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Abstract

Oscillator networks consist of a set of simple subsystems, e.g. damped harmonic

oscillators that interact with each other across a network with a specified structure.

Such networks of coupled oscillators serve as a model for many systems such as power

grids, vehicle platoons, and biological networks. Even though the dynamics of each

oscillator are simple, the coupling between them can produce complex behavior. One

possible behavior is synchronization, where all of the oscillators reach a state where

their relative phase angles are constant and their frequencies are uniform. This work

examines the synchronization performance of oscillator networks, i.e. how well the

network maintains synchrony in the face of persistent disturbances. Specifically, we

define a class of performance measures for oscillator networks as the H2-norm of par-

ticular input-output linear systems. This class of performance measures corresponds

to measuring the average value of a quadratic form of the oscillator phases when

stochastic disturbances are applied to some subset of the oscillators. Depending on

the specific quadratic form that is chosen, this performance measure can correspond

to a variety of physically meaningful and domain specific quantities. For example,
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ABSTRACT

it can be used to quantify the total interactions between oscillators during resyn-

chronization after a disturbance. This quantity corresponds to the transient resistive

losses in maintaining synchronous operation in a power network. Alternatively, one

can instead measure the network coherence, which quantifies how closely the oscilla-

tor network acts like a single rigid body. Our results demonstrate a strong connection

between the concept of effective resistance and our class of performance measures. For

example, our results make precise the intuitive notion that more “tightly connected”

oscillator networks are more coherent by showing that the maximum effective resis-

tance in the network is the correct notion of connectivity. We consider applications

of the work to both power grids and vehicle platoons with local and absolute (global)

velocity feedback. For power grids we use our effective resistance based results to ob-

tain novel bounds on the resistive losses due to generators maintaining synchrony. For

vehicle platoons we investigate the coherence in the platoon as a performance mea-

sure. We show that for large scale platoons local velocity feedback performs worse

than absolute velocity feedback under certain conditions related to the asymptotic

behavior of the maximum effective resistance in the underlying graph.

Primary Reader: Dennice F. Gayme

Secondary Reader: Noah J. Cowan
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Chapter 1

Introduction

Oscillator networks can be used to model a wide variety of problems ranging from

vehicle platoons [1–3] and power grids [4–7] to chemical and biological networks [8].

An important question that is often investigated is whether a set of coupled oscillators

will synchronize, or reach some stable operating condition where the relative phases of

all the oscillators are constant. An overview of results pertaining to synchronization

of oscillator networks is provided in [9].

A number of researchers have recently investigated the related but equally im-

portant question of how oscillators reach or maintain a synchronous state, i.e. the

synchronization performance. The performance of oscillator networks can be quanti-

fied in a variety of ways, such as the total interactions between oscillator, the network

disorder, or the speed of convergence. Most of these performance measures quantify

how the network behaves when stochastic disturbances are applied to every oscillator,
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CHAPTER 1. INTRODUCTION

for linear oscillator networks a large class of such performance measures can be com-

puted as the H2-norm of an appropriately defined linear system. For example, Young

et al. [10] use an H2-norm based performance measure to study the performance of

consensus dynamics being forced by noise. Siami and Motee [11] use a similar notion

to investigate graph theoretic limits on the performance of oscillator networks sub-

jected to stochastic disturbances. Tegling et al. [12] use such a measure to quantify

the transient real power losses in power networks incurred in maintaining synchrony.

These additional real power losses are due to the generator phases deviating from

their nominal values. These deviations in phase angles cause additional power to be

circulate among the generators, which leads to real power losses due to the power

flowing between the generators. Dörfler et al. [13] study minimizing the H2-norm

of an oscillator network by using wide-area control to prevent inter-area oscillations

while simultaneously promoting sparsity in the controller. Additionally, Lin et al. [14]

studied H2-norm minimizing control for vehicle platoons with a line structure.

Another performance measure that has been studied is coherence. In the context

of oscillator networks, coherence is the degree to which a set of oscillators behaves like

a rigid body, for example a group of vehicles forming a rigid structure. Coherence can

be thought of as both a performance measure and a form of stability. Coherence can

be used as a performance measure in that it can be used to measure how closely the

network follows some desired behavior. Coherence is also often related to stability

because it measures how far from the state of the network is from the equilibrium
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CHAPTER 1. INTRODUCTION

point, and thus how likely the network is to leave the region of attraction of an

asymptotically stable equilibrium point. Bamieh et al. [15] investigated the scaling of

coherence with graph dimension d in vehicle platoons distributed over toroidal graphs.

In particular, they showed that the asymptotic scaling of the network’s coherence is

much worse when each vehicle has access to only local velocity or position feedback

rather than the global or absolute measures of these quantities when the dimension

of the torus is small.

The behavior of oscillator networks can also be evaluated based on properties of

the underlying graph. The effective resistance, for example, is a quantity defined for

any two nodes in a weighted graph. It is a metric on the vertex set, and corresponds

to the electrical resistance between two nodes in a resistor network with the same

structure as the graph. This concept has been used to characterize both stability

and performance in a large range of applications, including oscillator and consensus

networks. Dörfler and Bullo [16] obtained conditions for synchronization in power

networks in terms of effective resistance. Barooah and Hespanha [17] related the

stability of vehicle formations to the effective resistance of the underlying graph.

They also found that the error in estimating quantities from relative measurements is

strongly related to the notion of effective resistance [18]. The results that we present

in this work connect the performance of oscillator networks to the effective resistance

between vertices in the underlying graphs. This yields closed form expressions for the

the network performance that have both a physical interpretation and can in many
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CHAPTER 1. INTRODUCTION

cases be easily computed by hand.

The previously described works quantify the performance of the network in a

global sense by applying disturbances to all of the oscillators and measuring the

response of the entire network. In contrast, Huang et. al. [19] studied the performance

of networks of first order systems by considering the steady state variance of particular

nodes under the effect of disturbances at every node. In this work we investigate a

novel spatially local class of performance measures. In particular these measures

allow us to isolate a subset of the network to evaluate its performance. We compute

these measures by first deriving mathematics to extend Gramian computations to

non-minimal realizations. We therefore do not need to rely on Fourier analysis as in

previous results, e.g. [15] which allows us to expand our analysis from locally compact

Abelian groups to more general graphs. We apply our performance measures to

networks with local and global damping, which respectively refer to the oscillators

being damped either relative to their absolute frequencies, or their frequencies relative

to their neighbors.

The remainder of this essay is organized as follows. Chapter 2 describes the

notation and provides some mathematical background material. In Chapter 3 we

introduce the system models that we study in this work.

Chapter 4 provides the first theoretical results. These results provide methods

to compute the observability Gramian for non-minimal realizations of systems on

graphs. To do this, we extend Lyapunov equation theory to unstable realizations
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CHAPTER 1. INTRODUCTION

that are bounded-input bounded-output (BIBO) stable. We then derive closed form

expressions for the observability Gramian for a particular class of systems, which

includes the oscillator networks presented in Chapter 3. These results allow us to

compute the H2-norms of a large class of systems on graphs.

Chapter 5 makes use of the theory developed in Chapter 4 to develop the main

results. We first consider the behavior of oscillator networks when a disturbance is

applied at a single location in the network. We then use the Gramian expressions

developed in Chapter 4 to relate both the network’s coherence as well as the total

interaction between oscillators to the effective resistance in the underlying graphs.

We then consider the case of disturbances applied at every oscillator in the network,

and define the nodal performance of a pair of oscillators in the network. This nodal

performance describes the steady state variance between the phases of the two nodes

considered. If the two oscillators are adjacent, their nodal performance quantifies

how much they interact to maintain synchrony. If they are far apart in the network,

their nodal performance measures the coherence of the network or a subset of it in

terms of long range disorder [15]. We relate the nodal performance to the effective

resistances of the underlying graphs, and then show how the nodal performance of

different pairs of oscillators in the network can be combined to construct a large

class of performance measures. By analytically computing the effective resistance for

several specific graph structures we derive detailed results that provide insight into

the asymptotic performance of large scale oscillator networks. Finally, we provide a
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CHAPTER 1. INTRODUCTION

graph theoretic proof that the effective resistance between any two nodes connected

by a single path depends only on the properties of the graph along the connecting

path. This result can be used to illustrate the qualitative differences between oscillator

networks with local and global damping. Chapter 6 applies our results to power grids

and vehicle platoons, and includes numerical studies for these interesting applications.

The main contributions of this work are as follows. First, we provide a systematic

study of computing the H2-norms of oscillator networks directly from the standard,

non-minimal realization. Second, we provide results for the performance of oscil-

lator networks with localized disturbances as well as for networks with distributed

disturbances, but with performance measured pairwise. Third, we show the strong

connection between the performance of oscillator networks and effective resistance.

Finally, we give results evaluating the transient power losses in power grids near a

non-zero synchronous state. This is in contrast to previous work such as [20] and [21]

which considered only synchronous states where the nominal power flows are all zero.
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Chapter 2

Mathematical Preliminaries

This chapter introduces the notation that is used throughout this work, and ad-

ditionally presents mathematical background material that will be used later.

2.1 Notation

Unless other wise noted, we denote vectors, matrices respectively by bold symbols

(a ∈ Rn) and capital letters (A). Given A ∈ Rn×n, A < 0 [A > 0] and A ≤ 0 [A ≥ 0]

denote that A is symmetric and respectively negative [positive] definite and negative

[positive] semi-definite.

Given two vector spaces, V and W , such that V ⊆ W , V ⊥ denotes the orthogonal

complement of V in W . For V ⊆ Rn, V ⊥ denotes the othogonal complement of V in

Rn unless otherwise specified.
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Given A,B ∈ Cn×m we denote the transpose and complex conjugate transpose of

A by Aᵀ and A∗ respectively. Additionally, the Frobenius inner product of A and B is

denoted by 〈A,B〉F := tr (B∗A), and the associated Frobenius norm of A is denoted

by ‖A‖F := 〈A,A〉F .

