publication:

M. R. Masters, R. J. Smith, A. B. Soares, and N. V. Thakor, “Towards better

understanding and reducing the effect of limb position on myoelectric upper-limb

prostheses,” in Conf Proc IEEE Eng Med Biol Soc, 2014, pp. 2577-2580.

3.1 Chapter Abstract

Myoelectric control of prosthetic devices tend to rely on classification schemes of

extracted features of EMG data. Those features however, may be sensitive to arm

position resulting in decreased performance in real-world applications. The effect of

varying limb position in a pattern recognition system have been illustrated by doc-

umenting the change in classification accuracy as the user achieves particular limb
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configurations. We continue to investigate this limb position effect by observing its

impact on classification accuracy as well as through an analysis of how each extracted

feature of the raw EMG varies in each position. Finally, LDA classification schemes

are applied both to demonstrate the effect varying limb position has on classification

accuracy and to increase classification accuracy without the use of additional hard-

ware or sensors such as accelerometers as has been done in the past. It is shown that

high classification accuracy can be achieved by (1) training an LDA classifier with

data from many positions, as well as (2) by utilizing an extra position LDA classi-

fier which can weigh the grasp classifiers appropriately. The classification accuracies

achieved by these methods approached that of a model relying on a perfect knowledge

of arm position.

3.2 Introduction

Although pattern recognition based prostheses have been given significant credit

for bringing the user increased degrees of freedom, a significant limitation to pattern

recognition prostheses has yet to be overcome. Its accuracy significantly degrades as

the user moves from the location in which the system was trained. Many myoelelectric

control schemes have been reported as having high classification accuracies [26, 62].

These results however, were achieved in experimental paradigms that largely did not

consider the impact of changes in limb position and orientation. These are significant
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factors as it has been shown that the accuracy of a pattern recognition-based upper-

limb myoelectric prostheses is significantly influenced by the position of the limb

[3, 23, 40, 58, 59]. It is desirable that the upper-limb prosthetic device maintain its

functionality in a wide range of positions so that its usability can be expanded towards

a greater number of daily tasks.

The disparity between classification accuracy at the training position and the ac-

curacy of the system when the limb is in a different location has heretofore been

referenced as the “limb position effect” [23]. Previously, the effect of varying limb po-

sition in pattern recognition systems has been illustrated by documenting the change

in classification accuracy as the user achieves a particular limb configuration. The

problem has been ameliorated by groups incorporating sensors to discriminate be-

tween positions [3, 23], or find features which are not as susceptible to change across

limb positions [59]. This paper continues to investigate the limb position effect by

observing not only the degradation of classification accuracy, but also, more funda-

mentally, through analysis of how each extracted feature of the raw EMG varies in

each position. Additionally, potential solutions are presented by generating classifiers

using Linear Discriminant Analysis (LDA) each having varying degrees of positional

awareness. Through a more comprehensive understanding of the issue, one can gain

a greater insight into not only why a solution to this issue is necessary but also where

the solutions fall short and how future work may advance the field. Finding a solution

to the issue is paramount to improve the usability of such a device in day-to-day use.

36



CHAPTER 3. THE LIMB POSITION EFFECT

3.3 Methods

3.3.1 Population and Data Acquisition

For this pilot study, EMG data were collected from two able-bodied individuals:

Subject 1 - male, age 24, with extensive exposure to pattern-recognition based my-

oelectric prostheses control; Subject 2 - female, age 25, with no prior exposure to

myoelectric control. The first having trained according the model established by [2]

in which principles were learned to create “consistent and distinguishable movements

through interaction with a visual biofeedback training system” [2].

Eight channels of raw EMG were obtained through differentially amplifying elec-

trode pairs placed approximately equidistant around the circumference of the forearm,

approximately three inches distal to the medial epicondyle of the humerus. The elec-

trode pairs were numbered one through eight with the first placed above the extensor

carpi ulnaris muscle and the others continuing clockwise around the forearm if viewing

a cross section of the forearm looking up the arm. The stainless-steel dome electrodes

were inserted into a non-conductive elastic band with options for sizing according to

the diameter of the user’s forearm. The ground electrode was a Norotrode 20 bipolar

Ag/AgCl EMG electrode (Myotronics, Kent, WA) and was placed approximately one

inch proximal to the olecranon. The cables connecting the electrodes to the amplifiers

and to the data acquisition system were well maintained eliminating extraneous fac-

tors and potential artifacts due to pulling forces on the electrodes or rotation of the
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clips attached to the electrodes. The raw data were amplified after approximately one

foot of shielded cable by 13E200 MYOBOCK electrodes (Ottobock, Plymouth, MN)

such that saturation did not occur. Following amplification, the signal was sampled

using the NI USB-6009 (National Instruments, Austin, TX) at 1000Hz per channel.

A subsequent 30-300Hz bandpass and a 60Hz notch filter were applied to the signal

as indicated by [2]. Although standard surface EMG signal conditioning usually uti-

lizes a 20-500Hz bandpass filter, the authors decided to narrow that band in order

to avoid as much as possible low frequency instabilities due to fast twitching of the

stump muscles in a real application (amputees) and noise outside the main band of

the power spectrum (below 300Hz). Additionally, the features extracted in this work

are not strongly affected by frequencies outside this range.

Each subject performed five unique hand or wrist configurations including rest

(R), hand open (O), hand close (C), wrist pronate (P), and wrist supinate (S). These

hand and wrist configurations will hereafter be referenced as “grasps.” The subjects

performed five repetitions of each grasp maintaining the contraction for a duration

of four seconds for each repetition. They performed this routine while standing with

their arm in seven locations relative to their body, namely: (1) in the neutral (N)

position (from anatomical neutral, 90o elbow flexion and 90o wrist pronation), (2) in

the “upper right” (U-R) location with 135o shoulder abduction in the sagittal plane,

(3) in the “down right” (D-R) location with 45o shoulder abduction in the sagittal

plane, (4) in the “down” (D) location with the shoulder in its anatomical neutral
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position, (5) in the “down left” (D-L) location with 45o shoulder flexion and 45o

shoulder adduction, (6) in the “upper left” (U-L) location with 135o shoulder flexion

and 45o shoulder adduction, and finally (7) in the “upper” (U) location with 135o

shoulder flexion.

3.3.2 Data Processing

Time domain (TD) features of the amplified and filtered EMG signals were ob-

tained by imposing a 200ms moving window with 175ms overlap (25ms delay plus

processing time). The TD features extracted were mean absolute value (MAV),

waveform length (WL), and signal variance (VAR). These features were extracted

over others because of prior work suggesting they are sufficient for high classification

accuracy in real-time myoelectric control environments [12, 22].

Subsequent LDA classification of the acquired features and the associated grasp

was performed. The method in which LDA classification was applied was unique to

each of the four scenarios described hereafter. It is shown how the resulting classifiers

were utilized in various ways to both demonstrate the effect of varying limb position

on classification accuracy and work towards achieving higher classification accuracy.

In each case, five fold cross validation is used to estimate classification accuracy. This

is performed by using data from four of the five trials of each grasp to train the

system and evaluating the resulting classifier on the remaining trial. A classification

accuracy percentage is computed for each of the five folds as given by equation 3.1.
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Number of samples correctly classified

Total number of testing samples
(3.1)

The average of these five individual classification accuracies is reported along with

the standard error of the mean.

3.3.2.1 Method 1

Seven unique grasp classifiers are created using the data obtained from each re-

spective location. By applying the classifier corresponding to the current position

of the arm, the system has perfect positional awareness and the classifier that was

created in the current position of the arm can be applied to incoming data. In so

doing, an upper bound for classification accuracy is found given the model parameters

(window, extracted features etc.).

3.3.2.2 Method 2

A single grasp classifier was created from training data collected in the neutral

position. This classifier is applied to new data obtained in the neutral position as

well as to data from the remaining six positions.
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3.3.2.3 Method 3

A single grasp classifier was created using training data from all seven locations.

In this way, the resulting classifier can be described as an “aggregate” classifier over

the seven training locations.

3.3.2.4 Method 4

A position classifier is created whose output weighs each individual grasp classifier

accordingly. Thus, if the position classifier is confident that the user’s arm is in a

particular position, the upper-right position for example, the grasp classifier created

from data collected in the upper-right position will have a larger influence on the

predicted grasp being performed. In this way, an estimate of arm position influences

the degree to which the output of each grasp classifier is considered when making the

final estimate of the grasp being performed.

3.4 Results

3.4.1 Illustrations of the Limb Position Effect

The limb position effect is clarified and depicted in this section by providing

the results of various analysis methods in the form of (1) confusion matrices, (2)

depictions of EMG activity around the circumference of the arm, and (3) through
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Figure 3.1: The seven confusion matrices on each half of the figure represent the
seven positions from which training data were obtained from Subject 1. To the left
of the dashed line are confusion matrices for the provided cue matching the predicted
cue when the classifier is created and applied in the same location. To the right are
confusion matrices for the provided cue matching the predicted cue when the classifier
is created in the “neutral” position and applied in all locations.
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plots of extracted feature behavior during each grasp performed in each position as

detected by a single electrode.

Fig. 3.1 gives a visual representation of the effect limb position variation has on

classification accuracy. When the classifier is created and evaluated in the same

position, classification accuracy of 98.5±0.2% is achieved. When the classifier is

created in the neutral position and evaluated in all positions, classification accuracy

decreases to 83.5±0.8%.

The effect of varying limb position in a pattern recognition system have been

documented by reporting the change in classification accuracy as the user achieves a

particular limb configuration. Although Fig. 3.1 goes beyond reporting a single value

for classification accuracy, it similarly reports classification accuracy as a means for

demonstrating the effect. Fig. 3.2 and Fig. 3.3 however, shed more light into why

classification accuracy degrades as the subject moves from the position in which the

classifier was trained.

