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Abstract

The statistical analysis of neuroimaging data poses several challenges today, partly due

to their size, high dimensionality and noise. In this work, we address three different meth-

ods for analyzing massive, high-dimensional and noisy functional magnetic resonance im-

ages (fMRI) data. In the f rst method, parallel computing techniques are combined with an

independent component analysis (ICA) algorithm to decompose resting state fMRI data.

The algorithm’s performance is greatly improved compared to existing methods. In the

second method, a graphical model, referred to as state space model (SSM) is extended by

enforcing L-1 and L-2 penalties on parameters. The model scales well to very high dimen-

sions and can be applied to a vast class of different neuroimaging analysis applications. In

the third method, a two-stage method is developed to extract information from noisy fMRI

data. We f rst use functional regression to extract features from fMRI data and then use the

features to predicts physical pains that human feels. A support vector machine (SVM) is

trained for prediction and it achieves high prediction accuracy.
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CHAPTER 1. INTRODUCTION

1.1 Statistical challenges in neuroimaging data

analysis

There has been fast growth in the number of neuroimaging studies performed using

functional Magnetic Resonance Imaging (fMRI) in recent years. A standard fMRI study

gives rise to huge amounts of noisy data with complicated spatio-temporal correlation struc-

tures. Statistics plays an important role in understanding the nature of this massive, high-

dimensional, and noisy data and obtaining results that can be interpreted by neuroscientists.

Three properties of fMRI data make it challenging to analyze with statistical methods:

data size, high-dimensionality and noise. As mentioned above, fMRI data is massive and is

increasing in size as large multi-subject observational studies become the norm. Existing

statistical methods fail when applied to these massive data sets, as they do not scale well

to the increased number of subjects. One solution that we exploit is to take advantage

of growing computing capacity, in particular by leveraging parallel computing in multi-

processing/core settings. Functional MRI data is also high dimensional - there can be as

many as hundreds of thousands of voxels per time point in an fMRI image. Most of the

commonly used statistical models have limited power when analyzing high-dimensional

data, due to the curse of dimensionality. New statistical and computational methods need

to be developed to overcome these shortcomings. Finally, fMRI data is noisy. It is diff cult

to extract useful information that can be interpreted by biomedical researchers from them.

This research aims to develop new tools and overcome the above challenges, as outlined

2



CHAPTER 1. INTRODUCTION

in the next section.

1.2 Organizational overview

In this research, three new methods are developed to tackle the above mentioned chal-

lenges in neuroimaging data analysis.

In the f rst method, we propose a two-stage likelihood-based algorithm for performing

group ICA, which we denote as Parallel Group Independent Component Analysis (PGICA).

By utilizing the sequential nature of the algorithm and parallel computing techniques, we

are able to analyze datasets from a large numbers of subjects eff ciently. We illustrate the

eff cacy of PGICA with simulation studies and application to rs-fMRI data. Two large

multi-subject data sets, consisting of 301 and 779 subjects respectively, are analyzed. The

algorithm has been implemented in R and is freely available through the Comprehensive R

Archive Network (CRAN).

In the second method, we developed a penalized linear dynamical system (PLDS) by

generalizing the linear dynamical system (LDS) model to high-dimensional setting and

introducing L-1 and L-2 penalties on model parameters. An Expectation-Maximization

algorithm is also developed for eff cient estimation of the model parameters. PLDS is

useful in decomposing neuroimaging data and f nd the connectivity among the components.

To illustrate our approach, we apply it to test/re-test fMRI data measured over the motor

cortex and the Human Connectome Project (HCP) data.

3



CHAPTER 1. INTRODUCTION

In the third method, a functional regression model is built to extract features from noisy

high-dimensional time series and then a support vector machine (SVM) is trained with

the features for physical pain prediction with fMRI data. The two-stage method connects

environment stimuli to neuroimaging signals.

1.3 Software

The f rst method is publicly available on Comprehensive R Archive Network (CRAN)

now, with package name PGICA. The second method is implemented in Matlab and pub-

licly available on Github, with toolbox name PLDS.
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CHAPTER 2. A PARALLEL GROUP INDEPENDENT COMPONENT ANALYSIS
ALGORITHM FOR MASSIVE FMRI DATA ANALYSIS

Abstract

Independent component analysis (ICA) is widely used in the f eld of functional neuroimag-

ing to decompose data into spatio-temporal patterns of co-activation. In particular, it has

found wide usage in the analysis of resting state fMRI (rs-fMRI) data. Recently, a number

of large-scale data sets have become publicly available that consist of rs-fMRI scans from

thousands of subjects. Unfortunately, currently used ICA algorithms fail when applied to

these massive data sets, as they do not scale well to the increased number of subjects. To cir-

cumvent this problem, we propose a two-stage likelihood-based algorithm for performing

group ICA, which we denote Parallel Group Independent Component Analysis (PGICA).

By utilizing the sequential nature of the algorithm and parallel computing techniques, we

are able to eff ciently analyze data sets from large numbers of subjects. We illustrate the

eff cacy of PGICA, which has been implemented in R and is freely available through the

Comprehensive R Archive Network, through simulation studies and application to rs-fMRI

data from two large multi-subject data sets, consisting of 301 and 779 subjects respectively.