Ln2 denotes the n dimensional complex valued Lebesgue space. Given x, y ∈ Ln2 ,

〈x, y〉L2 :=
∫∞

0
y (τ)∗ x (τ) dτ .

J ∈ Rn×n denotes the n by n matrix where every element is 1. I ∈ Rn×n denotes

the n by n identity matrix.

2.2 Moore-Penrose Pseudoinverse

We will make extensive use of the Moore-Penrose pseudoinverse in this work, as

so here we state its formal definition. Let A ∈ Rn×m. A Moore-Penrose pseudoinverse

of A is a matrix, A† ∈ Rm×n, such that

1. AA†A = A

2. A†AA† = A†

3.
(
AA†

)∗
= AA†

4.
(
A†A

)∗
= A†A.

It is true that such a A† always exists and is unique. Therefore we refer to A† as the

Moore-Penrose pseudoinverse of A.

8
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It will be useful for us to extend this definition to linear operators between ma-

trices. We do this as follows. Let L : Cn×m → Cp×q. A Moore-Penrose pseudoinverse

of L is a linear operator, L† : Cp×q → Cn×m, such that

1. LL†L = L

2. L†LL† = L†

3.
(
LL†

)∗
= LL†

4.
(
L†L

)∗
= L†L

where
(
LL†

)∗
denotes the adjoint of LL† using the Frobenius inner product. i.e.(

LL†
)∗

: Cn×m → Cn×m is the linear operator that satisfies

〈
LL†X, Y

〉
F

=
〈
X,
(
LL†

)∗
Y
〉
F
, ∀X, Y ∈ Cn×m. (2.1)

As in the case of matrices, L† always exists and is unique.

2.3 Graph Theory

This sections describes the basic notions from graph theory that we will use to

efficiently describe the interconnection structure of oscillator networks.

An undirected, weighted, graph, Γ, is defined as a triple, Γ = (V , E ,W) where V ,

E , and W are respectively the vertex set, edge set and weighting function. In this
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work we assume that V = {1, . . . , n} where n is the number of vertices. E is a set of

unordered pairs of elements of V , called the edges of Γ, i.e. each element of E is of the

form {i, j} , i, j ∈ V . W is a map that assigns an edge weight to each element of E , i.e.

W : E → R. By a slight abuse of notation we write that W ({i, j}) := 0, ∀ {i, j} /∈ E .

The weighted adjacency matrix, A ∈ Rn×n associated with Γ is defined as

[A]ij :=W ({i, j}) . (2.2)

The weighted graph Laplacian, LΓ, of a graph, Γ is defined as

LΓ := diag (A1)− A. (2.3)

A directed weighted graph, Γ′ is defined as Γ′ = (V ′, E ′,W ′), where as in the

undirected case V ′ = {1, . . . , n} is the vertex set. E ′ is the edge set which is composed

of ordered pairs of elements of V ′, e.g. (i, j) ∈ E ′, i, j ∈ V ′. W ′ : E ′ → R is the

weighting function. As in the undirected case we use the convention thatW ′ ((i, j)) :=

0, ∀ (i, j) /∈ E ′.

Given an undirected weighted graph, Γ = (V , E ,W), an orientation of Γ is any

directed, weighted graph, Γ′ = (V ′, E ′,W ′), such that V = V ′, ∀ {i, j} ∈ E either

(i, j) ∈ E ′ or (j, i) ∈ E ′ but not both, and W ′ ((i, j)) =W ({i, j}) , ∀ )i, j) ∈ E ′.

An unweighted graph, Γ is a pair, Γ = (V , E) where V = {1, . . . , n} V is the vertex

set and the edge set, E , is either the same as in an undirected weighted graph, in

10
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which case Γ is undirected, or the same as in a directed weighted graph, in which

case Γ is directed. The adjacency matrix, A ∈ Rn×n of Γ is defined as

[A]ij :=

{
1 {i, j} ∈ E
0 otherwise

(2.4)

The graph Laplacian, LΓ ∈ Rn×n of Γ is defined as

[LΓ]ij := diag (A1)− A. (2.5)

In this work we will mainly deal with the [weighted] adjacency matrices and [weighed]

graph Laplacians, it is sufficient for our purposes to consider an unweighted graph as

a weighted graph where W (a) = 1, ∀a ∈ E .

Given a graph, Γ = (V , E ,W), we define a path, P , as a sequence of vertices of

Γ, P = (p1, . . . , pm, pm+1) , pi ∈ V , ∀1 ≤ i ≤ m+ 1, where {pi, pi+1} ∈ E , ∀1 ≤ i ≤ m

and pi 6= pj, ∀1 ≤ i < j ≤ m+ 1. We define the length of the path as the number of

edges it traverses, m.

2.3.1 Factorizations of the weighted graph Lapla-

cian

Here we give several factorizations of the weighted graph Laplacian which will

be used in this work. We begin by giving the definition of the standard oriented

11
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incidence matrix, M , which has the property MᵀM = LΓ for unweighted graphs. We

then define two related matrices that can be used to decompose the weighted graph

Laplacian in similar ways.

An oriented incidence matrix, M ∈ R|E|×|V |, of an undirected graph, Γ, is defined

as

[M ]lj :=


−1, εl = (i, j)

1, εl = (j, i)
0, otherwise

(2.6)

Where Γ′ = (V , E ′,W) is an orientation of Γ and the elements of E ′ are labeled such

that E ′ =
{
ε1, . . . , ε|E|

}
. If W = 1, ∀ {i, j} ∈ E , MᵀM = LΓ.

By analogy with an oriented incidence matrix of an unweighted graph, we define

a weighted, oriented, incidence matrix of the undirected graph Γ as follows. Assume

that W ({i, j}) > 0, ∀ {i, j} ∈ E . The weighted, oriented incidence matrix, MW ∈

R|E|×|V | is

[MW ]lj :=


−
√
W ({i, j}), εl = (i, j)√
W ({i, j}), εl = (j, i)

0, otherwise

(2.7)

Where εl is the lth element of E . It is easy to show that Mᵀ
WMW = LΓ. When

W({i, j}) = 1 for all {i, j} ∈ E MW reduces to the usual oriented incidence matrix.

Finally we remark that since LΓ is positive semi-definite, L
1
2
Γ exists and so we have

LΓ = L
1
2
ΓL

1
2
Γ .
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2.3.2 Effective resistance

Effective resistance is a quantity defined for any pair of vertices in an undirected

graph. We state the definition of effective resistance and then give the physical

intuition behind it, which comes from circuit theory.

Definition 1. Consider an undirected, weighted graph Γ = (V , E ,W). The effective

resistance between vertices i and j in Γ, RΓij, is defined as

RΓij := (ei − ej)
ᵀ L†Γ (ei − ej) . (2.8)

Consider a resistor network represented by Γ where V is the set of nodes and

W ({i, j}) is the susceptance of the resistor connecting nodes i and j. If we inject one

amp of current at node i while removing one amp of current at node j, Vi−Vj = RΓij

where Vi − Vj is the voltage difference between nodes i and j. [16]

2.4 H2-norm

In this section we give the definition of the H2-norm of a linear system, review

the standard method of computing the H2-norm algebraically, and give three inter-

pretations of the H2-norm.

Given a bounded-input bounded-output (BIBO) stable linear system, G, the H2-

13
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norm of G, ‖G‖H2
, is defined as

‖G‖H2
:=

(
1

2π

∫ ∞
−∞
‖G (jω)‖2

Fdω

) 1
2

(2.9)

where G (jω) is the frequency response matrix of G.

2.4.1 Computing the H2-norm

Given a bounded-input bounded-output (BIBO) stable linear system G, and a

minimal realization of G, Ĝ :=

(
A B
C 0

)
, there are well known algebraic formulas

for ‖G‖H2
. ‖G‖H2

can be computed using the observability Gramian, X, of Ĝ as

‖G‖H2
=
√

tr (BᵀXB), (2.10)

where X is the unique positive definite solution to the Lyapunov equation

AᵀX +XA = −CᵀC. (2.11)

Alternatively, ‖G‖H2
can be computed using the controllability Gramian, P , of Ĝ as

‖G‖H2
=
√

tr (CPCᵀ), (2.12)

14
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where P is the unique positive definite solution to the Lyapunov equation

AᵀP + PA = −BBᵀ. (2.13)

When Ĝ is a non-minimal realization of G, one must first find a minimal realization

of G before using one of the two above methods for computing ‖G‖H2
. However, for

systems where we have a physically meaningful but non-minimal realization it can

be advantageous to compute the H2 norm directly from the non-minimal realization.

One instance where this is the case is often the case is systems distributed over graphs.

In Chapter 4 we present results that allow us to compute the Gramians of certain

classes of systems that correspond to systems distributed over graphs.

2.4.2 Interpretations of the H2-norm

The H2-norm is commonly used to measure the performance of linear systems. It

measures the aggregate performance of the system

Response to stochastic forcing If the inputs to G are independent white noise

with unit strength,

‖G‖H2
=
√

lim
t→∞

E [yᵀy],

where y is the output of G. Therefore the H2-norm measures the expected

steady state power of the output under stochastic forcing.
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Response to random initial conditions Consider the output of Ĝ with initial

conditions x0. If x0 is a random variable with x0 ∼ N (0, BBᵀ),

‖G‖H2
=

√
E

[∫ ∞
0

yᵀydt

]
.

Here x0 ∼ N (0, BBᵀ) denotes that the random variable x0 is normally dis-

tributed with zero mean and covariance BBᵀ. Hence the H2-norm measures

the average autonomous response of G.

Sum of responses to impulses Let yi be the output ofG when the input is δ (t) ei ∈

Rm. Then

‖G‖H2
=

√√√√ m∑
i=1

∫ ∞
0

yᵀ
iyidt.