Fig. 3.2 shows how MAV recorded by each electrode varies according to arm

position while performing the hand-close grasp. Similar results were obtained for

the other four grasp types. It can be seen that the MAV values change considerably

depending on arm position.

Fig. 3.3 also shows that extracted feature means vary considerably from position

to position. It illustrates that not only MAV means, but the mean of each extracted

feature (MAV, WL, and VAR) varies. A one-way ANOVA was used to test this obser-

43



CHAPTER 3. THE LIMB POSITION EFFECT

Figure 3.2: Periodic cubic spline interpolation of average MAV over the entire grasp
period for the “close” grasp in each of the seven locations for Subject 1. The electrode
pair numbers are shown around the center ring. Red denotes large MAV values while
blue denotes low.

Figure 3.3: Normalized mean of the respective feature with error bars representing
one standard deviation above and below the mean for each grasp in each position as
measured by electrode pair 8 from Subject 1.
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vation that the extracted features differ according to position. With p<.001 for each

feature and grasp combination, it can be concluded that the features are significantly

different across positions. Although the figure only shows the data obtained by one

electrode pair, similar results were observed for all electrode pairs. Such a depiction

of the limb position effect shows the issue at a more fundamental level.

3.4.2 LDA Classifiers

3.4.2.1 Method 1

For Subject 1, average classification accuracy when the classifier was created and

applied in the same location was 98.5±0.2%. For Subject 2, average classification

accuracy in this scenario was 87.4±1.2%.

3.4.2.2 Method 2

For Subject 1, average classification accuracy when the classifier was created in

the neutral position and applied in all positions was 83.5±0.8%. For Subject 2,

classification accuracy for this scenario was 77.9±0.4%.

3.4.2.3 Method 3

When a single grasp classifier was created using training data from all locations,

the classification accuracy for Subject 1 was 96.5±0.3%. Implementing this method
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for Subject 2 yielded an average classification accuracy of 86.9±0.9%.

3.4.2.4 Method 4

By creating a position classifier whose output applies a weight to the individual

grasp classifiers, grasp classification accuracy for Subject 1 was 96.5±0.7% (with posi-

tion classification accuracy of 43.4±3.3%), while for Subject 2, classification accuracy

was 83.8±1.4% (with position classification accuracy of 38.7±2.3%). The result of

the position classifier for Subject 2 can be seen in Fig. 3.4.

The results of the four classification schemes are summarized in Table 3.1.

Figure 3.4: Confusion matrix of actual position vs predicted position for Subject 2
applied in classification Method 4.
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Table 3.1: Results of Classification Schemes

Method Classification Accuracy (%)

Subject 1 Subject 2
1 98.5±0.2 87.4±1.2
2 83.5±0.8 77.9±0.4
3 96.5±0.3 86.9±0.9
4 96.5±0.7 83.8±1.4

3.5 Discussion

Fig. 3.1 illustrates that classification accuracy deteriorates when the model re-

ceives data from positions different than that where it was trained. In other words,

classification accuracy degrades as the user moves their arm from the location in which

the classifier was trained. Thus the claim from previous research is made stronger

that the limb position effect is an issue requiring serious attention in order to improve

usability to myoelectric pattern-recognition prostheses.

Fig. 3.2 and Fig. 3.3 address the issue at a more fundamental level. It is observed

that the signals received by each electrode during each grasp type vary significantly

across position. Ultimately, it is the changing extracted EMG features that explain

the degrading classification accuracy in positions other than where the classifier was

trained. Hence, if a classier is trained in the neutral position and is applied to

data acquired at different arm positions, one can expect a higher degree of miss-

classification.

In an effort to create a more robust system to these variations, four classification

47



CHAPTER 3. THE LIMB POSITION EFFECT

methods were explored. The results show that classification accuracy can be increased

from the “worst case” scenario (no account for limb position after having created a

classifier in one position) without integrating additional sensors such as accelerometers

or other inertial measurement units (IMUs). This can be done by either creating an

aggregate classifier combining the training data from all locations into one classifier

(Method 3), or by incorporating some information about arm position to weigh the

individual grasp classifiers appropriately (Method 4). It is worth mentioning that the

classification accuracy achieved by these aforementioned methods approached that of

the best case scenario given the model parameters in which a perfect knowledge of

position was utilized.

Although methods 3 and 4 provided satisfactory improvements in accuracy, the

authors argue that Method 4 has a greater potential for further improvement, as it

can benefit from real world position information provided by kinematic sensors.

3.6 Conclusion

The results of this pilot study clearly illustrate the variation in extracted EMG

features across limb position and the effect these changes have on classification accu-

racy. Classification methods 3 and 4 serve to create a more robust myoelectric control

scheme of an upper limb prostheses allowing for greater utility of the device.

Having a perfect knowledge of position, classification accuracy of 98.5% and 87.4%
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is achieved by subjects 1 and 2 respectively. By creating an aggregate classifier created

over all space, classification accuracy is 96.5% and 86.9% for each subject respectively.

Finally, by weighing each grasp classifier by an estimate of position, accuracies of

96.5% and 83.8% are achieved.
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Aggregate vs. Position Specific

Classification

Adapted from the author’s work:

M. R. Masters, R. J. Beaulieu, R. J. Smith, A. B. Soares, R. R . Kaliki and N.

V. Thakor, “Aggregate Training Outperforms Location-Specific Training of a Pattern

Recognition-Based Myoelectric Prosthesis,” Pursuing publication.

4.1 Chapter Abstract

Many control schemes of multiple degrees of freedom (multi-DoF) myoelectric

prostheses rely on the classification of a set of features extracted from the user’s

surface-recorded electromyogram (EMG). Pertaining to upper-limb myoelectric pros-
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theses, these features are sensitive to limb position. This sensitivity has been shown to

impact performance in real-world applications as users move their limb and encounter

conditions not explored during training. This work investigates whether or not limb

position information from the user can be incorporated along with recorded EMG

to decrease classification error of the intended hand or wrist action across the user’s

entire working space. Using Linear Discriminant Analysis (LDA), multiple variations

on the availability of training data were evaluated including: single-position, random-

position, and position-specific models. With data from ten able-bodied subjects and

two amputee subjects with and without prostheses, we find that applying a classi-

fier trained with data from multiple random positions outperforms any of the tested

location-specific methods. This finding helps to focus the work aimed at creating

robust myoelectric prostheses.

4.2 Introduction

Pattern recognition-based prosthesis control using time-domain features extracted

from EMG can achieve high levels of classification accuracy [6, 63]. The success of

pattern recognition techniques in myoelectric prostheses has provided users with a

more intuitive control scheme for multi-DoF prostheses from the traditional two-site

controlled prostheses [22]. With a pattern recognition system, the user has immediate

access to multiple DoFs unlike the two-site system which requires switching between
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modes to access a particular DoF. Despite the significant benefits of pattern recogni-

tion systems, they are susceptible to many factors which impact their robustness [6].

One such influencing factor is the position or orientation of the user’s limb. Clas-

sification accuracy can dramatically degrade when the limb is moved to a position

different from that in which it was trained [3,23,58,59,63]. This phenomenon has been

referred to as the “limb position effect” and can significantly impact the functionality

of an upper extremity myoelectric prosthesis. Overcoming this hurdle represents an

important step in improving the usability of multi-DoF upper extremity prostheses.

Many strategies have been explored to improve the robustness of myoelectric pros-

thetic control without special attention to the effect of limb position. Approaches

within this category include: limiting the movement speed of the prosthetic hand

when there is a change in classifier decision [26] and imposing confidence thresh-

olds or majority vote methods to limit the impact of incorrectly predicted active

grasps [25, 42–44]. Others have attempted to improve the classifiability of incoming

data through different filtering methods of the raw EMG [9], introducing new fea-

tures [10], or through the use of high-definition EMG arrays [11, 12]. Finally, work

has been conducted to enhance robustness to other parameters such as changes in

electrode position [35,41].

Increasingly, researchers have sought to more specifically address robustness to

limb position variation [3, 23, 58, 59, 61]. These groups have worked to augment

recorded EMG data with information about the position of the limb to more ac-
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curately classify intended actions. Data from sensors, such as accelerometers or other

inertial sensors, can be used as another feature in the classifier or for use in a multi-

stage classification method in which position is first estimated then a position-specific

classifier is applied to the recorded EMG [3, 23, 57]. There have been contrasting re-

sults as well, showing that incorporating accelerometer data can degrade performance

compared with using EMG alone [61].

The purpose of this study is to investigate whether or not limb position information

from the user can be incorporated with recorded EMG to decrease classification error

of the intended hand or wrist action across the user’s entire working space. Building on

work presented in chapter 3 and published in [7] that demonstrated the limb position

effect by training in a few discrete positions, in this study a training database is

created of 50-80 repetitions per subject each performed in a random position to train

and evaluate multiple classifiers. We observe and analyze the limb position effect in

multiple patient populations including: able bodied subjects, amputees while wearing

their prostheses and amputees without their prostheses.

A significant consideration when comparing classification methods is that each

method utilizes the same amount of training data. This essential factor is left vague

and even unmentioned in many previously reported works. Classification methods

should be compared having been trained with equal amounts of training data available

to them; in the end, not all need be trained on the same amount of data. It is in this

way that the classification methods are compared in this study.
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To illustrate, if 20 repetitions of each grasp are available for training, with each

repetition having been collected from a unique position, it may seem valid when

comparing an aggregate and a position-specific classifier to train both methods on

an equal number of repetitions; say five. So the aggregate classifier is trained with

five random repetitions and the location-specific is trained with the five repetitions

obtained nearest the test position. This reasoning however, is flawed. In this example,

the position-specific method had access to the full 20 repetitions and intelligently

down-sampled to five for use in training, whereas the random position method had

access to only five. A more accurate comparison of the methods is done by training

both having access to the same number of repetitions. Thus, if the location-specific

method down-samples from the 20 to some lower number of repetitions more local to

the test position, the classifier for the random position method should be trained on

all 20 repetitions.