Keywords: signal processing, parallel computing, ICA, functional MRI
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ALGORITHM FOR MASSIVE FMRI DATA ANALYSIS

2.1 Introduction

Independent component analysis (ICA) is a blind source separation technique (Jutten and Herault,

1991) that assumes the observed signals are linear mixings of independent underlying

sources. A framework for using ICA to make group inferences from functional Magnetic

Resonance Imaging (fMRI) data was f rst introduced by Calhoun et al. (2001). A major

methodological contribution of this work was the circumvention of the permutation ambi-

guity of ICA by eliminating the requirement to match components across subjects. Since

its introduction, ICA has become an extremely popular approach to analyzing fMRI data,

as it does not require the a priori def nition of a hemodynamic response function or seed

regions of interest and is able to capture both spatial and temporal inter-subject variabil-

ity (Koch et al., 2010; Michael et al., 2014). Several algorithms have been developed to

estimate parameters in ICA (Beckmann and Smith, 2005; Guo and Pagnoni, 2008). How-

ever, concerns have recently been raised about the scalability of the group ICA approach

(Smith et al., 2014). With the neuroscience community taking cues from the the crowd-

sourcing model of labor and encouraging the public distribution of large collections of data

including thousands of subjects collected at multiple sites, the development of algorithms

for analyzing such high dimensional data is imperative.

A common starting point for most group ICA approaches is the singular value decom-

position (SVD). While the SVD is a means for avoiding the estimation of an overdeter-

mined system, it is also the means for throwing away massive amounts of data through

repeated application (as desribed by Smith et al., 2014). A notable exception is the work
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by Eloyan et al. (2013), which does not require repeated SVD steps to be scalable. Gaus-

sian distributional assumptions can provide little insight to further explore the data, and

we are motivated to search for components that are as non-Gaussian as possible. The den-

sities of the underlying components in the algorithm proposed by Eloyan et al. (2013) are

approximated with f nite mixtures of smooth densities, while the time courses for each sub-

ject are updated using a gradient-based optimization algorithm. A Quasi-Newton algorithm

is used for optimization to estimate the parameters in the mixing matrix.

In this paper, we propose a more direct solution to the scalability issue described by

Smith et al. (2014) by building upon the two-stage likelihood-based algorithm proposed by

Eloyan et al. (2013) and use parallel computing techniques to improve algorithmic perfor-

mance for large groups of observations. The algorithm proposed by Eloyan et al. (2013),

is scalable, but performs calculations serially. We decompose the problem into computa-

tionally unrelated tasks and distributed over a parallel computing system. The proposed

Parallel Group Independent Component Analysis (PGICA) is different from fastICA and

JADE in that the algorithm is likelihood-based and uses MLE for parameter estimation.

Compared to the ML implementation of ICA by Bell and Sejnowski (1995), PGICA does

not require a highly restricted likelihood. Instead, f exible mixtures of Gaussian densities

are used to approximate the densities of the underlying components. Another advantage of

PGICA is its ability to analyze massive data. Current ICA algorithms have limited power

for scaling to analyze large data sets, especially in the f eld of resting state fMRI analysis.

The current standard is thus to throw away massive amounts of data with repeated applica-

8
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tions of the SVD (e.g., as described by Smith et al., 2014). PGICA can handle hundreds to

thousands of subjects simultaneously with the help of parallel computing. Many parallel

programming environments exist that provide basic tools, language features and application

programming interfaces (APIs) needed to construct a parallel program. Widely used envi-

ronments include: OpenMP (thread-level parallelization), MPI (cluster-level) and CUDA

/ OpenCL (GPGPU-level). The RSGE package in the R software provides an interface to

perform cluster-level parallel programming on Sun Grid Engines (SGE) (Bode, 2012) and

the SNOW package can be used for thread-level parallel computing (Tierney et al., 2012).

In newer versions of R (≥ 2.14.0), the package parallel is included in its core, which pro-

vides drop-in replacements for most of the functionalities of snow. The R package we built

for this work is based on package parallel. At the end, we illustrate the performance of

PGICA by applying it to rs-fMRI data from two large multi-subject data sets. The f rst is

a collection of 301 adults, while the second is a set of 779 fMRI scans, consisting of 379

with autism spectrum disorder (ASD) and 400 typically developing controls.

2.2 Materials and Methods

2.2.1 The ICA model

A general term that indexes a broad class of models, ICA has several algorithmic im-

plementations and theoretical foundations, but the linear factor analytic model with the

9
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assumption of independent underlying factors is the primary commonality of all ICA al-

gorithms (Harman, 1976). In this paper, we focus on noise-free ICA, a version of ICA

which only requires an “unmixing” of the input data matrix. (Thus, the noise in the data is

absorbed into the estimated independent components.)

Suppose that for each subject i, i = 1, . . . , I , a T × V dimensional matrix is observed.

In the neuroimaging context, the rows represent time points and the columns represent

voxels. Let Xi(t, v) represent row t, column v of Xi. (The same notational convention

applies to other vectors and matrices.) The noise-free group ICA decomposition model can

be expressed as follows.

Xi(t, v) =

Q∑

q=1

Ai(t, q)S(q, v), (2.2.1)

for i = 1, . . . , I . This model assumes that the spatio-temporal process, Xi(t, v), for each

subject, i, can be decomposed into a f nite sum of products between subject-specif c time

series, Ai(t, q), and subject-independent spatial maps, S(q, v). Let X = [XT

1
...XT

I
]T and

A = [AT

1
...AT

I
]T be the IT × V and IT × Q matrices obtained by stacking the Xi and

Ai respectively, then the above model is equivalent to X = AS. In the fMRI context,

one often interprets S(q, ·) as brain networks and Ai as subject specif c temporal mixing

matrices (Calhoun et al., 2001).

As a technical consideration, (2.2.1) maybe overdetermined. So we f rst preprocess the

data at subject level via an singular value decomposition (SVD) on the observed matrices

and remains only the f rst Q components for each subject. This f rst-step SVD is unavoid-

able. Henceforth, we assume that the number of component to estimation is equal to time

10
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points, i.e. Q = T . The square matrices Ai are further assumed to be of full rank, hence

one can def ne the inverse of these matrices asWi = A−1
i and the densities of the underly-

ing components as f1, ..., fQ. Thus, for a given q, {S(q, v)}Vv=1 can be considered as V iid

draws from fq.