This deterministic interpretation of the H2-norm shows that the H2-norm mea-

sures the aggregate impulse response of G, in the sense that it is equal to the

sum of all the responses where an impulse is applied to one of the inputs.
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Chapter 3

Oscillator Network Models

Oscillator networks provide a model for many systems consisting of multiple simple

subsystems connected together. In this chapter we introduce the oscillator network

models that we study in this work. We begin by introducing a general oscillator

network model. We then present three special cases that correspond to oscillator

networks with important applications.

3.1 General Oscillator Network

We consider a network consisting of n coupled oscillators. The coupling between

oscillators is described by two graphs, B = (V , EB,WB) and D = (V , ED,WD) where

each oscillator is associated with an element of V . By abuse of notation we refer to the

oscillators by the vertex they are associated with, i.e. “oscillator i” is the oscillator

17
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associated with i ∈ V . B describes the position based coupling between oscillators

and D describes the velocity based coupling between oscillators. We assume that B

and D are connected. The dynamics of the ith oscillator are then given by

mẍi + βẋi +
∑

{i,j}∈ED

dij (ẋi − ẋj) +
∑
{i,j}∈EB

bij (xi − xj) = wi, (3.1)

where m and β are respectively the intertia and local damping coefficient of each

oscillator. xi is the position of the ith oscillator. wi is an exogenous disturbance

applied to the ith oscillator, and bij and dij are given by bij = WB ({i, j}), dij =

WD ({i, j}).

Based on which parameters in (3.1) are nonzero, we classify oscillator networks of

the above form into three types, which are described as follows.

3.1.1 First order oscillator network

When m = 0 and ED = ∅, ẍi does not affect the dynamics, and so each oscillator

has first order dynamics and we refer to the system as a first order oscillator network.

For simplicity we assume that β = 1. In this case the following gives the dynamics

of our system.

ẋ = −LBx + w (3.2)

Where LB is the weighted graph Laplacian of B, [x] = xi, and [w]i = wi.

Remark 1. By abuse of terminology we refer to networks of coupled subsystems
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CHAPTER 3. OSCILLATOR NETWORK MODELS

with first order dynamics as “first order oscillator” networks although they are not

oscillators in the sense that their dynamical operators have real eigenvalues.

3.1.2 Second order oscillator network with global

damping

If m,β > 0 but ED = ∅, each oscillator has second order dynamics, but the

dynamics of the agents do not depend on their relative velocities. However, since

β > 0, each oscillator’s own velocity affects its state, we refer to this situation as global

damping because the damping depends on the absolute velocity of the oscillator. In

this case we obtain the following expression for the dynamics of our system.

[
ẋ
ẍ

]
=

[
0 I

− 1
m
LB − β

m
I

] [
x
ẋ

]
+

1

m

[
0
w

]
(3.3)

3.1.3 Second order oscillator network with local

damping

If m > 0, β = 0, the oscillators have second order dynamics with only local

damping. If we consider the special case where LB and LD commute, where LD is
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CHAPTER 3. OSCILLATOR NETWORK MODELS

the weighted graph Laplacian of D, the dynamics of our system are.

[
ẋ
ẍ

]
=

[
0 I

− 1
m
LB − 1

m
LD

] [
x
ẋ

]
+

1

m

[
0
w

]
(3.4)

In the rest of this work we investigate the performance of the three types of

oscillator networks described above. We show that the performance of first order

oscillators networks is qualitatively very similar to that of second order oscillator

networks with global damping. However, the performance of second order oscillator

networks will be shown to be qualitatively different under most conditions on the

structures of B and D.
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Chapter 4

Gramian Computation for

Non-minimal Realizations

This chapter considers the problem of computing theH2-norm of systems for which

we have a non-minimal realization. This is motivated by the fact that systems on

graphs often have a zero mode due to the relative nature of the interactions between

subsystems. An example of this is when the coupling is given by a weighted sum of

differences between adjacent vertices. In this case, u = LBx where ui is the effect

of the coupling on node i, xi is some state of the ith node, and LB is the weighted

graph Laplacian of the graph describing the coupling. In this case a zero mode will

appear in the dynamics of the system due to the zero eigenvalue of LB. Chapter 3

gives several examples of such systems.

We consider some fairly subtle points concerning the observability Gramian asso-
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ciated with realizations of time invariant linear systems, therefore we formally state

its definition here.

Definition 2. Given a pair of matrices, A ∈ Rn×n and C ∈ Rm×n, the observability

Gramian, X, of (C,A) is

X :=

∫ ∞
0

eA
ᵀτCᵀCeAτdτ (4.1)

whenever the integral converges.

It is a standard fact that given a minimal realization, Ĝ =

(
A B
C 0

)
of a BIBO

stable linear system, G, ‖G‖2
H2

= tr (BᵀXB) where X is observability Gramian of

(C,A). In this case, X is the unique positive-definite solution to the Lyapunov equa-

tion AᵀX + XA = −CᵀC. Hence the H2-norm can be computed through purely

algebraic means. We develop the framework necessary to perform similar calcula-

tions for non-minimal realizations. To do this we make use of the fact that if X

exists, ‖G‖2
H2

= tr (BᵀXB) even when Ĝ is non-minimal. On the other hand, if A

is not Hurwitz, the Lyapunov equation may not have a unique solution. 1 The fol-

lowing proposition extends the well known sufficient conditions for existence of the

observability Gramian.

We now investigate computing the observability Gramian of certain classes of real-

izations that include the oscillator network models introduced in Chapter 3. We first

1A being Hurwitz is merely a sufficient condition for the Lyapunov equation to have a unique
solution, but the state transition matrices of all the linear systems presented in Chapter 3 have a
zero eigenvalue which ensures the Lyapunov equation will have multiple solutions.
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present a proposition giving necessary and sufficient conditions for both the existence

of the observability Gramian and a particular algebraic express for the observability

Gramian to hold. We then given four Lemmas giving closed form expression for the

observability Gramian and its trace in special cases which include the oscillator net-

work models presented in Chapter 3. Part a of Proposition 1 along with Lemmas 1,

2, and 4 were previously presented in [22]. The proofs of the Lemmas given here are

simplified versions.

Proposition 1. Let A ∈ Rn×n, C ∈ Rq×n. Let L : Rn×n → Rn×n be given by

L (P ) = AᵀP + PA, and denote by ϕ (x0) the unique solution to ẋ = Ax with

x (0) = x0 ∈ Cn.

a) The observability Gramian, X, of (C,A) exists if and only if ∀x0 ∈ Rn, Cϕ (x0) ∈

Lq2.

b) Given that X exists, X = −L † (CᵀC) if and only if 〈Cϕ (wi) , Cϕ (wj)〉L2 =

0, ∀wi,wj ∈ Cn such that (i) w∗iA = λi (A) w∗i , (ii) w∗jA = λj (A) w∗j , and

(iii) λi (A) + λj (A) = 0.

Proof. First we prove a). Suppose that Cϕ (x0) ∈ Lq2, ∀x0 ∈ Rn. Clearly

Cϕ (ei) , Cϕ (ej) ∈ Lq2, ∀1 ≤ i, j ≤ n,
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which implies that

〈Cϕ (ei) , Cϕ (ej)〉L2 =

∫ ∞
0

eᵀ
je
AᵀτCᵀCeAτeidτ

exists ∀1 ≤ i, j ≤ n, and hence X =
∫∞

0
eA

ᵀτCᵀCeAτdτ exists. To prove the converse,

note that if X exists and v ∈ Rn, then vᵀXv =
∫∞

0
ϕ (v)ᵀCᵀCϕ (v) dτ converges,

and hence Cϕ (v) ∈ Lq2, ∀v ∈ Rn.

Now we prove b). Let λ1, . . . , λn be the eigenvalues of A with left eigenvectors

w1, . . . ,wn. Observe that

L = span{wiw
∗
j |λi + λj = 0}.

Let P ∈ N (L ) and write P =
∑

λi+λj=0 αijwiw
∗
j . If we assume that

〈Cϕ (wi) , Cϕ (wj)〉L2 = 0, ∀wi,wj ∈ Cn (4.2)

such that w∗iA = λi (A) w∗i , w∗jA = λj (A) w∗j , and λi (A) + λj (A) = 0, we get that

〈P,X〉F = tr

∫ ∞
0

eA
ᵀτCᵀCeAτdτ

∑
λi+λj=0

αijwiw
∗
j


=

∑
λi+λj=0

αij

∫ ∞
0

w∗je
AᵀτCᵀCeAτwidτ

=
∑

λi+λj=0

αij 〈Cϕ (wi) , Cϕ (wj)〉L2 = 0.
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Therefore X is orthogonal to N (L ). It is easy to verify that L (X) = −CᵀC 2, and

therefore X = −L † (CᵀC).

To show the converse, suppose ∃wi,wj such that λi + λj = 0 and

〈Cϕ (wi) , Cϕ (wj)〉L2 6= 0. (4.3)

Then
〈
X,wiw

∗
j

〉
F

= 〈Cϕ (wi) , Cϕ (wj)〉L2 6= 0 and hence X /∈ (N (L ))⊥. Since X

satisfies L (X) = −CᵀC, −L † (CᵀC) ∈ (N (L ))⊥. Hence X 6= −L † (CᵀC).

The conditions for the existence of X given in Proposition 1 can be simplified

under a restriction on A. This is formalized in the following Proposition.

Proposition 2. If all the unstable modes of A ∈ Rn×n are non-defective, then

Cϕ (x0) ∈ Lq2, ∀x0 ∈ Rn is equivalent to the following. If Re(λi (A)) ≥ 0, then

∀v ∈ Cn such that Av = λi (A) v, Cv = 0.

Proposition 1 gives conditions for the existance of the observability Gramian. The

following lemmas give closed form expressions for X and commonly used functions

thereof for special cases that correspond to commonly studied systems distributed over

graphs. Lemmas 1 and 2 are useful for computing the H2-norm of a system composed

of first order subsystems distributed over a graph, e.g. a first order oscillator network.