4.3 Methods

4.3.1 Population and Data Acquisition

All procedures of this study were conducted in accordance with protocol approved

by Johns Hopkins University’s Institutional Review Board (IRB).

Ten able-bodied subjects (two female, eight male) with no known neurological

disorders, ages 22-34, along with two transradial amputees, participated in the study.
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The first amputee subject (Amp1) is a 63 year old male who is seven years status post

right upper extremity amputation due to a work-related trauma. The second amputee

subject (Amp2) is a 68 year old female who is three years status post bilateral upper

and lower extremity amputations secondary to overwhelming sepsis. Both amputee

subjects have been using a myoelectric pattern recognition-based prosthesis for over

one year.

For all able-bodied subjects and amputees tested without their prostheses, eight

channels of raw EMG were obtained through differentially amplifying electrode pairs

placed equidistant around the circumference of the forearm. For able-bodied subjects,

the electrodes were placed around the area of greatest mass. For the amputees, the

electrodes were situated over the area of their residual limb that made contact with

the electrodes in their prostheses.

The raw data were amplified after approximately one foot of shielded cable by

13E200 MYOBOCK amplifiers (Ottobock, Plymouth, MN) which were modified for

remote application. Following conditioning, the signal was sampled using the NI

USB-6009 (National Instruments, Austin, TX) at 1 kHz. A subsequent 20-500 Hz

digital bandpass filter and a 60 Hz digital notch filter were applied to the signal.

For the sessions in which the amputees wore their prostheses, eight channels of

raw EMG were obtained through differentially amplifying electrode pairs mounted

within the rigid socket of their personally-owned, custom-fitted prostheses. The sig-

nals were amplified using LTI amplifiers (Liberating Technologies Inc, Holliston, MA)
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and acquired and filtered in the same manner as previously stated. Each amputee

conducted the experiment with a bebionic3 hand (RSLsteeper, Leeds) attached yet

unactuated to simulate the weight of real-world use.

Limb posture information was recorded concurrently with EMG during all ac-

quisition sessions using a custom network of three 9-axis inertial measurement units

(IMUs) (MPU-9150 Nine-Axis MEMS MotionTracking Device). This system is de-

scribed more fully in Appendix A. One sensor was placed on the subject’s back, the

second on the upper arm, and the third on the forearm. Each sensor was programmed

to output a quaternion representing the rotation from an initial vector common to

all sensors. A direction vector for each sensor was found by applying the direction

cosine matrix (DCM) from each quaternion to the common vector. A virtual repre-

sentation of the subject’s body and limb configuration was generated using this data.

This representation was updated and displayed to the subject in real-time as part of

the experiment’s graphical interface (GUI) and can be seen on the left hand side of

Fig. 4.1.

Each subject performed five unique hand/wrist configurations: rest (Rest), hand

open (HO), hand close (HC), wrist pronate (WP), and wrist supinate (WS). The

hand and wrist postures will hereafter be referenced as “grasps.”

Each experimental session began by performing nine repetitions of each grasp pre-

sented in random order with the arm in the neutral position (elbow flexed 90◦and the

wrist pronated 90◦from the anatomical neutral position). Before performing subse-
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Figure 4.1: An illustration of the experimental procedure with the subject viewing
the large GUI in front of them. The framework on the left represents the subject’s
body and is shown to the subject in real-time. Once the subject’s hand or projected
hand (amputee) is within 3 cm of the randomly-prompted target position, the subject
performs the cued grasps shown to them on the right.

quent repetitions, the subject was prompted to reach a target point in space as shown

to them in the GUI. The depth of the target was encoded by its size and color in

the GUI. Once a minimum distance from the target point had been achieved (less

than 3 cm) the five grasps were prompted in random order. A new target point was

presented to subjects after completing one repetition of each of the five grasps. This

process continued until all the grasps had been performed at 81 randomly distributed

target locations for all subjects except for Amp2 while wearing her prosthesis. In

this case, the grasps were performed in 54 target locations. Fig. 4.1 illustrates this

experimental setup.

The target points were generated by randomly selecting points within a 3-dimensional

volume centered around the subject’s shoulder. The volume is bounded in spherical

coordinates by r values equal to the subject’s total arm length and the subject’s up-

per arm length, 15◦ ≤ θ ≤ 165◦ and 10◦ ≤ φ ≤ 120◦, where θ is defined as the polar
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angle and φ is the azimuthal angle with 0◦ being the position at which the shoulder

is abducted 90◦ from the anatomical neutral position.

4.3.2 Data Processing

All data processing and analysis were performed offline using MATLAB (Math-

Works, Inc., Natick, MA). Time domain (TD) features of the amplified and filtered

EMG signals were extracted by imposing a 200 ms moving window with a 175 ms

overlap.

The TD features extracted were: mean absolute value (MAV), waveform length

(WL), and signal variance (VAR). The slope sign change (SSC) and zero-crossings

(ZC) features suggested in [22] were not used due to the need to determine the

threshold value when extracting these features. Initial work found the threshold

which yielded highest classification accuracy varied across subjects. Thus, to remove

a potential source of performance variation across subjects, these features were not

included.

This study was concerned with accounting for the limb position effect while stat-

ically holding a grasp. For this reason, it was determined to analyze the data from

only this portion of the grasp. Thus, the first 1.5 seconds were removed following

each cue presentation due to the subjects’ delayed response to the grasp cue and the

initial EMG activation not being representative of the static portion of the grasp. For

all subjects, the prompted grasp was initiated prior to the beginning of this interval
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and maintained throughout its duration.

4.3.2.1 Analysis of the Limb Position Effect

Analysis of the limb position effect began with quantifying the impact particular

covariates had on extracted EMG features. We anticipated finding a parameter that

most strongly influenced EMG features and could subsequently be incorporated into

classification to improve robustness to positional variation. Covariates included in the

investigation were: elbow angle, the angle between the axis of the forearm and the

ground, the height of the hand or distal end of the forearm relative to the subject’s

shoulder, and repetition count. The position related parameters were calculated from

data obtained from the body-mounted IMU network as explained previously. Repeti-

tion count, or time, was included as a covariate to determine if subjects fatigued over

the course of the experiment. The analysis was limited to investigating the impact of

these covariates only on MAV because of the strong correlation between MAV and the

other extracted features obviating the need to perform the analysis on each feature.

The average MAV over the duration of each grasp was computed for each of the

eight channels and each repetition. The relationship between MAV and each covariate

was quantified by the slope of a fitted univariate linear regression model where the

input variable was one of the position-related covariates and the output variable was

the average MAV. A distribution of slopes of the linear regression model for each

covariate was obtained. The distributions were tested for a mean of zero using one
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sample t-tests. Additionally, we tested for equal variance among the distributions

using the Brown-Forsythe test. Statistical testing was performed on the combined

data from all ten able-bodied subjects and for each amputee individually. A threshold

of p = 0.05 was used when reporting significance.

4.3.2.2 Classification

The hand/wrist grasps were classified using Linear Discriminant Analysis (LDA).

Six variations on the availability of training data were explored. For accurate compar-

ison of the methods, each was given access to the same number of training repetitions.

In the end, not all were trained on the same amount of data.

The variations on the availability of training data were analyzed across an increas-

ing number of training repetitions available (from 1 to 50). The following methods

describe the variations explored.

1. Single position (SP): The classifier is trained using data obtained from the single

“neutral” position.

2. Random position (RP): Data from randomly selected positions are used in train-

ing.

3. Nearest position (NP): For each novel grasp repetition to be classified, a local

classifier is trained using data from the m nearest locations evaluated during

the training session where m ∈ {1, 5, 10}.
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4. Nearest elbow angle (NE): Similar to the previous method, the classifier was

trained using m repetitions having been performed at an elbow angle most

similar to the elbow angle during the test repetition where m ∈ {1, 5, 10}.

5. Majority vote (MV): Individual classifiers are trained on the data from each

location visited during the training protocol. For a given test sample, that

grasp class is selected as the predicted grasp which receives the majority of the

predictions from the individual classifiers.

6. Weighted posterior (WP): Individual classifiers are trained on the data from

each location visited during the training protocol. The posterior estimates re-

sulting from each classifier are weighed inversely proportional to the the distance

between the query location and the location from which the training data origi-

nates. After weighting the posteriors, the maximum of the sum of the posterior

estimates across each of the individual classifiers is selected as the predicted

class of the training data. This algorithm is shown in equations 4.1 through 4.4

where N is the number of grasps classes (in this case 5), and M is the number

of individual classifiers created. The weights d are multiplied by the matrix P

yielding the weighted posterior estimates of the data belonging to each class

p∗. The class with the maximum weighted posterior is selected as the predicted

grasp ĝ.
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d =

(
d1 · · · dM

)
(4.1)

P =


p1,1 · · · p1,N

...
. . .

...

pM,1 · · · pM,N

 (4.2)

p∗ = dP =

(
p∗1 · · · p∗N

)
(4.3)

ĝ = arg max(p∗) (4.4)

For each number of repetitions available for training, 50 repetitions were randomly

selected from all available (81 in most cases, 54 for Amp2 with prosthesis) as test

repetitions allowing for cross validation of each method. In each case, classification

error was computed by dividing the number of samples misclassified by the total

number of testing samples without the application of a sliding majority vote filter or

other misclassification rejection methods..