2.2.2 Parameter Estimation

The likelihood of the above model can be written as

L(W, f) =
I∏

i=1

V∏

v=1

Q∏

q=1

fq

( Q∑

l=1

wiqlxilv

)
|det(Wi)|, (2.2.2)

If the fq were known, any optimization algorithm could be used to obtain the MLE of

Wi. However, since the densities of the underlying components are unknown, an itera-

tive algorithm must be implemented that alternates between density estimation and esti-

mation of the Wi. This manuscript uses mixture density estimates (MDE) introduced by

Eloyan and Ghosh (2011). Specif cally, we parameterize the densities as:

fq(s) =

Jq∑

j=1

θqj
1

σq
φ

(
s− µqj

σq

)
, (2.2.3)

where φ(·) is the standard normal density function. The number of densities in the mix-

ture Jq = 1 + 2
3
Rangev{S(q, v)} is chosen empirically. Similarly, µqj = minvS(q, v) +

j−1
Jq−1

Rangev{S(q, v)} for j = 1, · · · , Jq. The underlying rationale behind this is to set the

11
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means µqj as an equally spaced grid between the extremes of the data so that the distance

between the means decreases as Jq increases and to set σ2
q such that σq decreases as Jq in-

creases. DenoteMJq = {µq1 < ... < µqJq}. The value of Jq is allowed to vary in different

iterations; as Jq increases, the setMJq+1 is constructed by adding the median of one of the

intervals [µq,j, µq,j−1]. More details on the choice of the mean sequence and the variance

are presented by Eloyan and Ghosh (2011).

Since the underlying independent components are the same for all subjects, the length

of the vector S(q, ·) depends only on the number of non-background voxels. In most fMRI

studies S(q, ·) has a large sample size (≈ 70, 000 voxels for example), hence nonpara-

metric estimation of the density can be problematic. To address this issue, Eloyan et al.

(2013) proposed a binning algorithm for the density estimation, essentially looking at the

approximation to the histogram of the data. With this binning procedure, the weights

of the mixture densities in equation (2.2.3) given by (θq1, ..., θqJq) are estimated using

a constrained EM algorithm. The resulting density estimates satisfy the moment con-

straints required for full identif ability of the model by E[S(q, ·)] = 0, E[S(q, ·)2] = 1,

0 < E[S(1, ·)3] < . . . < E[S(Q, ·)3], for q = 1, · · · , Q. Given the density estimation

above as f̂1, · · · , f̂Q, the likelihood function of matrixW can be constructed as

L
(
W, f̂

)
=

I∑

i=1

{ V∑

v=1

Q∑

q=1

[
f̂q
( Q∑

l=1

wiqlxilv

)]
+ V log|detWi|

}
, (2.2.4)

where f̂q(s) =
Jq∑
j=1

θ̂qj
1
σq
φ
(

s−µqj

σq

)
. The maximum of (2.2.4) can be found by Quasi-

12



CHAPTER 2. A PARALLEL GROUP INDEPENDENT COMPONENT ANALYSIS
ALGORITHM FOR MASSIVE FMRI DATA ANALYSIS

Newton algorithm. The algorithm proceeds by iterating between the estimation of f̂ andW

until convergence. The complete algorithm pseudo code for f tting PGICA is given below.

PGICA

For each iterationM

1 Let S(M)
i = W

(M−1)
i Xi, for each i = 1, ..., I.

2 For each Independent Component q construct the set of midpointsMq1, ...,Mqp.

of the bins and the corresponding counts cq1, cq2, ..., cqp.

3 For each q = 1, ..., Q, construct the set of meansM
J
(M)
q
⊃MJq(M−1)

and the variance component σq.

4 Estimate (θ(M)
q1 , ..., θ

(M)

qJ
(M)
q

) using MDE.

5 For each i = 1, ..., I , compute the gradient L′(Ŵi

(M)
) and hessian matrix

L′′(Ŵi

(M)
) in parallel.

6 For each i = 1, ..., I , update the unmixing matrix

Ŵi

(M+1)
= Ŵi

M − L′′(Ŵi

(M)
)−1L′(Ŵi

(M)
).

7 δ = max |Ŵi

(M+1) − Ŵi

M |. If δ > ǫ return to step 1.

In the above algorithm, Step 5 is the most time-consuming. Fortunately, the structure of

the likelihood in Equation (2.2.4) makes it possible to simplify computations. Note that

the likelihood is a product of the likelihoods of multiple subjects. Thus after taking logs,

13
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the gradients for different Wi s do not depend on each other. As a consequence, one can

calculate the gradients and Hessians in parallel. According to Amdahl’s law (Amdahl,

1967), the theoretical speedup obtainable using parallelization is speedup= 1
P
N
+S
, where P

is the parallel proportion of the computations, S is serial proportion of the computations

andN is the number of processors. Here P and S differ when the sizes of input data differ.

The parallel proportion increases with the number of subjects. It encompasses more than

90% of the theoretical time for 300 or more subjects. Of course, the practical speedup will

not be exactly the same as the theoretical one due to many factors such as messages passing

overhead; see Section 2.4 for more information.

2.2.3 1000 Functional Connectomes Project Data

First, PGICA was applied to data from the 1,000 Functional Connectomes Project,

which consists of thousands of resting state scans combined across multiple sites with the

goal of facilitating discovery and analysis of brain networks (Biswal et al., 2010). The

quality and scanning parameters vary across sites. Thus, we focus on data from two sites

that each provided a large number of scans: Cambridge and Oulu. We include 301 subjects

in the analyses presented below, 198 are from Cambridge and 103 from Oulu. As discussed

above, directly applying currently used group ICA methods to data of this size is compu-

tationally infeasible for regular computers due to limitations of memory and running time.

As such, it provides an important test case for PGICA.