In the proofs of Lemmas 1 and 2 we compute X or its trace directly from (4.1).

However, the proofs of Lemmas 3 and 4 use the method of solving the Lyapunov

2T. Kailath [23] gives the well known proof that X satisfies L (X) = −CᵀC when A is Hurwitz.
The same proof will hold as long as X exists.
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equation while imposing additional conditions that ensure the solution that is found

is in fact the observability Gramian.

Lemma 1. Let A ∈ Rn×n and C ∈ Rq×n such that A ≤ 0 and N (A) ⊆ N (C). If A

and CᵀC commute, then the observability Gramian, X, of (C,A) exists and is given

by X = −1
2
A†CᵀC.

Proof. Because A is symmetric, it is non-defective. Therefore by Proposition 2, A ≤ 0

and N (A) ⊆ N (C) ensure that X exists by part a) of Proposition 1. Therefore we

have

X =

∫ ∞
0

eA
ᵀτCᵀCeAτdτ =

∫ ∞
0

CᵀCe2Aτdτ. (4.4)

From the properties of the Moore-Penrose pseudoinverse, we know that3

A†A = I −
∑

λi(A)=0

wiw
∗
i .

N (A) ⊆ N (C) ensures that Cwi = 0, ∀Awi = 0. Therefore d
dt

(
1
2
CᵀCA†e2At

)
=

CᵀCA†Ae2At = CᵀCe2At. We can therefore conclude from (4.4) that X = −1
2
A†CᵀC.

The following lemma is a generalization of a result given by Siami and Motee [11].

Lemma 2. Let A ∈ Rn×n and C ∈ Rq×n such that A ≤ 0 and N (A) ⊆ N (C).

The observability Gramian, X, of (C,A) exists and its trace is given by tr (X) =

3Since A is symmetric, ∃U = [w1 . . .wn] orthogonal such that UᵀAU = D where D =
diag λ1, . . . , λn. Therefore A†A = QᵀD†DQ =

∑
λi 6=0

wiw
∗
i = I −

∑
λi=0

wiw
∗
i .
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−1
2
tr
(
A†CᵀC

)
.

Proof. As in the case of Lemma 1, Propositions 1 and 2 show that the observability

Gramian, X, of (C,A) exists. Therefore

tr (X) = tr

(∫ ∞
0

eA
ᵀτCᵀCeAτdτ

)
=

∫ ∞
0

tr
(
CᵀCe2Aτ

)
dτ.

By the same argument used in the proof of Lemma 1, we have tr (X) = −1
2
tr
(
A†CᵀC

)
.

The following Lemmas give similar results to Lemmas 1 and 2 for realizations with

state transition matrices of the form A =

[
0 I
F G

]
where F and G are symmetric,

instead of A itself being symmetric. These results are useful for evaluating the H2-

norm of a network of second order systems.

Lemma 3. Let A ∈ R2n×2n and C ∈ Rq×2n be partitioned as A =

[
0 I
F G

]
and

C =
[
H 0

]
, where 0 ≥ F,G ∈ Rn×n and H ∈ Rq×n are such that F , G, and HᵀH

commute pairwise, and N (F )∪N (G) ⊆ N (H). Partition the observability Gramian,

X, as X =

[
X11 X12

Xᵀ
12 X22

]
. Under these conditions X22 = 1

2
G†F †HᵀH.

Proof. We will first show that (C,A) satisfies the conditions of Proposition 1. Let

w1, . . . ,wn be the orthonormal eigenvectors of F and G. Let

Si = span

{[
wi

0

]
,

[
0
wi

]}
.
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Let x0 ∈ R2n. There exist xi ∈ Si such that x0 =
∑n

i=1 xi. Si is A invariant, so

Cϕ (x0, t) =
n∑
i=1

Cϕi (xi, t)

where ϕi (xi, t) ∈ Si, ∀1 ≤ i ≤ n.

We show that Cϕi (xi, t) ∈ Lq2, and hence Cϕ (x0, t) ∈ Lq2. Observe that if we take

Bi =

{[
wi

0

]
,

[
0
wi

]}
as our basis for Si,

[ϕi (xi, t)]Bi = eAit [xi]Bi

where Ai =

[
0 1

λi (F ) λi (G)

]
. Here [xi]Bi denotes the representation of xi in Bi. Ai

is Hurwitz unless λi (F ) = 0 or λi (G) = 0. Since N (F ) ∪ N (G) ⊆ N (H), if Ai is

not Hurwitz, then CSi = {0}. Therefore

Cϕ (x0, t) ∈ Lq2, ∀x0 ∈ R2n,

and hence Proposition 1 tells us that X exists.

X satisfies4 L (X) = −CᵀC where L : R2n×2n → R2n×2n is given by L (P ) =

4T. Kailath [23] gives the well known proof that X satisfies L (X) = −CᵀC when A is Hurwitz.
The same proof will hold as long as X exists.
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AᵀP + PA. Writing this out block-wise yields

FXᵀ
12 +X12F = −HᵀH, (4.5a)

GX22 +X22G = −X12 −Xᵀ
12. (4.5b)

It can be shown using the definition of the observability Gramian that X12 commutes

with F and G. Therefore, from (4.5a) we get that

G†F †F (Xᵀ
12 +X12) = −G†F †HᵀH.

Since XSi = {0} , ∀Si ⊆ N (H), we can use an argument similar to that made in the

proof of Lemma 1 to show that

F †F (Xᵀ
12 +X12) = (Xᵀ

12 +X12) ,

hence

G† (Xᵀ
12 +X12) = −G†F †HᵀH.

Since X22 also commutes with F and G, from (4.5b) we have that 2G†GX22 =

−G† (Xᵀ
12 +X12), and using the same argument as for (4.5a), we have that X22 =

−G† (Xᵀ
12 +X12). Therefore

X22 =
1

2
G†F †HᵀH,
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which concludes our proof.

Lemma 4. Let A ∈ R2n×2n and C ∈ Rq×2n be partitioned as A =

[
0 I
F G

]
and

C =
[
H 0

]
, where 0 ≥ F,G ∈ Rn×n and H ∈ Rq×n are such that F and G commute,

and N (F ) ∪ N (G) ⊆ N (H). Partition the observability Gramian, X, as X =[
X11 X12

Xᵀ
12 X22

]
. Under these conditions tr (X22) = 1

2
tr
(
G†F †HᵀH

)
.

Proof. As in the case of Lemma 3, part a) of Proposition 1 is satisfied and L (X) =

−CᵀC. Denote by Sn×n the set of n × n real symmetric matrices. Since the set

of matrices in Sn×n that commute with F is a linear subspace of Sn×n, there exist

matrices Q1, Q2 ∈ Sn×n such that Q1 + Q2 = HᵀH where Q1 commutes with F

and 〈Q2, P 〉F = 0, ∀FP = PF . One can show that the trace of the (2, 2) block of

∞∫
0

eA
ᵀτ

[
Q2 0
0 0

]
eAτdτ is zero. Therefore,

tr (X22) = tr

[0 I
] ∞∫

0

eA
ᵀτ

[
Q1 0
0 0

]
eAτdτ

[
0
I

] .

It then follows from Lemma 3 that tr (X22) = 1
2
tr
(
G†F †Q1

)
. Additionally, since F †G†

commutes with F , tr
(
F †G†Q2

)
= 0. Therefore tr (X22) = 1

2
tr
(
G†F †HᵀH

)
.
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Chapter 5

Performance Measures for

Oscillator Networks with Local and

Global Damping

In this chapter we examine the performance of linear oscillator networks. We con-

sider first order oscillator networks of the form (3.2), second order oscillator networks

with global damping of the form (3.3), and seconder order oscillator networks with

local damping of the form (3.4). We apply the results of Chapter 4 to these system

models. We first consider applying a disturbance to a single oscillator in the network

and examining the value of certain specific performance measures of interest. We

then consider applying disturbances to all the oscillators in the network and show

how to compute a large class of performance measures. In both cases we connect
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the performance of the oscillator network to the concept of effective resistance. To

make these results concrete we apply them to special graph structures where we have

analytical expressions for the effective resistance.

Additionally, we consider a special case a of computing the effective resistance

between two vertices in a weighted graph. Specifically, we give a formula for the

effective resistance between two vertices in a graph where there is only one path

between the two vertices in question. While the result itself is intuitive from a circuit

theory point of view, we provide a graph theoretic proof of the result that requires

only the definition of effective resistance as presented in Chapter 2, and does not

require Kirchoff’s circuit laws or Ohm’s law.

5.1 Performance with Localized Disturbances

We now investigate the effects of applying a stochastic disturbance to one oscillator

in the network, and measure how the network’s sensitivity to disturbances varies with

location. Additionally, we present a bound on the network performance when some

number, k < n, of oscillators have exogenous disturbances applied to them. This

bound is in terms of the spectral properties of the graphs underlying the oscillator

network, and shows how the results of Chapter 4 are related to previous works [11,

20,24].

Definition 3. Consider an oscillator network given by (3.2), (3.3), or (3.4). The
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input localized performance of the oscillator network, P i
LG

, is given by

P i
LG

:= lim
t→∞

E [xᵀLGx] . (5.1)

Here x is given by (3.2), (3.3), or (3.4) where wj = 0, ∀j 6= i, and wi is unit strength

white Gaussian noise.

Remark 2. consider the BIBO stable system, G, with realization Ĝ =

(
A ei
C 0

)
where n + 1 ≤ i ≤ 2n, A is the state transition matrix from (3.2), (3.3), or (3.4),

and C = L
1
2
G for a first order oscillator network or C =

[
L

1
2
G 0

]
for a second order

oscillator network. Under these conditions, P i
LG

= ‖G‖2
H2

.