The mean of the classification errors of the 50 trials is reported along with the

standard error of the mean. Comparative evaluation of classification methods was

conducted using paired-sample t-tests. A threshold of p = 0.05 was used when

reporting significance and the Bonferroni correction was applied to conservatively

counteract the problem of multiple comparisons.

62



CHAPTER 4. AGGREGATE VS. POSITION SPECIFIC CLASSIFICATION

−50 0 50

0.21

0.40

0.60

0.80
m: 0.00013
R: 0.15

Ch. 1
S

ca
le

d
 M

A
V

Height of the hand relative to the shoulder (cm)

−50 0 50

0.09

0.16

0.22

0.29
m: 0.00023
R: 0.85*

Ch. 2

−50 0 50

0.03

0.04

0.04

0.05
m: 4.7e−06
R: 0.11

Ch. 3

−50 0 50

0.01

0.01

0.01

0.02
m: 6.1e−06
R: 0.36*

Ch. 4

−50 0 50

0.01

0.01

0.01

0.02
m: 6.8e−06
R: 0.42*

Ch. 5

−50 0 50

0.01

0.01

0.02

0.02
m: 6.1e−06
R: 0.38*

Ch. 6

−50 0 50

0.01

0.02

0.02

0.03
m: 1.1e−05
R: 0.48*

Ch. 7

−50 0 50

0.02

0.04

0.06

0.08
m: 4.8e−05
R: 0.56*

Ch. 8

Figure 4.2: A depiction of how MAV recorded during the Rest grasp varies by hand
height for an able-bodied subject. Each point represents the average MAV recorded
on that particular channel over the duration of a Rest interval. The vertical axis of
each plot has been scaled to the maximum and minimum MAV values seen across all
channels. The line was obtained through linear regression of the two variables where
m is the slope of the line, R is the correlation coefficient of the two variables, and the
asterisk signifies significance in the probability that there is a non-zero correlation
between the variables.

4.4 Results

4.4.1 Analysis of the Limb Position Effect

The results of the statistical tests analyzing and comparing the distributions of

slopes resulting from fitting linear regression models to MAV and multiple covariates

are summarized in Table 4.1. Each distribution was tested for a mean of zero using

one-sample t-tests and the variance of each was compared to the variance from the

distribution resulting from regression with elbow angle because in each case, this
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distributionhadthelargestvariance.

Table4.1:

All able Amp1 Amp2

W/o prost. With prost. W/o prost. With prost.

Covariate
Zero 
mean

Equal 
var.

Zero 
mean

Equal 
var.

Zero 
mean

Equal 
var.

Zero 
mean

Equal 
var.

Zero 
mean

Equal 
var.

Repetition count * * * *

Elbow angle -- -- * -- -- --

Forearm-gnd. angle * * * * * * *

Hand/arm height * * * * * *

An asterisk denotes significance (p< 0.05),and the dashes denotecomparisons that are 
irrelevant.

ResultsofStatisticalTesting

Forallsubjects,statisticaltestingdidnotprovidesufficientevidencetorejectthe

nullhypothesisthatthedistributionsofslopesobtainedthroughfittinglinearregres-

sionmodelstoMAVandrepetitioncounthadmeansequaltozeroforallsubjects.

Thus,thereisnotsufficientevidenceoffatigueamongtestedsubjects.

Forallable-bodiedsubjectscombined,thedistributionofslopesresultingfrom

regressionwiththehand’sheightrelativetotheuser’sshoulderwastheonlydistri-

butionwithastatisticallysignificantnon-zeromean.Specifically,thedistributionof

slopevalueshadapositivemeansuggestingthatacrossallthechannelsandgrasps,as

thehandrisesageneralincreaseinMAVisobserved.Additionally,ofthecovariates

tested,thedistributionofslopesresultingfromregressionwithelbowangleyielded

thesignificantlylargestvariance.Fig.4.2illustratestheaverageMAVduringeach

repetitiononeachchannelandafittedlinearregressionofMAVrecordedduringRest

withtheheightofthehandfortheeightrecordedEMGchannelsofanablebody

subject.Itisapparentthatastrongrelationshipexistsforsomechannels(2espe-
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Figure 4.3: Average classification error for all able-bodied subjects resulting from
multiple variations on the availability of training data. Error bars represent the
standard error of the mean.

cially) and not others (1 and 3). Additionally, it is observed that channel 1 accounts

for the largest variation in MAV across the many repetitions (note its scale).

For Amp1, regressing MAV onto the forearm’s height relative to the shoulder for

all grasps yielded a distribution of slopes with a mean significantly non-zero only

when the prosthesis was worn. As with the able-bodied subjects, a positive mean

was observed in this case suggesting a general increase in MAV as the arm is raised.

Regressing MAV onto elbow angle for all grasps yielded a distribution of slopes with

a variance larger than the others. This difference reached statistical significance only

when the prosthesis was worn. Similarly for Amp2, regressing MAV onto the forearm’s

height relative to the shoulder for all grasps yielded a distribution of slopes with a

mean significantly non-zero (and positive), yet different from Amp1, this was true

for with and without the prosthesis. Again both with and without the prosthesis,
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regressing MAV onto elbow angle for all grasps for Amp2 yielded distributions of

slopes with the largest variance.

4.4.2 Classification
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Figure 4.4: Average classification error for Amp1 resulting from multiple variations
on the availability of training data. Error bars represent the standard error of the
mean.

The average classification error of all able-bodied subjects for multiple variations

on the availability of training data is depicted in Fig. 4.3. For clarity, only the results

for m = 5 are shown for the NP and NE methods. It is generally noted that RP

outperforms the other methods except in a few instances in which the difference

between the classification error resulting from RP is not significantly greater than
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Figure 4.5: Average classification error for Amp2 resulting from multiple variations
on the availability of training data. Error bars represent the standard error of the
mean.
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that from the NP (m = 10) method.

Classification error results differed for the amputee subjects depending on whether

or not they were wearing their prostheses. This can be seen in Fig. 4.4 and Fig. 4.5

comparing the plots on the left (without prosthesis) with those on the right (with

prosthesis).

For Amp1 without his prosthesis, classification resulting from training based on

the SP method performed similarly to RP for all number of repetitions available for

training. The NP (m = 1) and NE (m = 1) methods yielded significantly higher

classification error than all other methods for all numbers of repetitions available for

training. Not for any number of repetitions available or m was classification error

significantly different between these methods.

For Amp1 while wearing his prosthesis, the classifier based on the SP method had

the significantly highest classification error among all methods and for all numbers

of repetitions available for training. The RP method on the other hand, yielded

classification error rates lower or insignificantly higher than all other methods.

For Amp2 without her prosthesis, the SP method yielded significantly higher

classification error than the RP method for all number of training repetitions available

with the exception of when one and two repetitions were included in training in

which case the difference was not significant. Without her prosthesis the NP and

NE methods for m = 5 and m = 10 tend to outperform the RP method. Although

under the specified criteria, in no instances is the difference significant with that
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from the RP method. As with Amp 1, the NP and NE methods for m = 1 yielded

significantly greater classification error than all other methods for all numbers of

repetitions available for training. Not for any number of repetitions available or m

was classification error significantly different between these methods.

For Amp2 while wearing her prosthesis, the SP method yielded significantly higher

classification error than all other methods with the exception of when one and two

repetitions were included in training in which case the difference was not significant.

With her prosthesis, the performance of the NP and NE methods over the RP method

is less significant. Only in a few cases do these methods outperform the RP method

and in these cases the difference is not significant.

For both amputee subjects, classification error was greater when the prosthesis

was worn for all implemented classification methods. Additionally for both subjects,

while wearing their prostheses, 90% of the reduction in error was achieved with five

repetitions.

4.5 Discussion

4.5.1 Analysis of the Limb Position Effect

Through univariate linear regression of multiple covariates onto MAV, we found

that the variance of the distribution of slopes resulting from regression with elbow

angle for able-bodied subjects was the largest, indicating that for able-bodied sub-
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jects the angle of the elbow most influences the recorded MAV feature of EMG. The

influence of the elbow angle on recorded EMG has not been investigated in previous

reports.

On the other hand, we found that the hand’s height relative to the shoulder for

able-bodied subjects yielded a distribution of slopes with a positive and significantly

larger mean than the distributions resulting from regression with the other covari-

ates. This suggests that of the parameters tested, the limb’s height most consistently

positively impacts the MAV of the recorded EMG. Physiologically, this likely reflects

the increased effort required to maintain the position of the arm and hand at higher

positions. The small variance of this distribution in relation to the others however,

indicates that this covariate does not generally impact (positively and negatively)

MAV as significantly as the other covariates.

Similar results were obtained from the amputee subjects as from the able-bodied

subjects. Regressing EMG onto the forearm’s height relative to the shoulder for all

grasps yielded a distribution of slopes with a mean significantly non-zero for both

amputees yet only when the prosthesis was worn. This suggests that when the am-

putees wear their prostheses, MAV generally increases across all channels as the arm

is raised. Regressing EMG onto elbow angle again yielded significant results only

when the amputees wore their prostheses; in which case the resulting distribution of

slopes had a significantly larger variance than the others. As with the able-bodied

subjects, this finding indicates that of the covariates tested, the angle of the elbow
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most significantly impacts the recorded MAV feature of EMG.

This demonstration of the impact of the angle of the elbow on EMG MAV for

able-bodied and amputee subjects suggests that accounting for this parameter during

classification may be most important in the development of a position-robust myo-

electric prosthesis. It was for this reason that the elbow angle-specific classification

method (NE) was implemented.