Scanning parameters used to acquire the data from each site are detailed elsewhere (for
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complete information see http://fcon 1000.projects.nitrc.org/fcpClassic/FcpTable.html). Each

subject’s data consisted of either 119 time points collected every 3 s or 245 time points col-

lected every 1.8 s. Note that even though the number of time points varies across subjects,

the algorithm can still be applied, as the f rst PCA step reduces the dimensions of each

dataset to be the same. However, the variance related consequences of including data with

varying scan lengths and sampling frequencies remain an open topic. All scans were col-

lected using a 3T scanner. The data were preprocessed using the processing scripts avail-

able on the NITRC website (www.nitrc.org/projects/fcon 1000/). Anatomical images were

de-obliqued, reoriented, and skull stripped, while the functional scans were de-obliqued,

reoriented, motion corrected, skull stripped, grand mean scaled, temporal bandpass f ltered,

and de-trended (linear and quadratic). Functional scans were registered to anatomical scans

using FLIRT in FSL Smith et al. (2004). The structural scans were registered to the Mon-

treal Neurological Institute (MNI) space using FLIRT and the transformation was subse-

quently applied to the functional scans. A mask based on the MNI template is used to

separate the background of the images. For each time point, the 3D array is vectorized to

obtain a V dimensional vector of intensities that are then concatenated over time. Hence

we obtain a T ×V dimensional matrixXi for each subject. PGICA is then applied to these

Xi matrices.
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2.2.4 Autism Brain Imaging Data Exchange

Next, PGICA was applied to data from the Autism Brain Imaging Data Exchange

(ABIDE) consortium, a collaboration between 17 imaging centers to openly share existing

resting state fMRI scans with corresponding structural MRI and phenotypic information.

In total, the database consists of 539 individuals with ASD and 573 age-matched typical

controls (Di Martino et al., 2014). Site-specif c protocols for recruitment and image ac-

quisition are available online (http://fcon 1000.projects.nitrc.org/indi/abide); in short, 5 to

10 minutes of rs-fMRI data collected using repetition times (TR) between 1.5 s and 3 s

were shared for each subject. The f rst 10 s of each resting state scan were ignored to

allow for magnetization stabilization. Resting state scans were then slice-time adjusted

using the slice acquired in the middle of the TR, and rigid body realignment parameters

were estimated with respect to the f rst (stabilized) functional volume. An iterative pro-

cess previously described by Nebel et al. (2014a) was used to coregister and normalize

the structural and functional images to MNI space. Each resting state scan was then tem-

porally detrended on a voxel-wise basis and spatially smoothed (2-mm FWHM Gaussian

kernel). Finally, each resting state scan was downsampled by randomly sampling 67,749 of

the 229,263 non-background voxels to reduce computation demands. Downsampling the

voxels is only performed to estimate starting values of the parameters for initialization of

the algorithm, but is not necessary for the algorithm itself. The FSL package was used to

smooth the original NIFTI images (Smith et al., 2004).

As opposed to the f rst application presented in this paper, we found that a much larger
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subset of the data can be used for simultaneous analysis due to the data quality and con-

sistency across the sites. Because they made up a low percentage of the total number of

subjects (∼ 10%), girls were excluded from the analysis. Age was restricted to individu-

als between 6 and 40 years old. Individuals with framewise displacement more than two

standard deviations away from the mean were also excluded from the analysis. The data

collected at the Kennedy Krieger site was also excluded from the analysis for comparison

of the results in future studies. As a result, scans for 779 subjects are analyzed in this

application, 400 typical controls, 379 individuals with ASD. The histograms of age, the

intelligence quotient (IQ), and the social responsiveness scores (SRS) are shown in Figure

2.1.

Figure 2.1: Histograms of age (left), IQ (middle), and SRS (right) for participants in
ABIDE plotted and colored by disease diagnosis and overlaid, where blue corresponds
to TD controls and red corresponds to ASD.
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2.2.5 Simulation Studies

To demonstrate the validity of the proposed method and compare the accuracy of the

parameter estimates with the commonly used fastICA algorithm we considered simulated

data using two different simulation scenarios. We considered various shapes in the under-

lying independent components to estimate the accuracy of prediction of the brain networks

in the imaging context. The f rst four shapes shown in Figure 2.2 are used in the f rst

scenario, while all 8 underlying signals are used for the second simulation. The fastICA

method (Hyvärinen and Oja, 1997) is used as a comparison. The mixing matrices for each

subject are predef ned in each simulation example. The underlying sources are generated

for 100 simulation runs as described below. The observed matrices for each subject are

then computed and fastICA and PGICA are used to estimate the mixing matrices for each

subject and the underlying sources. Finally, the correlations of each component with the

true underlying sources are calculated. Ideally, these correlations should be equal to 1 if

the networks are perfectly estimated. For each example, we averaged the correlations for

all the underlying components for each of the simulation runs and presented the boxplots

of logarithms of the correlations for better visualization for each method in each simula-

tion scenario to compare the results. The goal of the simulation studies is to compare the

parameter estimates in high dimensional settings and demonstrate the performance of the

proposed method in estimating the parameters. The real data examples show the power of

the proposed method to perform group ICA in settings where other algorithms would fail

because of the dimensionality of the data.
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True Signal 1 True Signal 2 True Signal 3 True Signal 4

True Signal 5 True Signal 6 True Signal 7 True Signal 8

Figure 2.2: True signals for the simulation examples. Each component is a two dimensional
array where the pixels in a square have higher intensities than the rest of the array. A
random noise is added to each of the components at all pixels.

Simulation 1: Suppose there are 4 subjects and 4 underlying sources, i.e. I = 4 and

Q = 4. Only 4 subjects are included in this simulation study so that all model generating

parameters can be included in the paper for reproducibility. The data are generated from

the group ICA model Xi = AiS, with T = Q = 4 and V = 2500 where the independent

components are the f rst 4 signals in Figure 2.2. The four mixing matrices are def ned as

follows.