We now use remark 2 to derive expressions for P i
LG

for two special forms of LG.

The first form we consider is LG = I − 1
2
n. In this case, L

1
2
G = LG and so y = L

1
2
Gx

is the vector of deviations of xi from mean (x). Therefore, P i
LG

is the steady state

variance of x. The second form we consider is LG = αLB, α ∈ R. In this case, P i
LG

measures the interactions between oscillators during resynchronization.

Remark 3. In this work we consider LG = I − 1
n
J because then P i

LG
measures the

coherence of the network. However, analogous results can be derived for LG = 1
n
I−J ,

in which case xᵀLGx corresponds to the total short range disorder in the network. The

total short range disorder is often studied in the context of consensus networks.

Theorem 1. Consider a first order oscillator network given by (3.2) or a second

order oscillator network with global damping given by (3.3). The following table gives
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the values of P i
LG

for LG = I − 1
n
J and LG = αLB.

Net. Type LG = I − 1
n
J LG = αLB

F. O.
1

2n

(∑n
k=1 RBik − 1

n
RBtot

) α

2

(
1− 1

n

)
S. O.(G.D.)

1

2nβ

(∑n
k=1RBik − 1

n
RBtot

) α

2β

(
1− 1

n

)
Proof. The observability Gramian for first order networks can be found using Lemma

1 with C = I − 1
n
J and C = (αLB)

1
2 . Similarly, the observability Gramian for second

order networks with global damping follow from Lemma 3 with H = I − 1
n
J and

H = (αLB)
1
2 . The results for LG = I − 1

n
J then follow from the fact that if L is the

weighted graph Laplacian of graph G, then [25]

L† = −1

2

(
R− 1

n
(RJ + JR) +

1

n2
JRJ

)
. (5.2)

Theorem 1 tells us that for oscillator networks that are first order or second order

with global damping, the effects of a single disturbance do not depend on where in the

network the disturbance is applied when LG = αLB. This will not be true for general

LG, e.g. in the case LG = I − 1
n
J , the performance will vary with the disturbance

location.

Theorem 1 tells us that when LG = αLB the effects of a single disturbance on a first

order oscillator networks and second order oscillator networks with global damping

do not depend on where in the network the disturbance is applied. This will not be
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true for general LG, e.g. in the case LG = I − 1
n
J , the performance will vary with the

disturbance location.

Theorem 2. Consider a second oscillator network with local damping given by (3.4).

If LG = αLB,

P i
LG

=
α

2

(
1

n

n∑
k=1

RDik −
1

n2
RDtot

)
.

Proof. The theorem follows from Lemma 3 and (5.2), which was used in the proof of

Theorem 1.

Remark 4. The result analogous to Theorem 2 for LG = αLD is

P i
LG

=
1

2

(
1

n

n∑
k=1

RBik −
1

n2
RBtot

)
.

The result holds because L†B and L†D commute.

Theorem 2 gives results analogous to Theorem 1, but for oscillator networks with

local damping. We now present a result that is applicable when there are disturbances

applied at multiple oscillators in a network.

Theorem 3. Consider an oscillator network given by (3.3). Partition the nodes into

V = V1 ∪ V2 with k = |V1|. Let wi = 0, ∀i ∈ V2 and wj be independent, unit strength,

Gaussian white noise ∀j ∈ V1. If LG and LB commute, then

lim
t→∞

E [xᵀLGx] ≤ 1

2β

k∑
i=1

(
λi (LG)

λi (LB)

)↓
.
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Here
(
λi(LG)
λi(LB)

)↓
denotes the non-increasing ordering of diag

(
Σ†BΣG

)
, where LB =

QᵀΣBQ and QᵀΣGQ for some real orthogonal Q ∈ Rn×n.

Remark 5. The same result (without the β term) holds for oscillator networks of the

form (3.2).

Proof. The theorem follows from Lemma 3 and the fact that the eigenvalues of a

Hermitian matrix majorize its diagonal elements.

Theorem 3 gives an expression for the performance of an oscillator network when

disturbances are applied at multiple nodes. This result is conceptually similar to many

prior works on oscillator network performance in that the expression involves the

spectral properties of the graphs underlying the oscillator network. See e.g. [10], [11],

and [21].

5.2 Performance with Distributed Distur-

bances

In this section we present the main results of this work, which connects the concept

of effective resistance to the performance of oscillator networks. We begin by stating

three simple results that follow immediately from the results presented in Chapter

4. We then obtain results for the nodal performance, Pij, which we define, of the

network with respect to an arbitrary pair of nodes for the three types of oscillator
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networks presented in Section 3. Finally we show how Pij can be used to compute a

large class of performance measures for oscillator networks.

The following consequence of the results of Chapter 4 gives algebraic expressions

for the H2-norms of oscillator networks. While the expressions given in this theorem

are not especially useful on their own, they provide an intermediate step between the

abstract results of Chapter 4 and the results given later in this chapter.

Theorem 4. Consider a first order oscillator network of the form (3.2), a second

order oscillator network with global damping of the form (3.3), or a second order

oscillator network of the form (3.4). If we define the system G as being from the

input w to the output y = L
1
2
G where LG is a weighted graph Laplacian, then the

following expressions for ‖G‖2
H2

hold.

First order oscillator network

‖G‖2
H2

=
1

2
tr
(
L†BLG

)
(5.3)

Second order oscillator network with global damping

‖G‖2
H2

=
1

2β
tr
(
L†BLG

)
(5.4)
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Second order oscillator network with local damping

‖G‖2
H2

=
1

2
tr
(
L†DL

†
BLG

)
(5.5)

Proof. The kernel of any weighted graph Laplacian that is associated with a connected

graph is span 1, and hence N LB ∪ N LD ⊆ N LG. Additionally, LB, LD ≥ 0 and

hence the conditions of Lemmas 2 and 4 are satisfied.

The parts of Theorem 4 pertaining to first order oscillator networks and second

order oscillator networks with global damping were previously reported in [11] and [20]

respectively.

We now move on to the main results of this work, which consider the nodal

performance of two nodes in an oscillator network.

Definition 4. Consider an oscillator network of the form (3.2), (3.3), or (3.4) where

w (t) is a Gaussian white noise vector with each element having unit strength. The

nodal performance, denoted by Pij, of the pair of oscillators {i, j} is the steady state

expectation of the squared difference between xi and xj. i.e.

Pij := lim
t→∞

E
[
(xi − xj)2] . (5.6)

Remark 6. It is true that Pij = ‖G‖2
H2

, where G is the system with input to state

dynamics given by (3.2), (3.3), or (3.4) and output y = (ei − ej)
ᵀ x. Therefore, as
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long as the observability Gramian of (C,A) exists, we have that Pij = tr (BᵀXB)

where X is the observability Gramian of (C,A).

The nodal performance of pair {i, j} has several interpretations. If {i, j} ∈ EB,

then Pij quantifies how much the edge {i, j} is used to maintain synchrony. If {i, j} is

instead chosen so that i and j are far apart in the network, Pij quantifies the coherence

of the subnetwork connecting i and j in terms of long range disorder [15]. By the

subnetwork connecting i and j we mean the network that consists of all oscillators

and edges on all the paths between i and j. More generally, {i, j}

Theorem 5. Given an oscillator network with dynamics given by (3.2), the nodal

performance of {i, j} is given by

Pij =
1

2
RBij,

where RBij is the effective resistance between i and j in B and given an oscillator

network with dynamics given by (3.3), the nodal performance of {i, j} is given by

Pij =
1

2β
RBij.

Proof. The result follows immediately from Lemmas 2 and 4 along with the definition

of RBij.

Theorem 5 gives us closed form expressions for Pij in the cases of first order
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oscillator networks and second order oscillator networks with global damping. We

next consider the case of second order oscillator networks with local damping, and

derive upper and lower bounds on Pij, which are given in the following two theorems.

Theorem 6. Consider a second order oscillator network with local damping whose

dynamics are given by (3.4) where LB and LD commute. In this case,

Pij ≤
1

2
nRBijRDij

Here RBij and RDij are the effective resistances between i and j in B and D respec-

tively.

Proof. Let v = ei − ej. Use Lemma 4 to obtain that Pij = 1
2

〈
L†Bv, L†Dv

〉
, and then

use the Cauchy-Schwarz inequality to get

Pij ≤
1

2

√〈
L†Bv, L†Bv

〉〈
L†Dv, L†Dv

〉
. (5.7)

It is true that if L is the weighted graph Laplacian of graph G, then [25]

L† = −1

2

(
R− 1

n
(RJ + JR) +

1

n2
JRJ

)
(5.8)

Here R = [Rij] is the matrix of effective resistances in graph G. It is easy to show
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using this fact that

〈
L†Bv, L†Bv

〉
≤ nR2

Bij,〈
L†Dv, L†Dv

〉
≤ nR2

Dij.

It is then clear from (5.7) that Pij ≤ nRBijRDij.

Theorem 7. Consider a second order oscillator network with local damping whose

dynamics are given by (3.4) where LD = γLB, γ > 0. In this special case we have

the following lower bound.

1

4γ
R2
Bij ≤ Pij.

Proof. This lower bound follows from the fact that if M1,M2 ∈ Rn×n are symmetric,

then tr (M2
1M

2
2 ) ≥ tr

(
(M1M2)2) [26].

One special case where LB and LD commute is when either B orD is complete with

uniform edge weights. E. Sjödin [24] showed this for complete B with uniform edge

weights and D with uniform edge weights. Because the weighted graph Laplacian,

LB, of a complete graph with uniform edge weights has only two eigenspaces, span 1

and (span 1)⊥, any other weighted graph Laplacian will commute with LB. We now

give a closed form expression for Pij in this case, which corresponds to a network of

oscillators where each oscillator is damped relative of the average velocity of all the

other oscillators in the network.
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Theorem 8. Consider a second order oscillator network with local damping whose

dynamics are given by (3.4) where LD = β
(
I − 1

n
J
)
, β > 0. In this case Pij =

1
2β
RBij.