4.5.2 Classification

With an understanding of the parameters influencing extracted features of EMG,

the goal of implementing the variations on the availability of training data explored

in this paper was to develop a more intelligent classification system robust to the

limb’s position in space. Method 4 (NE) was specifically tested due to the finding

that of the parameters tested, the angle of the elbow had the largest impact on

the extracted MAV. Supportive of this finding, it is shown that for all numbers of

repetitions available in training, the NP and NE methods resulted in an insignificant

difference in classification error. Therefore, changes in EMG features across positions

in 3D space appear to be largely captured by changes in the angle of the elbow alone.

Methods 5 (MV) and 6 (WP) were implemented as additional strategies to incor-

porate positional awareness into the model. Previous work had shown that a model

similar to the WP method yielded performance comparable to the RP method [7].

This current analysis, however, has shown that these methods do not outperform the
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position specific methods (NP, NE) nor the aggregate method (RP).

More generally, noting the difference in classification error between single-position

training and the other methods, it is evident that the limb position effect is more

prominent in able-bodied subjects and with amputees wearing their prostheses than

for amputees without their prostheses. In fact, for Amp1 without his prosthesis, the

limb position effect is almost unobserved. Whether he trains in two, or 50 unique

positions, the resulting classification error is different by less than 1%. Additionally,

not for any number of repetitions available for training do the RP or NP methods

significantly outperform the SP method. The finding that the limb position effect is

minimal for amputees without their prostheses supports the idea suggested by Geng

et al. that “EMG signals acquired from an intact limb are more affected by limb

position variation” [34].

In those cases where the limb position effect is manifest, it is shown that training in

random positions and aggregating the training data to create a single classifier (RP),

yields similar or significantly lower classification error for all number of repetitions

available for training compared to the other methods.

Largely unconsidered in related work is the tradeoff between training with less data

but having the data be potentially more representative of test data (location-specific

methods) and training with more data but it being less representative of the test data

(aggregate methods). This work shows that, in general, for a given number of training

repetitions, each obtained at a different point in the user’s working space, training
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a single aggregate Linear Discriminant classifier using all of the available data yields

lower classification error than intelligently downsampling the training data (NP, NE)

or weighing more heavily the data gathered most near the position from which the

testing data was obtained (WP). Previous work has also confirmed the improvement

in robustness afforded by pooling training data from multiple static positions [64].

We conclude that the benefit of a large, pooled training set from multiple limb

positions outweighs the benefit of localized data used in a position-specific classifier.

Other work similarly shows that increasing the size of the training data set, even with

training data from previous days, aids subsequent classification [65]. With training

data obtained from multiple positions, the noise due to positional variations appears

to be less influential on the classifiers’ ability to distinguish between intended grasp

classes. Future work should consider the tradeoff between excluding data from the

training set for location-specific training and aggregating the entire training set for a

potentially more generalizable classifier.

This finding is supported by the theory of LDA. Under LDA, classification relies

on assigning query points to the class with its centroid nearest the query point mea-

sured by the Mahalanobis distance. The Mahalanobis distance is a scaled Euclidean

distance measure in which the distance is inversely scaled by a covariance matrix.

Within the context of LDA, this generally means that distance along dimensions

with larger relative variance are discounted compared to dimensions with smaller

variance. In LDA, the estimated covariance matrix is a weighted combination of the
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within-class covariances for each of the classes. Elements of the within-class covari-

ance matrices that are common across multiple classes become larger in the resulting

pooled covariance matrix and thus de-emphasized under Mahalanobis distance. Sim-

ilarly, components of the within-class matrices that are either small or are different

across classes will remain small or become “averaged out” relative to other covariance

components when the matrices are pooled. This results in euclidean distances along

these directions becoming enhanced according to Mahalanobis distance.

If the variation in features of EMG during grasping are due to the sum of a

grasping component and a limb position component, by training in multiple limb

positions, the variation due to limb position will be much larger than that of the

grasping component. If we assume that this variation is common across classes, it is

amplified relative to grasping variation when the covariance matrices are pooled. This

results in the limb position effect being de-emphasized relative to the grasping effect

in the final covariance matrix. This hypothesized effect is reflected in the analysis

of this experiment. Sampling from multiple limb positions makes the classifier more

resilient to variations in signal due to the limb position effect. Likewise, sampling

from fewer positions does not result in adequate estimations of the true variation due

to limb position and the classifier is unable to de-emphasize them.

A limitation of this work is that we did not evaluate these methods on dynamic

testing data in which the data are gathered while the limb is moving. It has been

shown that dynamic training yields lower classification error than pooled static train-

74



CHAPTER 4. AGGREGATE VS. POSITION SPECIFIC CLASSIFICATION

ing when testing on data from dynamic movements [64]. The same study also shows,

however, that pooled static training yields lower classification error than dynamic

training when testing on data from static postures. We suggest that for pattern

recognition-based prosthesis control methods, classification accuracy should be opti-

mized for static postures as has been the focus of this work. Changes in grasp type

are most often desired while in a static posture. The task of picking up, moving,

and setting down an object for example, requires changing grasps in static postures

(open/close) while maintaining a desired grasp during the dynamic portion of the

action (close). To ensure the appropriate grasp is maintained through the dynamic

portion of the action, a simple algorithm could be implemented restricting the class

from changing until the limb is once again static as measured by an on-board ac-

celerometer.

4.6 Conclusion

It is concluded that training an aggregate classifier from multiple random positions

in most cases yields classification error lower than those achieved through the location-

specific methods and significantly lower than those achieved by training in a single

position. This finding is the result of appropriately comparing each classification

method with each having access to the same amount of training data.

Of the covariates tested, the angle of the elbow was found to most strongly impact
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the MAV feature of EMG for all grasps. Subsequent classification incorporating

information about the angle of the elbow yielded classification error insignificantly

different from a method incorporating the limb’s exact position in space.

These findings will be useful in progressing the work toward achieving robust

myoelectric prostheses.
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Conclusion and Future Work

5.1 Conclusion

This thesis has addressed weaknesses in previous work relating to enhancing the

robustness of myoelectric prostheses and has thus advanced the field’s state of the

art. By applying the principles developed by this work, users of myoelectric pattern

recognition prostheses will experience improved robustness of their devices to limb

position variation. The amputee subjects who participated in this work have, of

their own accord, begun training in multiple positions and have reported in private

communication that the simple variation of their usual training protocol has resulted

in less perceived unwanted movement of their devices in daily use.

Not only does this work have immediate application for the end users, it also

provides evidence for researchers in the field suggesting that when using time-domain
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features of EMG in LDA to classify intended hand action, a two-stage position specific

classification method does not outperform a system in which data from multiple

positions are aggregated to form a single classifier. The same amount of training

data are best used to train a single classifier responsible for the user’s entire working

space than to be separated according to the position in which it was obtained and

used to train multiple classifiers responsible only for a local region of space. This

finding is relevant for future research to improve the robustness of pattern recognition

myoelectric prostheses.

In addition to this clarifying contribution, this work also illustrates the need to

optimize a system for the scenario in which it will be used. Most previously reported

works analyzed and accounted for the limb position effect experienced by able-bodied

subjects with very limited analysis of amputee subjects. This thesis has provided

a thorough analysis of the limb position effect as experienced by two transradial

amputees. Not only did this work analyze this impact while the amputees wore an

electrode cuff as has been reported previously, but the study went further to analyze

and account for the effect while the amputees wore their prostheses. This condition

is that for which the system must be optimized. Working to optimize the system in

a condition other than this does not guarantee optimal performance when the device

is in use. It is found that the limb position effect is of greater significance when the

prosthesis is worn than otherwise. The difference in classification accuracy between

training in a single position (nine repetitions) versus training in nine random positions
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(one repetition in each position) for each amputee without their prosthesis is 0.71%

and 6.37% respectively; while when wearing their prostheses, these accuracies differ

by 28.80% and 18.06% respectively. This finding suggests further research ought to

be conducted to understand and mitigate the effects of the prosthesis itself.

Furthermore, this work continued beyond previous work described in chapters 1

and 2 by observing the limb position effect throughout the entire working space of

the user rather than in a few, discrete positions. For each subject, able-bodied and

amputee, training was performed in more than 54 target locations across the user’s

working space. By so doing, an analysis of how the EMG features vary across space

(joint angle space and the absolute position of the hand relative to the shoulder) could

be conducted. The variability of the features is found not to be consistent across

channels or grasps. By training and testing the system in these many positions, a

more accurate representation of the effect could be obtained. Efforts were undertaken

to observe and account for the effect in a scenario more relevant to actual use.

Pattern recognition-based myoelectric prostheses are bringing added function and

utility to their users. Their robustness continues to improve as work continues by

researchers around the world. As it was reasoned that such prosthetic devices nec-

essarily retain their functionality throughout the user’s entire working space, this

thesis presented work specifically targeting the robustness of the systems with regard

to limb position variation. By exploring and evaluating previously published work

(chapter 2), experimenting to better understanding the limb position effect (chap-
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ter 3), and experimenting with able-bodied and amputee subjects using a custom

built real-time limb tracking system (chapter 4 and Appendix A), a method for en-

hancing the device’s robustness to limb position variation has been validated.

5.2 Future Work

As research continues and our understanding and knowledge of a system or process

grows, so does that boundary between the known and the unknown. Much can

yet be done to further improve the robustness of myoelectric pattern recognition

systems. The following sections present preliminary work which may yield benefits

with continuing experimentation and analysis.