A1 =




2 1 2 3

3 3 1 .5

1 2 2 4

4 3 2 1




, A2 =




2 3 2 1

3 4 1 .5

3 2 3 4

2 3 3 1




, A3 =




1 2 2 1

3 4 1 .5

3 −1 3 4

2 1 3 1




, A4 =




3 2 2 −1

3 3 2 1

3 1 1 4

1 1 4 .5




.
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The boxplots of the average correlations across four independent components for each

of the 100 simulation runs are shown in Figure 2.3 while the summary statistics of the

estimated correlations are presented in Table 2.1. The two methods perform similarly to

each other with PGICA performing marginally better than fastICA.

Simulation 2: In this example, we assume that the number of subjects is 50 while the

number of underlying components is 8, I = 50,Q = 8. The data are, again, generated from

the group ICA model Xi = AiS, with T = Q = 8 and V = 2500 where the independent

components are the signals in Figure 2.2. Here, the components 4 and 6 were deliberately

generated so that the “activated” regions in the two components are spatially overlapping,

however, the signals are statistically independent.
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Figure 2.3: Boxplots (for both fastICA and PGICA) of the average correlations (log-
transformed) of the true signals with the estimated signals from simulation 1 on the left
and simulation 2 on the right.

The results of the 100 simulation examples shown in Figure 2.3 and Table 2.1 demon-

strate that the correlations of the estimated components with the true underlying signals
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using the proposed PGICA method are signif cantly better than those estimated using the

conventional fastICA algorithm.

Table 2.1: Summary measures of the correlations in the two simulation examples.

min 1st quantile median 3rd quantile max
Sim 1 fastICA 0.9953 0.9977 0.9981 0.9985 0.9992

PGICA 0.9944 0.9985 0.9990 0.9992 0.9998
Sim 2 fastICA 0.9243 0.9895 0.9924 0.9938 0.9960

PGICA 0.9359 0.9952 0.9966 0.9972 0.9984

2.3 Results

2.3.1 1,000 Functional Connectomes Project Data

Following the design of group ICA analysis described by Biswal et al. (2010), group

ICA was used to obtain Q = 20 components for the 301 subjects in the 1,000 Functional

Connectomes Project Dataset. Figure 2.4 shows axial, sagittal, and frontal planes of four

of the estimated networks by PGICA: auditory, control, default mode, and visual. The

estimated networks are thresholded at (5%) and the map is overlaid on a grayscale template

MNI image. The networks shown in this example were identif ed visually as a proof of

concept exercise. The estimated networks have clear edges and less noise in the areas that

are not a part of the networks showing the importance of estimating the networks using

larger datasets. Figure 2.5 shows three dimensional renderings of the same networks shown

in Figure 2.4 colored in red and overlaid on an opaque template image conf rming that the
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estimated networks are more noise-free.

The increase in speed when using PGICA as compared to non-parallel version of the

algorithm called HDICA (high dimensional ICA) as the number of subjects increases is

shown in Table 2.2. The memory usage of HDICA increases linearly with the number of

subjects (memory usage = number of subjects × single subject), while the memory usage

of PGICA remains constant as the number of subjects increases (memory usage = single

subject). For PGICA, each slave computer only calculates the gradient for a single subject,

as long as we have enough slave computers. In practice, total memory usage is several

times higher than just the input data. Thus memory usage of HDICA quickly goes beyond

the ability of even super computers, making it incapable of dealing with large groups of

observations.

Table 2.2: Speed increase of PGICA

# of subjects 1 10 50 150 300
Non-Parallel GICA time (min) 20 400 4000 12000 NA

PGICA time (min) 20 80 592 2000 4100

In this example, 15 computing clusters were used for estimation using the PGICA on a

Sun Grid Engine (SGE). All computations are performed on clusters with the same or very

similar hardware properties such as speed and age.
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Figure 2.4: Axial, sagittal, and frontal (left to right) planes of the auditory, control, de-
fault mode and visual networks (from top) estimated using 301 fMRI scans from the 1,000
Functional Connectomes Project dataset. The thresholded maps are overlaid on a greyscale
MNI template brain. The 90th slice is shown from the MNI template in each of the plots.
The colors correspond to the intensities in the estimated brain networks where white: high
intensity to red: low intensities.
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Figure 2.5: 3D view of auditory, control, default mode and visual networks (from top).

2.3.2 Autism Brain Imaging Data Exchange

Similar to the data analysis performed for the 1000 FCP data in Section 2.3.1, we

estimated Q = 20 components using the fMRI scans for 779 participants in the ABIDE

sample. The networks were identif ed and labeled by f nding the closest network given by

Allen et al. (2011) in terms of maximizing the correlation between the estimated network

and the networks identif ed by Allen et al. (2011). Six networks were identif ed: control,

24



CHAPTER 2. A PARALLEL GROUP INDEPENDENT COMPONENT ANALYSIS
ALGORITHM FOR MASSIVE FMRI DATA ANALYSIS

auditory, right executive, attention, default mode network, and visual network. Examples

of the identif ed networks are shown in Figure 2.6. The networks demonstrate clear edges

again as are well estimated further demonstrating the ability of the proposed method to

estimate ICs for such high dimensional data.

Figure 2.6: Axial, sagittal, and frontal (left to right) planes of the default mode, auditory and
visual networks (from top) estimated using 779 fMRI scans from the ABIDE dataset. The
thresholded maps are overlaid on a greyscale MNI template brain. The colors correspond
to the intensities in the estimated brain networks where white: high intensity to red: low
intensities.

This example is one of the few direct runs of group ICA for rs-fMRI in the literature

for such high dimensional data. One of the largest group ICA runs we identif ed in the
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literature is presented by Allen et al. (2011) and is based on rs-fMRI data for 603 healthy

adolescents and adults. In most cases, the dataset is split into subsets, group ICA is applied

to each subset, and the results are aggregated after the individual group ICA runs (e.g.