Proof. By the the preceding discussion, LD will commute with any weighted graph

Laplacian, so we can use Lemma 4 and the fact that
(
I − 1

n
J
)†

= I − 1
n
J to show

that Pij = 1
2β

tr
(
vᵀ
(
I − 1

n
J
)
L†Bv

)
= 1

2β
RBij. Here v = ei − ej.

Theorem 8 tells us that when each oscillator is locally damped to every other

oscillator in the network with uniform damping constant β
n
, the nodal performance

in the network is the same as the case of global damping. This is because β
(
I − 1

n
J
)

and βI commute and have identical eigenvalues except for the one associated with the

eigenvector 1. This eigenvector corresponds to the average motion of the oscillators

which is not observable through our chosen output.

To compare the nodal performance of second order oscillator networks with local

and global damping, consider two second order oscillator networks: one with global

damping and dynamics given by (3.3) and one with local damping and dynamics

given by (3.4). B is the same for both networks. If LD = β
(
I − 1

n
J
)
, then Theorems

5 and 8 tell us that the nodal performance is the same for the two networks. On the

other hand, if LD = γLB, Theorem 7 tells us that the nodal performance is worse

for the local damping network when RBij is sufficiently large. Therefore in general

the nodal performance of oscillator networks with local damping may or may not be

worse than the nodal performance of the corresponding network with global damping.
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Now we show how to construct a large class of performance measures that quantify

the performance of oscillator networks with distributed disturbances. Consider the

performance measure for an oscillator network

PLG
:= lim

t→∞
E [xᵀLGx] (5.9)

where LG is the weighted graph Laplacian of some arbitrary graph with vertex set

V , G = (V , EG,WG). The results from this section can be applied to performance

measures of this form by writing xᵀLGx =
∑

{i,j}∈EG
gij (xi − xj)2, where EG is the edge

set of G and gij =WG ({i, j}) is weight of each edge. Therefore,

PLG
=

∑
{i,j}∈EG

gijPij.

Therefore, Theorems 5, 6, and 7 can be used to obtain results for performance mea-

sures of the form (5.9).

Remark 7. Let l, k ∈ V. If EG = {{l, k}} (i.e. the only edge in the graph is the one

connecting l and k) and glk = 1, then PLG
= Pij.
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5.2.1 Illustrative examples: specific graph struc-

tures

In order to illustrate the results of Section 5.2 as well as compare our effective resis-

tance based results to previous work, we now consider oscillator networks distributed

over graphs with specific structures. We first examine the case of a d-dimensional

lattice, and apply the results of Section 5.2 to obtain asymptotic bounds on the co-

herence of oscillator networks on lattices with local and global damping. We then look

at line graphs and obtain exact results for the coherence of subsections of the net-

work. Finally, we examine oscillator networks distributed over complete graphs and

see that the effective resistance based results in Section 5.2 provide an explanation

for why oscillator networks on more connected graphs are more coherent.

Example (d-dimensional lattice). Consider a homogeneous oscillator network with

n oscillators distributed over a d-dimensional hypercubic lattice (B and D are d-

dimensional lattices). For simplicity we assume that B and D have edge weights that

are uniformly one. For d ≥ 2 we assume that the lattice is a hypercube. The greatest

effective resistance between any two vertices in the network is that between vertices

in opposite corners, which is given by

Rmax =


n− 1 : d = 1

2

(
1

d

)n1/d − 1
− 1

1− d
: d ≥ 2

. (5.10)
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Network Type lim
n→∞

Pij

First Order lim
n→∞

Pij =


1

2
(n− 1) : d = 1

1

d− 1
: d ≥ 2

S.O. w/ global damping lim
n→∞

Pij =


1

2β
(n− 1) : d = 1

1

β (d− 1)
: d ≥ 2

S.O. w/ local damping

1

2γ
(n− 1)2: d = 1

1

γ (d− 1)2 : d ≥ 2

 ≤ lim
n→∞

Pij ≤


n

2γ
(n− 1)2: d = 1

n

γ (d− 1)2 : d ≥ 2

Table 5.1: Asymptotic bounds on Pij = limt→∞E
[
(xi − xj)2] for three types of

oscillator networks distributed over a hypercubic lattice. i and j are assumed to be
in opposite corners of the lattice.

The coherence of the network in terms of long range disorder is measured by Pij

where i and j are in opposite corners of the lattice. Using the results of Section 5.2

and the above expression for Rmax, we can compute asymptotic results for Pij. Table

5.1 gives these results.

Bamieh et. al. [15] used Fourier analysis to obtain upper bounds on the coherence

of second order subsystems distributed over d-dimensional tori with local and absolute

velocity feedback. The order with which their upper bound depends on n decreases

for 1 ≤ d ≤ 5. Our upper bound is comparable for d = 1 and 2, but the order of

our bound in n is constant for d ≥ 2. However, the effective resistance based bounds

presented here have the advantage to being applicable to systems distributed over

arbitrary graphs, whereas the Fourier analysis method is limited to graphs with the

structure of a locally compact Abelian group.
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Remark 8. The results derived here are for oscillator networks on lattice graphs. It

is reasonable to compare these results to those derived for toroidal graphs because if

RL
max (n) is the effective resistance between opposite corners in a d-dimensional lattice

graph with n vertices, then limn→∞R
T
max (n) = 1

2d
limn→∞R

L
max (n), where RT

max is the

maximum effective resistance between any two vertices in a d-dimensional toroidal

graph.

The case d = 1 corresponds to a network distributed over a line graph, which we

now examine further.

Example (Line graph). Here we examine in more detail the second order oscillator

network with local damping for the case d = 1. If, as in Example 5.2.1, we pick i and

j to be the two end vertices of the graph we obtain Pij =
1

24γ
(n3 − n). Therefore for

large networks with d = 1, the upper bound gives the correct order of the growth of

Pij.

If instead of considering the coherence of the whole network, we want to measure

just the coherence of some subnetwork consisting of p consecutive oscillators, we can

pick i and j to be the oscillators at either end of the desired subset. In this case,

Pij =
1

4γ

(
−1

3
R3
ij +

1

2
nR2

ij +
1

3
Rij

)
. This demonstrates that for the local damping

case, the performance of a subset of the network (e.g. the part between i and j), can

depend on the properties of the rest of the network. This is not the case for oscillator

networks with global damping.

Example (Complete graph). Consider an oscillator network whose underlying graph
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is an n vertex complete graph with unit edge weights. The effective resistance between

any two vertices is RBij = 2
n
. Hence for a first order oscillator network Pij = 1

2
RBij =

1
n
, and for a second order oscillator network with global damping Pij = 1

2β
RBij = 1

βn
.

For a second order oscillator network with local damping such that LD = γLB,

Pij = 1
4γ
R2
Bij = 1

n2γ
. In this case the lower bound given by Theorem 7 is 1

n2γ
≤ Pij,

and the upper bound from Theorem 6 is Pij ≤ 2
nγ

. Observe that is this case the lower

bound from Theorem 7 is exact.

The proceeding examples show our effective resistance based results applied to

networks whose underlying graphs have very different connectivities.

5.3 A Simple Case of Effective Resistance

We now present one result about effective resistance. Specifically, we show that

when two vertices in a graph are connected by a single path, the effective resistance

between the two vertices is given by the sum of the reciprocals of the edge weights

along the path. This notion is formalized in the following theorem which was previ-

ously presented in [22].

Theorem 9. Consider a graph, G = {V , E ,W}. Let L denote its weighted graph

Laplacian. Let p1, pm+1 ∈ V, p1 6= pm+1. If there is only one path,

P = (p1, p2, . . . , pm, pm+1) ,
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between p1 and pm+1, then

(
ep1 − epm+1

)ᵀ
L†
(
ep1 − epm+1

)
=

m∑
k=1

1

W ({pk, pk+1})
.

Proof. Let G ′ be an orientation of G such that (pk, pk+1) ∈ E ′, ∀1 ≤ k ≤ m. Let

M ∈ R|E|×|V| be an oriented and weighted (see Section 2.3) incidence matrix of G.

Partition M as M =
[
Mᵀ

1 Mᵀ
2

]ᵀ
such that M1 ∈ Rm×|V| corresponds exactly to the

edges traversed by P and the kth row of M1 corresponds to (pk, pk+1) ∈ E ′.

First we show thatR (Mᵀ
1 )∩R (Mᵀ

2 ) = {0}. Suppose thatR (Mᵀ
1 )∩R (Mᵀ

2 ) 6= {0}.

Then ∃v ∈ R|E| with [v]k = 0, and some x ∈ R|V | the kth row of M1, such that

xᵀ = vᵀM . Therefore there exists some cycle that includes the two vertices that are

the endpoints of the edge corresponding to the kth row of M1. This implies that there

are two paths from p1 to pm+1, and hence by contradiction, R (Mᵀ
1 )∩R (Mᵀ

2 ) = {0}.

Let v ∈ Rm be defined by

[v]k =
1√

W ({pk, pk+1})
. (5.11)

Observe that

M1v = Mᵀ

[
v
0

]
= ep1 − epm+1 . (5.12)
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Therefore

(
ep1 − epm+1

)ᵀ
L†
(
ep1 − epm+1

)
= ‖
(
ep1 − epm+1

)ᵀ
M †‖2

F = ‖
[
vᵀ 0

]
MM †‖2

F .

(5.13)

R (Mᵀ
1 ) ∩R (Mᵀ

2 ) = {0} implies that [27]

MM † =

[
M1M

†
1 0

0 M2M
†
2

]
.

The subgraph described by M1 is acyclic, and hence N (Mᵀ
1 ) = {0}. Therefore

rankMᵀ
1 = m,1 which implies that M1M

†
1 = I, and hence

(
ep1 − epm+1

)ᵀ
L†
(
ep1 − epm+1

)
= ‖v‖2

2.