5.2.1 Pressure Accommodation to Minimize Vari-

ability

One potential direction of work to enhance the robustness of myoelectric prosthe-

ses is to gain a better understanding of and account for pressure variability within

the socket. A potential factor contributing to the limb position effect is variability

in pressure within the socket as the arm is moved through space. It is hypothesized

that as the limb is moved through space or loads are placed on the limb, the pressure

between the electrodes and the user’s skin changes causing a change in impedance
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at that interface. This impedance change would cause the recorded EMG to change

from the otherwise neutral pressure case. Such changes could impact subsequent

classification accuracy. Previous work with electrocardiogram (ECG) electrodes has

shown that contact pressure has an effect on signal quality [66, 67]. The impact of a

changing electrode-skin interface over time on classification accuracy is illustrated in

section 2.2.

Using a prosthetic socket emulator on able-bodied subjects, Cipriani et al. found

that “variations in the weight of the prosthesis, [as well as] upper arm movements

significantly influence the robustness of a traditional classifier based on [a KNN]

algorithm” [68]. They conclude that inertial sensors ought to be incorporated into

myoelectric prostheses to monitor these effects.

Rather than incorporating inertial sensors, which would not be informative about

loads placed on a prosthesis, a preliminary experiment was conducted to observe

the pressure distribution within a prosthesis of a transradial amputee subject to

monitor changes in pressure and EMG due to variations in the position of the limb

and variations of load placed on the prosthesis.

5.2.1.1 Methods of Preliminary Experiment

Eight low-profile flexible FlexiForce force sensors (Tekscan, South Boston, MA)

were mounted to the interior of an amputee’s custom-fitted prosthesis. The force

sensors were too wide to secure the sensing element between the electrodes already
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in the subject’s prosthesis as was initially desired. The sensors were thus mounted

inside the socket proximal to the electrodes as seen in Fig. 5.2.B. Each sensor was

connected to a typical amplifier circuit as depicted on the device’s product sheet and

illustrated in Fig. 5.2.A. Individual potentiometers were used to tune each sensor’s

sensitivity. The output of each measurement was sampled using a NI USB-6009

(National Instruments, Austin, TX) data acquisition device. EMG was recorded

simultaneously with these pressure measurements in the same manner as described

in chapters 3 and 4.

Two experiments were conducted, the first involving varying the limb’s position,

the second varying the load on the device. In the first experiment, the hand/wrist

actions of rest, open, close, pronate and supinate were performed in the positions

depicted in Fig. 5.1 with a cue duration of five seconds. Each position was repeated

three times.

Figure 5.1: The five positions in which hand/wrist actions were performed were:
straight down, neutral, straight out front, hand to mouth, and straight up.

In the second experiment, the same five grasps were prompted under varying load

conditions while remaining in the neutral limb position. The three load conditions
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explored were: no weight, 500 g and 1 kg. The weights were applied by hanging

them freely from the prosthetic hand as seen in Fig. 5.2.C. Each load condition was

repeated four times.

A B C

EMG electrode

FlexiForce sensor

Figure 5.2: (A) Picture of the breadboard used to interface with FlexiForce pressure
sensors. (B) Picture of the inside of the prosthesis showing the mounting of each
sensor just proximal to the electrodes. (C) A 500 g weight hanging from the prosthesis
as used in the second experiment.

The results from each experiment were analyzed similarly. First, changes in pres-

sure as the grasps were performed were observed in the raw data. Second, the pressure

distribution around the circumference of the prosthesis was inferred and illustrated by

interpolating between sensors using a periodic cubic spline as described in chapter 3

and seen in Fig. 3.2. Finally, classification accuracy of multiple variations of training

and test data were explored using LDA. All measurements are reported with respect

to baseline values which are those taken during the rest grasp in the neutral position

under no load.
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5.2.1.2 Results and Analysis of Preliminary Experiment

Fig. 5.3 depicts both the raw EMG as well as the force measurements collected

during the first experiment in which the limb’s position was varied. The colored

sections of time illustrate the intervals during which the subject’s limb was in a

particular position. It is noted that pressure measurements vary considerably by

grasp type as can be seen by five discrete time periods each lasting five seconds

within each colored interval.

Figure 5.3: Raw data collected from an experiment in which an amputee’s arm
position was varied. Each line in the lower plot represents data from a single force
sensor. Each colored segment of time represents an interval during which the subject’s
limb was in a particular position. Data was only acquired when the subject was
stationary in one of the six positions.

The pressure distribution around the circumference of the prosthesis was then in-

ferred and illustrated by interpolating between sensor measurements using a periodic

cubic spline. The resulting illustration can be seen in Fig. 5.4. The figure depicts

the average pressure distribution inside the prosthesis during each individual grasp in

each position. Fig. 5.5 illustrates the average pressure distribution inside the prosthe-
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sis at each position across all grasps. The accompanying bar plot displays the average

force at each sensor relative to baseline for each position across all grasps.

Figure 5.4: Cross sectional view of the pressure distribution within the amputee’s
prosthesis as viewed from the elbow to the wrist during multiple grasps at multiple
positions. All values are depicted with respect to baseline values which are those
taken during the rest grasp in the neutral position under no load. Yellow denotes an
increase in pressure from this baseline while dark blue denotes a decrease in pressure.

Ultimately, the hypothesis that pressure recordings can be used to enhance clas-

sification accuracy was tested. Fig. 5.6 summarizes the information regarding the

classification accuracy of multiple training and testing conditions. When training

on a single repetition and in each position other than when the arm is left to hang

straight down, including pressure measurements along with features of EMG degrades

classification accuracy. When training on two repetitions from each position however

and testing in all positions, combining features of EMG and force measurements re-
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Figure 5.5: Pressure distribution at each position across all grasps with adjoining
bar plot displaying the average force at each sensor relative to baseline. It is clear
that aggregated across all grasps, the pressure at each sensor is maximum when the
arm is in the “hand to mouth” position.

sults in improved classification accuracy above that achieved when using features of

EMG alone.
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Figure 5.6: Classification accuracy of multiple training and testing conditions.

Results from the second experiment in which the load on the prosthesis was varied

are presented in a similar fashion to the previous. Fig. 5.7 shows both the raw EMG

and force measurements collected during the experiment. The colored sections of time

illustrate the intervals during which the prosthesis was under a particular loading
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condition.

Figure 5.7: Raw data collected from an experiment in which the load placed on an
amputee’s prosthesis was varied. Each colored segment of time represents an interval
during which the subject’s limb was under a particular loading condition. Data was
only acquired when the load on the prosthesis was constant.

The pressure distribution around the circumference of the prosthesis was again

inferred and illustrated by interpolating between sensor measurements using a pe-

riodic cubic spline. Fig. 5.8 illustrates the average pressure distribution inside the

prosthesis during each individual grasp under each loading condition. It is clear from

this representation of the pressure distribution within the prosthesis that the force

on sensor #8 is maximum during supinate and when a load of 1 kg is applied to the

prosthesis.

Fig. 5.9 illustrates the average pressure distribution inside the prosthesis under

each loading condition aggregated across all grasps. The accompanying bar plot dis-

plays the average force at each sensor relative to baseline under each loading condition

across all grasps. Unexpectedly, the force measured by each sensor under each loading

condition was larger than that measured in the baseline condition.
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Figure 5.8: Cross sectional view of the pressure distribution as viewed from the
elbow to the wrist during each grasp under different loading conditions. All values
are depicted with respect to baseline values which are those taken during the rest
grasp in the neutral position under no load. Yellow denotes an increase in pressure
from this baseline while dark blue denotes a decrease in pressure.

Figure 5.9: Illustration off the average pressure inside the prosthesis over all grasps
under different loading conditions. The bar plot further clarifies how the pressure
varies by sensor location.
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Finally, Fig. 5.10 provides information regarding the classification accuracy of

multiple training and testing conditions. It is important to note that when training

on three repetitions in a non-loaded condition and including force measurements along

with features of EMG to classify intended hand/wrist actions, classification accuracy

is significantly degraded when tested in a loaded condition of 1 kg.
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Figure 5.10: Classification accuracy of multiple training and testing conditions
resulting from the experiment in which the load condition was varied.

5.2.1.3 Discussion of Preliminary Experiment

As seen in Fig. 5.6, when training on two repetitions from each position and

testing in all positions, combining features of EMG and force measurements results

in improved classification accuracy above that achieved when using features of EMG

alone. Using force measurements alone in classifying grasp yielded an accuracy of

47.41%. Classifying grasp using features of EMG alone yielded an accuracy of 95.11%.

Combining the two sources of data yielded a grasp classification accuracy of 96.14%.

Although only a marginal improvement, this is a significant finding suggesting that

including data from force sensors may improve the robustness of myoelectric pattern
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recognition prostheses. Future analysis may find that including force sensors aids

most in specific situations such as in extreme loading conditions.

More generally, by monitoring the force from multiple sensors when the arm’s

position is varied, it is observed that the force on each sensor is most increased from

baseline when the arm is in the “hand to mouth” position (see Fig. 5.5). This may

be due to the high degree of elbow flexion required in this position. Because of this

finding, it is suggested that when training a system, a position of high elbow flexion

be explored to improve the robustness of the system to such positions during use.

One of the motivating questions promoting this preliminary work was, “how does

load effect classification accuracy and how can any negative effects of a changing

load be mitigated?” From Fig. 5.10, it is clear that when trained on three repetition

under no load and tested under a loaded condition, classification accuracy is less than

when tested under no load. This scenario is further clarified in Fig. 5.11 in which the

confusion matrices reveal how the individual grasps are impacted by testing in a load

condition not seen during training.