Biswal et al., 2010). The uniqueness of the proposed algorithm is the application to the

whole dataset directly which can provide new insights for group comparisons without the

necessity of splitting the groups into parts. In addition, the algorithm can be applied to data

with even more number of subjects barring any issues with data quality.

2.4 Discussion

In this paper, we extended the group ICA algorithm of Eloyan et al. (2013) using high-

performance computing. The new PGICA algorithm can analyze large-scale data eff -

ciently. Essentially, the sequential nature of the algorithm turns a memory-intensive, constant-

time computing problem into a constant-memory, time-intensive problem, and then uses

parallel computing to turn the resulting time-intensive problem into a constant time prob-

lem. With this algorithm, two large resting-state fMRI datasets were analyzed. An interest-

ing byproduct of this work is a comprehensive brain network atlas from over 300 healthy

adults and one based on 779 scans including both individuals with ASD and control sub-

jects.

Although the method of Eloyan et al. (2013) is theoretically scalable in terms of its

memory requirements, the approach requires the serial calculation of gradients to opti-
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mize parameter estimation, which can be very slow for high-dimensional data to the point

where it would still be practically infeasible in terms of computation time. Computing the

gradients for different subjects in parallel could potentially speed up the algorithm dramat-

ically, provided the cost is much lower than the necessary data transfer time. Parallel pro-

gramming has been widely utilized in scientif c computing since the 1950s (Mattson et al.,

2004). According to Flynn’s taxonomy (Flynn, 1972), most current computers are Multiple

Instruction Multiple Data (MIMD) systems. MIMD computers are typically categorized

as shared-memory, distributed-memory or hybrid systems. In a shared-memory system, all

processes share addressable memory and communicate via shared variables. In distributed-

memory systems, such as supercomputers and clusters, one process communicate with oth-

ers through message passing. A supercomputer’s processors and the network infrastructure

are tightly coupled and specialized for parallelization. In contrast, clusters are composed of

off-the-shelf computers connected by an off-the-shelf network. Recently, General-purpose

computing on graphics processing units, or GPGPU, is developing fast and provides a new

scheme for parallel computing. In this work, the PGICA algorithm is performed on both

shared-memory and distributed-memory systems. It can be implemented to f t other parallel

computing schemes in the future.

We used an extensive simulation study to validate the accuracy of the proposed algo-

rithm in high dimensional settings. The simulation studies show that the proposed PGICA

algorithm performs as well as a commonly used method for ICA for small sample sizes,

while the performance is signif cantly better as the number of subjects in the study in-
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creases. The information provided on the computation time gain is presented using the real

data example as the purpose of the simulation studies was to assess accuracy rather than re-

quired computation time. In principle, given enough nodes the algorithm can be applied to

a dataset with any number of subjects and the simulation results indicate that the accuracy

of the results will improve with the increased number of subjects under the assumption of

no biologically irrelevant systematic differences between subgroups in the data.

Large, freely available multisite datasets such as the 1000 FCP and ABIDE are invalu-

able for a number of reasons including accelerating neuroimaging discovery science and

providing a means to validate neuroimaging f ndings through replication. However, these

datasets also contain some inherent limitations. Each participating data collection site was

motivated by its own research questions, leading to potentially large inconsistencies in

acquisition parameters, subject populations, and research protocols across sites that may

limit our ability to estimate networks and our sensitivity to detect biologically meaningful

group differences. We did not analyze the 1000 Functional Connectome Project dataset in

its entirety, as there are site-specif c variations, which plague the quality of results. More

specif cally, functional imaging data collected in each data collection site have different

features, such as population demographics, scanner types, data quality and so on. The data

in each site have been collected for addressing specif c research questions introducing is-

sues while analyzing the data collectively. The factors for different sites interfere when

analyzing data together. Thus we have found a degradation in the quality of results as more

data is included. In this paper, focus lied on only two sites: Cambridge and Oulu, where
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site-specif c effects presented no major issue. For future work, aggregating methods to

properly combine data from different sites are needed. This example shows that estimating

networks using data for ever more subjects can result in highly precise estimates of the

networks. However, if the variability between the scans for the subjects in the data is very

high (especially due to biologically unrelated reasons), it can obscure the results instead of

improving the estimates.

The functional imaging scans in the ABIDE dataset, while still collected in various data

collection sites, was more homogeneous when analyzing the data together. We analyzed

a subset of 779 fMRI scans simultaneously in this paper. The networks identif ed in this

example can be used as a powerful tool for exploring possible differences in network en-

gagement over time between the two groups: ASD and TD, using the second level analyses

as described by Joel et al. (2011). The estimates of ICs in the ABIDE example presented

assume common spatial maps for all subjects in the study including those with ASD and

their TD peers. A question still remains whether the spatial networks are the same between

the two groups or whether two sets of networks should be estimated using two instances of

group ICA. The proposed method can be used to test the hypothesis of signif cant differ-

ences between spatial networks of each group. In this example, we used a downsampling

approach to estimate the starting values of the parameters for our model. While not im-

plicitly stated by the proposed method, the voxel intensities in the observed images are

assumed to be statistically independent. The assumption may be violated when the voxel

sizes are very small where the correlations between neighboring voxels may not be small
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enough to be ignored. Hence, as the spatial resolution of images improves a more thorough

investigation of the effect of spatial correlations on the parameter estimates is necessary. It

is interesting to note that the regions comprising networks def ned using ABIDE are gen-

erally more diffuse than those def ned using the 1000 FCP set which can be seen more

strikingly for the DMN and visual networks which could suggest differences between net-

works based on data including both ASD and TD children as well as differences between

adults and children. The networks identif ed using the proposed method can be used to

investigate these questions further.
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Abstract