Clearly, ‖v‖2
2 =

∑m
k=1

1
W({pk,pk+1})

, which completes our proof.

Remark 9. Theorem 9 is an intuitive result because

Rp1,pm+1 =
(
ep1 − epm+1

)ᵀ
L†
(
ep1 − epm+1

)
(5.14)

is the effective resistance between p1 and pm+1 in G. The effective resistance is the

resistance between two nodes in the resistor network described by G, where the edge

weights are the conductances of each resistor in the network [16]. Therefore Lemma

1R. Diestel [28] proves this condition for an analogous oriented incidence matrix. An similar
proof holds for the weighted, oriented, incidence matrix here because rank is invariant under row
operations.
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9 can be thought of as a generalization of the expression for the equivalent resistance

of resistors in series.

Theorem 9 allows us to use Theorems 5, 6, and 7 to investigate the nodal per-

formance of two oscillators connected by a single path. Specifically, for second order

oscillator networks with global damping, the nodal performance of any pair of nodes

connected by a single path is entirely determined by the properties along the path,

and does not depend on the rest of the network. This is not the case for oscillator

networks with local damping, where the properties of the network outside of the part

of the network between the two nodes can affect the the nodal performance.
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Applications

In this chapter we show how the results of Chapter 5 can be applied to two areas

of interest. First we consider power grids and investigate the transient resistive power

losses due to maintaining synchrony in the face of disturbances. We then examine

vehicle platoons and show how the structure of the vehicles’ local control laws can

affect the coherence of the platoon.

6.1 Power Grids

In this section we model the dynamics of a power grid consisting of synchronous

generators coupled by lines as an oscillator network. We first present the full nonlinear

dynamics of the power grid, and then linearize the dynamics about a stable operating

point in order to evaluate the performance. The linearized dynamics are a second
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order oscillator network with local damping, and therefore we apply the results of

Chapter 5. We introduce the concept of the effective line ratio, and provide interesting

results for the case of equal effective line ratios. We then present some bounds on the

network performance when the line ratios are not equal. Numerical simulations that

illustrate the theory are also presented.

6.1.1 Nonlinear network dynamics

We consider n synchronous generators connected by lines modeled as circuit ele-

ments with susceptance, bij, and conductance, gij. The network can be represented

as two weighted graphs, B = (V , E ,WB) and G = (V , E ,WG), where V = {1, . . . , n},

bij =WB ({i, j}) , ∀ {i, j} ∈ E , and gij =WB ({i, j}) , ∀ {i, j} ∈ E . Each synchronous

generator has dynamics given by

miθ̈i + βiθ̇i = Pm,i − Pe,i + wi, (6.1)

where mi > 0, βi > 0, and θi ∈ [0, 2π) are respectively the inertia, damping, and

voltage angle of the ith generator. wi is an exogenous disturbance acting on generator

i. Pm,i is the constant mechanical power input to the generator, and Pe,i is the real

electrical power injected into the power grid at node i. Pe,i is given by [29]

Pe,i =
∑
{i,j}∈E

bij|Vi||Vj| sin (θi − θj) +
∑
{i,j}∈E

gij|Vi||Vj| cos (θi − θj) . (6.2)
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We make the following simplifying assumptions.

1. The generators have uniform interia and damping, i.e. mi = m, ∀i ∈ V and

βi = β, ∀i ∈ V .

2. The generator voltages have uniform and constant magnitude, i.e. |Vi| = 1, ∀i ∈

V .

Under these assumptions we can write the nonlinear power grid dynamics in state

space form as

[
θ̇

θ̈

]
=

[
θ̇

M−1
(
−Bθ̇ + Pm −Pe

)]+

[
0

M−1

]
w, (6.3)

where [θ]i :== θi, [Pe]i := Pe,i, [Pm] := Pm,i, and [w]i := wi. M and B are

respectively given by M := diag (m1) and B := diag (β1).

6.1.2 Linearized network dynamics

In order to analyze the synchronization performance of the power grid, we linearize

(6.3) about a stable operating point,

[
θ∗
0

]
. We will assume that

[
θ∗
0

]
is a Lyapunov

stable equilibrium point of (6.3). Let x = θ− θ∗. The linearized dynamics are given

by [
ẋ
ẍ

]
=

[
0 I

−M−1 ∂Pe

∂θ

∣∣
θ∗ −M−1B

] [
x
ẋ

]
+

[
0
I

]
w. (6.4)
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If we compute the ∂Pe

∂θ

∣∣
θ∗ term of (6.4), we find that

∂Pe

∂θ

∣∣∣∣
θ∗

= L, (6.5)

where L is the weighted graph Laplacian of B =
(
V , E ,W

)
. Here

W ({i, j}) := cos
(
θ∗i − θ∗j

)
WB ({i, j}) + sin

(
θ∗i − θ∗j

)
WG ({i, j}) , ∀ {i.j} ∈ E . (6.6)

This amounts to taking as our edge weight the sum of the edge weights in B and G

scaled by the slope of the coupling functions sin (·) and cos (·).

The linearized dynamics of the power grid about the equilibrium point (θ∗, 0) are

therefore given by

[
ẋ
ẍ

]
=

[
0 I

−M−1L −M−1B

] [
x
ẋ

]
+

1

m

[
0
I

]
w. (6.7)

Sufficient conditions for Lyapunov stability of (6.7) are thatWB ({i, j})+WG ({i, j}) ≥

0, ∀ {i, j} ∈ E .

6.1.3 Resistive losses

We now consider the performance measure we will use to measure the synchro-

nization performance of the power grid. Specifically we analyze the resistive losses in

the power grid that are due disturbances applied to the generators. When the gen-
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erators are perturbed from their synchronous state by stochastic disturbances, their

voltage angles will fluctuate about θ∗. The additional power that is passed between

the generators due to the difference between θ and θ∗ will induce additional resistive

losses in the lines above those that occur at synchrony. We estimate these losses by

a second order approximation about θ∗ as follows. Let

[
θ∗

0

]
be the stable equilib-

rium point about which we wish to analyze the performance of the power grid. The

resistive losses on the line connecting the ith and jth node is given by

P l
ij = gij|Vi − Vj|2.

Writing Vi = |Vi| sin (θ∗i + xi)+j|Vi| cos (θ∗i + xi), and by making use of our assumption

that |Vi| = 1, ∀i ∈ V as well as standard trigonometric identities we obtain

P l
ij = gij

(
2− 2 cos

(
θ∗i + xi − θ∗j − xj

))
.

Taking the second order Taylor series expansion of P l
ij about

(
θ∗i , θ

∗
j

)
we get the

following approximation.

P l
ij ≈ P̃ l

ij := P ∗ij + gij
(
2 sin

(
θ∗i − θ∗j

)
(xi − xj) + cos

(
θ∗i − θ∗j

)
(xi − xj)2) , (6.8)
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where P ∗ij is the resistive power loss across the line when θ = θ∗, i.e. xi = xj =

0, ∀i, j ∈ V . The total resistive power loss in the network is given by

P l =
∑
{i,j}∈EG

P l
ij,

which can be approximated using (6.8) as

P l ≈ P̃ l := P l∗ +
∑
{i,j}∈EG

gij
(
2 sin

(
θ∗i − θ∗j

)
(xi − xj) + cos

(
θ∗i − θ∗j

)
(xi − xj)2) ,

(6.9)

where P l∗ :=
∑
{i,j}∈EG P

∗
ij is the total resistive power loss when xi = 0, ∀i ∈ EG.

We can rewrite (6.9) as

P̃ l = P l∗ + xᵀLGx + 2
∑
{i,j}∈EG

gij sin
(
θ∗i − θ∗j

)
(xi − xj) , (6.10)

where LG is the weighted graph Laplacian of G =
(
V , E ,WG

)
. Here

WG ({i, j}) = cos
(
θ∗i − θ∗j

)
WG ({i, j}) , ∀ {i.j} ∈ E . (6.11)

6.1.4 Power grid performance

We now apply the results of Chapter 5 to evaluate the mean steady state resistive

losses due to maintaining synchrony in a power grid.
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We define the linear input-output system, G, with dynamics given by (6.7) and

an output, y, such that yᵀy = xᵀLGx as

G :=

 A

[
0
I

]
L

1
2
G 0

 . (6.12)

L
1
2
G will exist under the assumption that WG ≥ 0, and A is given by

A =

[
0 I

−M−1L −M−1B

]
. (6.13)

Now consider applying independent, unit strength white Gaussian noise as the

input to G. In this case the steady state expected resistive losses will be

lim
t→∞

E
[
P l
]

= lim
t→∞

E

P l∗ + xᵀLGx + 2
∑
{i,j}∈EG

gij sin
(
θ∗i − θ∗j

)
(xi − xj)

 , (6.14)

lim
t→∞

E
[
P l
]

= P l∗ + lim
t→∞

E
[
xᵀLGx

]
, (6.15)

lim
t→∞

E
[
P l
]

= P l∗ + ‖G‖2
H2
. (6.16)

Here we have used the fact that when the input to a linear system is zero mean

Gaussian noise the states will have zero mean, and hence the term that is linear in x

vanishes inside the expectation operator. Because we are interesting in the component

of P l that is due to resynchronization, we can ignore P l∗ and simply compute ‖G‖2
H2

.
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Theorem 10. Consider a power grid with dynamics given by (6.3), where w is a

vector of unit strength, independent Gaussian white noise. If the operating point θ∗ is

The steady state expectation of the linear quadratic estimate, P̃ l, of the of the resistive

losses is given by

lim
t→∞

E
[
P̃ l
]

= P l∗ +
1

2β
tr
(
L
†
LG

)
(6.17)

Proof. The desired results follows immediately from Theorem 4 and equation (6.16).

We now consider a special case where a simple expression for P̃ l holds. In order

to do this we make the following definition.