From the previous experiment with positional variation described in chapter 4, it

may be suggested that to account for various loads, the system ought to be trained

in multiple loading conditions. This configuration, in which the classifier is trained

using data from multiple loading conditions, is shown in Fig. 5.10 (dark orange) and

validates this assumption. Training with three repetitions in each load condition

yields higher classification accuracy when tested in each load condition than when
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Figure 5.11: Confusion matrices showing the effect of training under no load and
testing both under no load (left) and testing under a loaded condition (right). Yellow
indicates high classification accuracy while blue indicates low. Comparing the two
confusion matrices, it is evident that when testing under a loaded condition not
explored during training, classification of the pronate and supinate grasps are most
negatively impacted. When testing under a 1 kg load, pronate is classified as open
16% of the time as opposed to only 3% of the time when testing under no load (the
training condition). Testing in the loaded condition, supinate is classified as rest 15%
of the time as opposed to 0% of the time when testing under no load.

91



CHAPTER 5. CONCLUSION AND FUTURE WORK

trained in only a non-loaded condition. It may however be unreasonable to train in

all loading conditions. Additionally, by training in all loading conditions, subsequent

classification accuracy for a particular loading condition is less than if the system were

trained only in that condition. Thus, it may degrade the device’s utility to train in

multiple loading conditions if the system is primarily used in an unloaded condition.

It is observed in Fig. 5.10 that when including the force measurements, training

in all load conditions yields high classification accuracy when tested in all loading

conditions. This observation however, may be similar to that observed when including

accelerometer data with EMG and training in multiple positions [23]. Initially, it was

presented as a promising solution, yet Radmand et al. demonstrated that using

accelerometers is actually harmful to classification accuracy when testing in multiple

limb positions if all the test positions are not explored during training [61]. Such a

condition is observed in Fig. 5.10 when including force measurements in training of a

classifier in a non-loaded condition. Testing such a system under a loaded condition

yields lower accuracy than when the force measurements are not included. This

finding reinforces the idea that the data received during training must lie in a “space”

representative of the test “space”.

A more general finding of this preliminary experiment was that force measure-

ments on a particular sensor varied significantly depending on grasp type. This is

seen in figures 5.3 and 5.7 as well as in figures 5.4 and 5.8. In particular, it is noted

that during the supinate grasp, the force on sensor 8 is significantly greater than at
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baseline.

If the hypothesis is correct however, that pressure changes inside the prosthesis are

influencing the impedance of the electrode-skin interface and this impedance change

is affecting classification accuracy, it may be more beneficial to measure this param-

eter directly. By so doing, other factors influencing this interface may be accounted

for such as sweating or other causes of moisture in the prosthesis. Additionally, mea-

suring impedance directly would obviate the need for the pressure sensors and their

associated hardware. Impedance measurements could be taken from the same elec-

trodes as are recording EMG simplifying the incorporation of this signal into existing

systems. Bioimpedance has been used in the classificaion of muscle movements in

other human machine (HMI) applications [69].

This preliminary work suggests the need to conduct further experimentation to

generalize these findings. Future work ought to include a larger number of amputee

subjects in the analysis, explore a larger range of positions and loads, and explore

whether or not the additional information from force sensors can be used to improve

robustness generally or if the information can be used to improve robustness to specific

situations or for particular hand/wrist actions.
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5.2.2 Restrict Movement When Different or Un-

certain

A message reinforced throughout this work has been that to achieve a high level

of classification accuracy, the test condition must be similar to the training condition.

It is therefore suggested that more work be conducted to restrict movement of the

prosthesis when this condition is not met. As an example, if the device is trained

in static positions, it may improve robustness to restrict movement of the hand or

wrist when the limb is in motion. Such motion could be determined with an on-board

accelerometer or other inertial measurement unit. Similarly, hand or wrist movements

could be limited when force measurements inside the prosthesis are different from that

seen during training. Although such a system is not ideal, it would provide enhanced

reliability to users of myoelectric systems. Currently, the reliability of myoelectric

prostheses is one of the major hindrances to their full adoption over body-powered

prostheses [70, 71].

Not only could movement be restricted when the test condition is different from

the training condition, but also if there is uncertainty in the predicted hand or

wrist action. Such efforts to impose confidence thresholds have been made by other

groups [25,44]. If a predefined threshold of certainty is not met, “no motion” should

be selected thus limiting the effects of incorrectly classified “active” grasps.

Thresholding the posterior values resulting from LDA may be a method of reject-
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ing uncertain predictions. Data from an amputee subject while wearing his prosthesis

were used to develop this idea. The data were obtained from the experiment explained

in chapter 4. A classifier was trained and evaluated using separate training and test

data. Fig 5.12 shows histograms of the four largest posterior values when a correct

and incorrect prediction is made. The vertical limit of the top-left plot has been

limited to show detail. On that plot, the rightmost bin of the correctly classified

samples (blue) contains 8788 counts while the rightmost bin of the incorrectly classi-

fied samples (red) contains 436 counts. Because the second, third, and fourth largest

posteriors were very small, histograms were created of the exponent of these posteriors

in scientific notation.

Figure 5.12: Histograms of the four largest posteriors resulting from LDA when a
hand/wrist action is correctly and incorrectly classified. In the construct of LDA, a
value is assigned to each potential grasp quantifying the degree to which the classifier
believes that particular grasp is the intended grasp. This value is the posterior of that
grasp. Pure LDA will select that grasp with the largest posterior. Placing a threshold
on the posteriors may be a useful method of rejecting uncertain predictions.
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Fig 5.13 shows the percent of correctly and incorrectly classified samples above a

given threshold for each of the largest four posteriors. By calculating the difference

between these percentages at each threshold level, a maximum difference was found for

each thresholding condition. It is at this point that the threshold would maximize the

number of incorrectly classified samples relabeled as “no motion” while minimizing

the number of correctly classified samples relabeled as “no motion”.
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Figure 5.13: Plots showing the percent of correctly and incorrectly classified samples
above a given threshold. The difference between these percentages is also shown.

The thresholds found to maximally distinguish between correctly and incorrectly

classified classes were then applied to the data. Those samples which met the criteria

of the threshold were relabeled as “no motion”. Fig 5.14 shows the confusion matrices

resulting from this action. It is apparent that, like reported by Scheme et al., for any
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threshold level, the percent of incorrectly classified active motions was lowered from

when no threshold was applied [25]. Such an implementation however, would result in

the prosthesis being less responsive. It is observed that with a confidence threshold,

data from an active motion that may have otherwise been correctly classified are

occasionally classified as “no motion”.
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Figure 5.14: Confusion matrices showing the effect of applying a confidence thresh-
old to the decision stream of an LDA classifier. In all cases in which a confidence
threshold is applied, the percent of misclassified active grasps is decreased. Active
grasps are hand open, hand close, wrist pronate, and wrist supinate.

As in methods previously examined to improve robustness, there is a tradeoff be-

tween robustness and responsiveness when applying a confidence threshold to the de-

cision stream of the classifier. The robustness of the system is improved by minimizing

the frequency of incorrectly classified active grasps, yet the system’s responsiveness is
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hindered by more frequently classifying active grasps as rest or “no motion.” Future

efforts may find an optimal balance between these parameters or provide the ability

for the user to determine this level.
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Appendix A

Real-Time Arm Tracking using

Inertial Measurement Units

Adapted from the author’s publication:

M. R. Masters, L.E. Osborn, A. B. Soares, and N. V. Thakor, “Real-Time Arm

Tracking for HMI Applications,” Accepted by IEEE Body Sensor Networks Confer-

ence, 2015.

A.1 Appendix Abstract

Limb tracking is an important aspect of human-machine interfaces (HMI). These

systems, however, can often be limited by complex algorithms requiring significant

processing power, obtrusive and immobile sensing techniques, and high costs. In
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this work, we utilize a sensor fusion algorithm implemented in commercial inertial

measurement units (IMU) to combine accelerometer and gyroscope measurements in

an effort to minimize computational requirements of the limb tracking system. In

addition, previously developed methods were implemented to eliminate sensor drift

by including information from a magnetometer. We tested the accuracy of our system

by computing the root mean squared error (RMSE) of the true angle between the

headings of two sensors and the estimate of that angle through quaternion-vector

manipulations. An average RMSE of approximately 2.9◦ was achieved. Our limb

tracking system is wearable, minimally complex, low-cost, and simple to use which

has proven useful in multiple HMI applications discussed herein.

A.2 Introduction

Many human machine interfaces (HMI) require limb tracking for effective user

interaction. Currently the majority of such systems are expensive, difficult to set

up, and/or difficult to use [72–74]. To address this issue, a network of inertial mea-

surement units (IMUs) was engineered to provide robust, low-cost, and simple to

use motion tracking for use in and outside the laboratory. By understanding the in-

tended application of the sensor network, we were able to use a less robust algorithm

to minimize the computational complexity and memory storage requirement of the

system.
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Body movement can be measured using a variety of techniques and sensors. One

study analyzed how eye tracking, a motion tracking glove, and even electroencephalog-

raphy (EEG) signals could all be used to predict the targets of human reaching

movements [75]. Other techniques for tracking limb motion include computer vi-

sion techniques [76, 77], and other sensing technologies such as optical encoders and

goniometers [78].

Inertial measurement units (IMUs) utilize microfabricated sensing elements to

acquire information about the device’s motion and/or orientation. Due to their de-

creasing cost in recent years and advancements in sensor fusion algorithms, IMUs are

increasingly becoming more accepted as wearable technology for orientation and posi-

tion tracking. Incorporating magnetic, angular rate, and acceleration measurements

to form a single representation of an object’s orientation in space and minimize error

is known as sensor fusion. By incorporating the information from multiple sensors, it

it possible to minimize error that would have otherwise accumulated over time [79].