In the past decade functional magnetic resonance imaging (fMRI) has facilitated major ad-

vances in our understanding of human brain function. The data that arise from a standard

fMRI experiment are both high dimensional and complex in nature, making statistical anal-

ysis challenging. Matrix decomposition methods, such as factor analysis, principal com-

ponent analysis (PCA) and independent component analysis (ICA), are commonly used to

investigate spatio-temporal patterns present in fMRI data. It can be shown that the linear

time-invariant state-space model, commonly used in time series analysis, unif es this broad

class of models. While state-space models have been applied to fMRI data, these appli-

cations have been limited by constraints on the amount of data that can be included in the

analysis. This is primarily because analysis in modern high-dimensional settings, such as

neuroimaging, parameter estimation is challenging. This issue is addressed by introducing

a penalized state-space model that applies L-1 and L-2 penalties to model coeff cients. In

addition, an Expectation-Maximization algorithm is provided that allows for eff cient es-

timation of the model parameters. To illustrate our approach, we apply it to fMRI data

measured over the motor cortex.
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3.1 Introduction

In the past decade functional magnetic resonance imaging (fMRI) has given researchers

unprecedented access to the brain in action and provided numerous insights into human

brain function. Any given fMRI experiment generates massive amounts of data. For ex-

ample, a standard experiment collects a few hundred 3D brain images, each consisting of

roughly 100,000 uniformly spaced volume elements (voxels) that partition the brain. In-

tensity values from each individual voxel can be extracted to create a set of time series of

length T, where T corresponds to the number of acquired images. The analysis of fMRI

data can therefore fruitfully be viewed as a multivariate time series problem. However, the

signal of interest is relatively weak and the data exhibits a complicated temporal and spatial

noise structure Lindquist et al. (2008).

To date numerous statistical methods have been applied to fMRI data. Many construct

separate univariate models at each voxel, thus assuming an improbable independence be-

tween voxels. In this work we instead focus on the multivariate statistical methods that have

been used to analyze fMRI data. In particular, multivariate decomposition methods, such

as Principal Components Analysis (PCA) Andersen et al. (1999) and Independent Compo-

nents Analysis (ICA) Calhoun et al. (2009), have been utilized to identify patterns of brain

activation McKeown et al. (1998).

Interestingly, several of these commonly applied statistical techniques for modeling

both multivariate data can be seen as variants of state-space models (SSMs). For exam-

ple, according to Roweis and Ghahramani Roweis and Ghahramani (1999), factor analysis,
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principal component analysis (PCA), mixture of Gaussian clusters, independent compo-

nent analysis (ICA), Kalman f lter models and hidden Markov models (HMMs) can all be

viewed as special cases of SSMs.

In the time-invariant linear case, an SSM is also referred to as a linear dynamical sys-

tem (LDS) or linear Gaussian model (LGM). In this work, LDS and its extensions are

discussed, so we will use LDS and SSM interchangeably in the following sections. The

LDS can be seen as a continuous-state analogue of the hidden Markov model (HMM)

Rabiner and Juang (1986). The forward step of the forward-backward algorithm used to

inference HMMs is equivalent to the well-known Kalman f lter used in LDS, and similarly

the backward step can be computed using Rauchs recursion Rauch (1963). Together these

two steps can be employed to perform inference on the posterior probabilities of latent

states given the observed sequence.

Likewise, factor analysis and PCA can each be derived from the LDS by applying

particular constraints on the latent states dynamics coeff cients and the observation error

covariance matrix. Specif cally, by constraining the latent states dynamics coeff cients to

0, one gets a static model. Factor analysis can be implemented by further constraining

the observation error covariance matrix to be diagonal. PCA can be applied by forc-

ing the observation error covariance matrix to be a multiple of the identity matrix ap-

proaching 0. A corresponding detailed review can be found in Roweis and Ghahramani

Roweis and Ghahramani (1999).

Finally, LDS can also be represented as a probabilistic graphical model. Here the
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Kalman f lter and smoother are special cases of the belief propagation algorithm that has

been developed to analyze general graphical models Lauritzen and Spiegelhalter (1988)Pearl

(1988).

Because of their f exibility state-space models have found wide usage in a number of

different spheres, including time series analysis, statistics, signal processing, control theory

and machine learning. In neuroimaging analysis, the LDS exhibits substantial relevance.

For example, Harini et al have discussed the applications of HMM in learning functional

network dynamics in resting state fMRI Eavani et al. (2013). Valdez-Sosa et al used sparse

multivariate autoregression to estimate brain functional connectivity Valdés-Sosa et al. (2005).

Havlicek et al modeled neuronal responses in fMRI using cubature Kalman f ltering along

with Kalman f lter based Dynamic Granger Causality to evaluate functional connectivity

in fMRI data Havlicek et al. (2011). A systematic framework for functional connectivity

measures is proposed by HE Wang et al Wang et al. (2014).

In this work, a penalized linear dynamical system model (PLDS) is proposed as an gen-

eralization of the generic LDS model. An Expectation-Maximization (EM) algorithm is

also developed for parameter estimations. Compared to the generic LDS model, PLDS is

highly scalable and yields more accurate estimations and predictions under some circum-

stances. The generic LDS model is just a special case of PLDS with zero penalties. As an

application, the PLDS model is applied to fMRI data measured over the motor cortex.
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3.2 The Model

The generic time-invariant state-pace model, or LDS, can be written as:

xt+1 = Axt +wt, wt ∼ N(0, Q), x0 ∼ N(π0, V0)

yt = Cxt + vt, vt ∼ N(0, R)

(3.2.1)

where A is the d × d state transition matrix and C is the p × d generative matrix. xt is a

d× 1 vector and yt is a p× 1 vector. The sequence of vectors {y} = (y1, . . . ,yT ) are the

observed data and {x} = (x1, . . . ,xT ) represent the unknown hidden states. The output

noise covariance R is p× p, while the state noise covariance Q is d× d. Initial state mean

π0 is d× 1 and covariance V0 is d× d.