Definition 5. Consider a power grid with dynamics given by (6.3) and an asymptot-

ically stable equilibrium point,

[
θ∗

0

]
. The generalized line ratio of the line connecting

nodes i and j is defined as

αij :=
cos
(
θ∗i − θ∗j

)
WG ({i, j})(

cos
(
θ∗i − θ∗j

)
WB ({i, j}) + sin

(
θ∗i − θ∗j

)
WG ({i, j})

) (6.18)

The following corollary of Theorem 10 gives a simple expression for P̃ l that holds

in the special case of equal generalized line ratios.

Corollary 1. Consider a power grid with under the conditions of Theorem 10 where

∃α ∈ R+ such that

αij = α, ∀ {i.j} ∈ E . (6.19)
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In this special case Theorem 10 reduces to

lim
t→∞

E
[
P̃ l
]

= P l∗ +
1

2β
α (n− 1) . (6.20)

Proof. The proof follows from Theorem 10 and the fact that L†BLB = I − 1
n
J .

We refer to the conditions described in Corollary 1 as “equal generalized line

ratios”. Corollary 1 is a generalization of a result given by Bamieh and Gayme [20].

Bamieh and Gayme showed that Corollary 1 holds in the special case θ∗ = 0, in which

case condition (6.19) reduces to α = α =
bij
gij
, ∀ {i, j} ∈ E which is called equal line

ratios. In the case of equal generalized line ratios, the resistive losses in the network

do not depend on network structure. This is important because it implies that if

the number of generators is fixed, changing the network structure cannot change the

resistive losses due to maintaining synchrony.

We now derive bounds on P̃ l when the generalized line ratios may not be equal.

Since

LG =
∑
{i,j}∈E

gij (ei − ej) (ei − ej)
ᵀ , (6.21)

we can use Theorem 10 to obtain

lim
t→∞

E
[
P̃ l
]

= P l∗ +
1

2β

∑
{i,j}∈E

gijRBij. (6.22)

Here RBij is the effective resistance between i and j in B. (6.22) immediately leads
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to the following two pairs of bounds on limt→∞E
[
P̃ l
]
.

P l∗ +
1

2β
gminij Rsum ≤ lim

t→∞
E
[
P̃ l
]
≤ P l∗ +

1

2β
gmaxij Rsum

P l∗ +
1

2β
Rmin
Bij

∑
{i,j}∈E

gij ≤ lim
t→∞

E
[
P̃ l
]
≤ P l∗ +

1

2β
Rmax
Bij

∑
{i,j}∈E

gij

where gminij = min
{i,j}∈E

gij, g
max
ij = max

{i,j}∈E
gij, R

min
Bij

= min
{i,j}∈E

RBij, R
max
Bij

= max
{i,j}∈E

RBij, and

Rsum =
∑
{i,j}∈E RGij.

In the special case where B and G are acyclic, Rij = 1
bij
, ∀ {i, j} ∈ E . In this case,

lim
t→∞

E
[
P̃ l
]

=
1

2β

∑
{i,j}∈E

gij

bij
. (6.24)

This result is particularly applicable to distribution systems, which are typically trees.

6.1.5 Simulations

The accuracy of the bounds based on Rmax
Bij

and Rmin
Bij

will vary depending on the

structure of B. To illustrate this we simulate a series of networks with the same num-

ber of oscillators, but different connections between them. Specifically, we simulate

seven oscillator networks with the underlying graphs shown in Figure 6.1, ranging

from a line graph to a complete graph. We use m = 0.053, β = 0.027, and bij and

gij values drawn uniformly from respectively [4.37, 4.47] and [1.61, 1.66]. Here we

consider the performance about the operating point θ∗ = 0.
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(a) 1. (b) 2. (c) 3. (d) 4.

(e) 5. (f) 6. (g) 7.

Figure 6.1: Graphs underlying simulated power grids.

Figure 6.2 shows the transient power losses and bounds based on Rmin
Bij

, Rmax
Bij

,

gminij and gmaxij when the disturbances are independent unit strength Gaussian white

noise. The bounds based on gminij and gmaxij are better than the effective resistance

based bounds in this case. This is because the spread of gij values is relatively small,

but for many of the graphs the range of effective resistances is relatively large due to

the effective resistance being determined by graph structure as well as line weights.

6.2 Vehicle Platoons

One application area where the results of Section 5.2 are useful is vehicle platoons.

A vehicle platoon consists of a set of n vehicles, each of which uses a feedback control

law in an attempt to maintain some nominal spacing with its neighbors. The struc-
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Network
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Figure 6.2: Expected transient power losses and bounds for seven different power
grids with five generators. © denotes the true value of the expected transient losses,
4 [5] denotes the lower [upper] bound based on gminij [gmaxij ], and N [H] denotes the
lower [upper] bound based on Rmin

Bij
[Rmax

Bij
].
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ture of the platoon is described by an unweighted graph, Γ = (V , E), with vertices

corresponding to vehicles and edges determining which vehicles are adjacent to each

other. The dynamics of each vehicle are given by

mẍi = wi + ui,

where m, wi, and ui are respectively the inertia, disturbance, and control input at

the ith vehicle. xi is the deviation of the ith vehicle from its nominal position. ui is

determined by a control law which computes ui based on xi as well as xj, ∀j ∼ i. We

consider the following two control laws.

6.2.1 Local position and absolute velocity control

Here each vehicle adjusts its position based on the difference between its position

and that of its neighbors, as well as its velocity. In this control scheme each vehicle

must posses a method of determining the distance to its neighbors as well as a method

for determining its velocity relative to some reference that all the vehicles share. In

this case,

ui = −b
∑
{i,j}∈E

(xi − xj)− βẋi,

where b and β are two parameters. Let LΓ be the weighted graph Laplacian of Γ,

then the closed loop dynamics of the system under this control law are exactly (3.3)

with LB = bLΓ, i.e. an oscillator network with global damping.
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6.2.2 Local position and local velocity control

Here ui depends on the position of the ith vehicle relative to its neighbors, and on

the velocity of the ith vehicle relative to its neighbors. In this case,

ui = −b
∑
j∼i

(xi − xj)− d
∑
j∼i

(ẋi − ẋj) ,

where d is some parameter. The closed loop dynamics of the system under this control

law are precisely (3.4) with LB = bLΓ and LD = dLΓ, i.e. an oscillator network with

local damping.

We measure the performance of the vehicle platoon in terms of the coherence, or

how much the platoon acts like a solid object. We will quantify the coherence in

terms of the long range disorder, i.e.

Pij = lim
t→∞

E
[
(xi − xj)2] ,

where i and j are chosen to be “far apart” in the platoon. As we will see, the correct

notion of far apart is to pick i and j such that {i, j} = argmax{i,j}∈ERΓij. The results

of Section 5.2 tell us that for the platoon using control law 1,

Pij =
1

2bβ
RΓij,
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6

5

4

3

2

1

Figure 6.3: The graph, B, underlying the simulated vehicle platoon for n = 6. In
this case the long range disorder is measured by P25 (or equivalently P36) since RB25

is the maximum effective resistance in B.

whereas for the platoon using control law 2,

1

4bd
R2

Γij ≤ Pij ≤
n

2bd
R2

Γij.

The long range disorder in the platoon therefore scales with Rmax
Γij when control law

1 is used, and between
(
Rmax

Γij

)2
and n

(
Rmax

Γij

)2
when control law 2 is used.

In order to illustrate these results we simulate a series of vehicle platoons that

increase in size while maintaining the same structure. Specifically, we simulate vehicle

platoons arranged in a circle with an additional edge running across the middle. The
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Figure 6.4: Cube root of long range disorder v.s. platoon size in vehicle platoons
with local position control and either absolute (control law 1) or local (control law 2)
velocity control. The long range disorder is measured by Pij where {i, j} is chosen to
maximize RΓij. To preserve symmetry only even numbers of vehicles are simulated.
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graph that represents such an arrangement is shown for n = 6 in Figure 6.3. For

simplicity we use b = d = β = m = 1 as our parameters. The results of using control

laws 1 and 2 as well as the bounds for the performance of the platoon using control

law 2. It can be seen from the plot that asymptotically, the order of the upper bound

for control law 2 is the same as that for the true value of the long range disorder using

control law 2. The absolute velocity control platoon has better coherence for every

size platoon, which indicates that for relatively sparse graph like the one considered

here, absolute velocity control maintains better coherence than local velocity control.
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Conclusions

In this work we consider the performance of oscillator networks in terms of their

steady state response to stochastic disturbances. We first present results that extend

Lyapunov equation theory in order to develop simple methods to compute the ob-

servability Gramians of systems on graphs directly from the canonical non-minimal

realizations. Using these results we first examine the case of a single disturbance

affecting a network of locally or globally damped oscillators. In particular, we char-

acterize how the location of the disturbance changes its effect on network coherence

and the amount of interaction between the oscillators. Our results show that for oscil-

lator networks with global damping, the location of the disturbance does not change

the amount of interaction between oscillators, which is uniform and depends only on

the damping constant and number of oscillators. This extends the results of Bamieh

and Gayme [20], who showed that in a network with global damping the amount of
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interaction between oscillators due to disturbances at every oscillator depends only

on the damping constant and number of oscillators. Specifically, our result shows that

the contribution of each disturbance to the interaction between oscillators is uniform.

We then examine the case of disturbances applied at every oscillator in the network.

In this case we connect the nodal performance of pair of oscillators in the network to

the effective resistance in the underlying graph between those oscillators. The nodal

performance measures the coherence of the subnetwork connecting the two chosen

oscillators. Additionally, a large class of performance measures can be constructed

from the nodal performances of every pair of oscillators in the network. We give ex-

act results for oscillator networks with global damping and provide upper and lower

bounds for networks with local damping. One application of our results is analyzing

the coherence of platoons of vehicles with local and absolute velocity feedback.
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