For example, integrating angular velocity from gyroscopes to calculate the orienta-

tion of a sensor leads to accumulated error over time from an imperfect measure of

velocity. This drift can be mitigated by incorporating information from an on-board

accelerometer and/or magnetometer. Some groups have worked around issues such as

this by limiting the amount of time data can be collected during a movement [80]. Al-

though not a feasible solution to many other applications, the solution was adequate

for the given task.
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Many algorithms have been designed for the purpose of IMU sensor fusion. In

the case of limb-tracking, combining kinematic models of an arm’s motion with the

unscented Kalman filter has proven highly accurate [81]. Bachmann et al. per-

form sensor fusion using a complementary filter in the quaternion space which is less

computationally intensive than the Kalman filter [82]. Gallagher et al. similarly im-

plemented a complementary filter yet applied it in the linear space which filters the

inputs individually [83]. Madgwick et al. developed and tested a computationally ef-

ficient algorithm using a form of gradient descent to update the quaternion estimation

of the IMUs orientation [84].

As in previous works in which constraints to the system provided useful informa-

tion [80, 81], we utilize the knowledge of the location of each of sensor to minimize

the computational complexity and storage requirements of our system. Our system

is able to provide real-time tracking of limb movement in a low-profile package that

is easily portable and customizable to the application while being drift resistant due

to the fusion of multiple sensors.

Many applications exist for low-cost, low-profile, and easy to use human motion

tracking systems. A few examples already researched incorporating IMU technology

include: real-time tracking for rehabilitation of stroke patients [85], evaluating the

impact of neuromuscular disorders [79], and predicting targets of human reaching

for human-computer interactions [75]. The device described in this work has been

applied to multiple other applications which are presented hereafter.
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Figure A.1: Progression of transforming quaternion information to vector repre-
sentations and finally a body-representation for prosthesis training in a virtual envi-
ronment. (A) The quaternions are transformed to vector representations before (B)
being added together in the appropriate location to make up the human body. (C)
A transformation from a global to a local coordinate system allows centering on the
user’s shoulder and (D) the final virtual display to be used in a prosthesis training
experiment.

A.3 Methods

We utilized the sensor fusion algorithm implemented on-board the InvenSense

MPU9150 MotionTracking device to join the accelerometer and gyroscope measure-

ments into a quaternion representation of the device’s orientation in space. This

method of sensor fusion was used to minimize the computational complexity of the

algorithm and illustrate its effectiveness as a low footprint solution to sensor fusion.

Subsequent inclusion of magnetometer data was then implemented to eliminate drift

in yaw using an open source algorithm released by Pansetti, LLC (MPULIB9150) on a

Teensy2.0 microcontroller (PJRC, Sherwood, OR). Implementation of this algorithm

yielded a quaternion representation of each sensor’s orientation in space relative to

earth’s magnetic field. By understanding that the system was to be worn with the ref-

erence sensor mounted to a person’s upright chest, we mitigated gimbal lock-related
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errors introduced by the algorithm by fixing the reference sensor having its z-axis

perpendicular to the ground. Interested readers are referenced to works providing

rigorous analysis of the sensor fusion process and methods to avoid errors from gim-

bal locking [81–84,86].

Fig. A.1 illustrates the progression of computation from the the quaternion repre-

sentation of each IMU to a 3-dimensional human body representation. The transmit

of the quaternion information of each IMU to the PC was conducted through a serial

connection and managed by a custom MATLAB program (MathWorks, Inc., Natick,

MA). Once received, the quaternions q are transformed to vector representations by

first computing the conjugate of each quaternion according to equation A.1. Each

quaternion is then normalized by dividing by its modulus according to equation A.2.

The normalized quaternion conjugates are then used to generate corresponding di-

rection cosine matrices as given by equation A.3. Finally, the rotation is applied to

the vector vo according to its respective DCM with equation A.4.

q′ = (q1 − q2 − q3 − q4); (A.1)

|q′| = q′/
√
q21 + q22 + q23 + q24; (A.2)

104



APPENDIX A. REAL-TIME ARM TRACKING FOR HMI APPLICATIONS

DCM =


q21 + q22 − q23 − q24 2q2q3 + q1q4 2q2q4 − q1q3

2q2q3 − q1q4 q21 − q22 + q23 − q24 2q3q4 + q1q2

2q2q4 + q1q3 2q3q4 − q1q2 q21 − q22 − q23 + q24

 (A.3)

vrotated = (DCM ∗ viniᵀt )ᵀ; (A.4)

The result of this process is depicted in Fig. A.1.A where each uniquely colored

“T-shaped” object represents the orientation of one IMU. The body representation

is then constructed by translating the vectors to their proper locations as is shown

in Fig. A.1.B. A coordinate transform was then performed to view the arm’s motion

from a “body-centered” perspective. Each point p was transformed into the local

coordinate system by applying equation A.5 where A is the rotation matrix containing

the normalized axes for the new coordinate system and d is the location at which the

new coordinate system has its origin.

p∗ = A(p− d) (A.5)

The normalized axes for the local coordinate system are shown with red lines in

Fig. A.1.B having its origin d at the subject’s shoulder. Finally, a visual display is

presented to the user in real-time (Fig. A.1.D).
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Now in the local coordinate system, relevant joint angles were calculated including

elbow angle, shoulder flexion/extension, shoulder ab/adduction, and medial/lateral

humeral rotation.

A.4 Results and Applications

The physical system is shown on the left of Fig. A.2. To the right, it is being worn

to track a subject’s limb posture in real-time.

To validate the performance of the sensor network, two of the three sensors were

mounted to a custom goniometer which consisted of two beams joined by a linear

potentiometer mounted as the axis of the device. The apparatus was then repeatedly

opened and closed as the angle between the two rods was recorded separately by the

potentiometer and the IMU system. The tracking achieved by the sensor network is

illustrated in Fig. A.3. The action was performed in the vertical plane, horizontal

plane, and as the apparatus was randomly rolled in all directions. Total root mean

squared error (RMSE) over the duration of each trial was computed by fitting cubic

splines to the sampled data and calculating the RMSE. The resulting error was 2.32◦,

3.53◦, and 2.95◦ for each scenario respectively.

The developed system has been utilized in multiple experimental paradigms in-

cluding: virtual prosthesis training, trajectory analysis of human reach, and neural

correlation analysis. A short description of each of these applications is provided.
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A.4.1 ProsthesisEvaluationandTraining

TheIMUsystemhasbeenusedtoanalyzehowelectromyogram(EMG)changes

asmyoelectricprosthesisusersnavigatethroughtheirworkingspace. Whilewearing

theIMUsystem,theamputeeslocatedtargetpositionsshowntotheminadisplay

similartothatseeninFig.A.1.Dandperformedgraspingactionswiththeirphantom
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hand. This data has been used to suggest methods for improving the robustness of

upper-limb prostheses [7]. Virtual prosthetic use may also prove beneficial for training

amputees who have not yet received a prosthetic limb. Finally, manipulating a virtual

arm may reduce phantom limb pain and discomfort [87].

A.4.2 Trajectory Analysis

A limb tracking system also has applications in rehabilitation through trajectory

analysis. The trajectories of a subject’s hand as they reach to, manipulate, and

return from target positions using the IMU system is shown in Fig. A.4. Some sys-

tems require patients make contained movements in a laboratory setting [74]. With a

portable and wearable system, a patient could perform unrestrained movements with

ease while simultaneously having their limb movements recorded for analysis by a

clinician. Among many other things, trajectory analysis has the potential to benefit

stroke or post-surgery rehabilitation providing a metric of performance and progres-

sion. Additionally, limb trajectory analysis has applications in optimizing athletic

performance such as in weight lifting, running, and cycling where body position plays

an important role in performance.
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Figure A.4: Trajectories of a subject’s hand traced through 3D space as they ap-
proach, manipulate, and return from targets located in three unique target locations.
Each color represents the movements corresponding to a particular target.

A.4.3 Neural Correlation

A recent study has demonstrated the use of electrocorticographic (ECoG) signals

for controlling a prosthetic limb [72]. In a related work, our wearable IMU system

was used to record limb motion while ECoG was simultaneously recorded from a

human subject. This data can be seen in Fig. A.5. One goal of this experiment was

to learn neural correlations between physical activity and brain activity which might

then allow for ECoG-based control of a prosthesis or other mechanical arm.
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Figure A.5: Spectrogram of average ECoG from a human subject collected during
multiple reach-grasp tasks with the subject’s average hand position overlaid. The
blue line is the trace of average lateral motion; red is central motion; and gold is
motion in the vertical direction. The data illustrates that the ECoG electrodes were
principally recording hand-related activity as opposed to shoulder or elbow activity.

A.5 Discussion

We have presented a limb motion tracking system that uses IMUs and combines

accelerometer, gyroscope, and magnetometer sensor information to prevent sensor

drift and create an accurate representation of a limb in 3-dimensional space. Under-

standing the use of our system and the scenario in which it is to be used, we are

able to use a sensor fusion algorithm processed on the IMU itself in conjunction with

an open-source algorithm to yield a system with minimal storage and computation

requirements while maintaining its capabilities as a limb tracking system.

Using an RMSE evaluation of our system, we have demonstrated the ability to

successfully track limb position with an accuracy of approximately 2.9◦. Our entire
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system costs approximately $60 USD which enables measurement and tracking of

limb position in both laboratory and at-home settings.

Our system has applications for at-home training and rehabilitation for patients

of stroke, surgery or amputations attributable to its mobility and ease of use. Data

from the IMU system can be analyzed in real-time or stored for offline offline analysis.

A.6 Conclusion

We have presented a wearable limb tracking system constructed using low-cost

commercially available IMUs. We methodically convert from a quaternion represen-

tation of each sensor’s orientation to a body-centered local coordinate system. In

this form, the limb tracking system has been implemented in multiple applications

including virtual prosthesis training, limb trajectory analysis, and an experiment cor-

relating physical movement with human ECoG. It is evident that the system provides

a means for limb tracking in many environments and for various applications.
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