Without applying further constraints, the model itself is unidentif able and too general

to be useful. Supplemental constraints are are thus introduced to address both identif ability

and utility. Three basic constraints are required to make the model identif able:

Constraint 1: Q is the identity matrix

Constraint 2: the ordering of the columns of C is f xed based on their norms

Constraint 3: V0 = 0

Note that the f rst two constraints follow directly from Roweis and Ghahramani (1999)

Roweis and Ghahramani (1999).

The logic for Constraint 1 is as follows. Since Q is a covariance matrix, it is symmetric
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and positive semidef nite and thus can be expressed in the formEΛET whereE is a rotation

matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues. Thus, for any model

where Q is not the identity matrix, one can generate an equivalent model using a new state

vector x′ = Λ−1/2ETx with A′ = (Λ−1/2ET )A(EΛ1/2) and C ′ = C(EΛ1/2) such that the

new covariance of x′ is the identity matrix, i.e., Q′ = I. Thus one can constrain Q = I

without loss of generality.

For Constraint 2, the components of the state vector can be arbitrarily reordered; this

corresponds to swapping the columns of C and A. Therefore,the order of the columns

of matrix C must be f xed. We follow Roweis and Ghahramani and choose the order by

decreasing the norms of columns of C.

Additionally, V0 is set to zero, meaning the starting state x0 = π0 is an unknown con-

stant instead of a random variable, since there is only a single chain of time series in the

neuroimaging application. To estimate V0 accurately, multiple series of observations are

required.

The following three new constraints are further applied to achieve a more useful model.

Constraint 4: R is a diagonal matrix

Constraint 5: A is sparse

Constraint 6: C has smooth columns

Consider the case where the observed data are high dimensional and the R matrix is

very large. One can not accurately estimate the many free parameters in R with limited
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observed data. Therefore some constraints on R are necessary. In the simplest case, R is

set to an identity matrix or its multiple. More generally, one can also constrain matrix R

to be diagonal. In the static model with no temporal dynamics, a diagonal R is equivalent

to the generic Factor Analysis method, while multiples of the identity R matrix lead to

Principal Component Analysis (PCA) Roweis and Ghahramani (1999).

The Amatrix is the transition matrix of the hidden states. In our application, it is a cen-

tral construct of interest representing a so-called connectivity graph. In many applications,

it is desirable for this graph to be sparse. In this work, an L-1 penalty term on A is used to

impose sparsity on the connectivity graph..

Similarly, for many applications, one wants the columns of C to be smooth. For ex-

ample, in the neuroimaging data analysis of section 6, each column of C is a signal in the

primary motor cortex. Having those signals spatially smooth allows capturing the active

regions within the motor cortex. In this context, an L-2 penalty term onC is used to enforce

smoothness.

With all those constraints, the model becomes:

xt+1 = Axt +wt, wt ∼ N(0, I), x0 = π0, A is sparse

yt = Cxt + vt, vt ∼ N(0, R), C has smooth columns
(3.2.2)

For notational convenience, a sequence of T output vectors (y1, . . . ,yT ) is denoted

by {y}; a subsequence (yt0 ,yt0+1, . . . ,yt1) by {y}t1t0 . Similarly for the latent states. In

addition, let Θ = {A,C,R, π0} represents all unknown parameters and P ({x}, {y}) be
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the likelihood for a generic LDS model, then model 3.2 is equivalent to

Θ̂ = argmin
Θ

{
−log P ({x}, {y}) + λ1‖A‖1 + λ2‖C‖22

}
(3.2.3)

where λ1 and λ2 are tuning parameters and ‖ � ‖p represents the p-norm of a vector.

3.3 Parameter Estimation

The motivating application requires parameter estimation in model 3.2: given only

an observed sequence (or multiple sequences in some applications) of outputs {y} =

(y1, . . . ,yT ), f nd the parameters Θ = {A,C,R, π0} that maximize the likelihood of the

observed data.

Parameter estimation for LDS has been investigated extensively by researchers from

control theory, signal processing, machine learning and statistics. For example, in machine

learning, the exact and variational learning algorithms are developed for general Bayesian

networks. In control theory, the corresponding area of study is known as system identif ca-

tion, which identif es parameters in continuous state models.

Specif cally, one way to f nd the maximum likelihood solution is through iterative tech-

niques such as expectation maximization (EM) Shumway and Stoffer (1982). The detailed

EM steps for a generic LDS can be found in Zoubin and Geoffrey (1996) Ghahramani and Hinton

(1996). An alternative approach is to use subspace identif cation methods such as N4SID

and PCA-ID to compute an asymptotically unbiased solution in closed formVan Overschee and De Moor
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(1994) Doretto et al. (2003). In practice, determining an initial solution with subspace iden-

tif cation and then ref ning the solution with EM is a worthwhile approach Boots (2008).

However, the above solutions can not be directly applied to model 3.2 due to the intro-

duced penalty terms. A new algorithm is then developed and detailed as follows.

By the chain rule, the likelihood in model 3.2 is

P ({x}, {y}) = P (x0)

T∏

t=1

P (xt|xt−1)

T∏

t=1

P (yt|xt) =

T∏

t=1

P (xt|xt−1)

T∏

t=1

P (yt|xt)1π0(x0)

where 1π0(x0) is the indicator function and conditional likelihoods are

P (yt|xt) = exp
{
−1
2
[yt − Cxt]

′R−1[yt − Cxt]

}
(2π)−p/2|R|−1/2

P (xt|xt−1) = exp
{
−1
2
[xt −Axt−1]

′[xt −Axt−1]

}
(2π)−d/2.

Then the log-likelihood is just a sum of quadratic terms

log P ({x}, {y}) =−
T∑

t=1

(1
2
[yt − Cxt]

′R−1[yt − Cxt]
)
− T

2
log|R|

−
T∑

t=1

(1
2
[xt −Axt−1]

′[xt −Axt−1]
)
− T

2
log|I|+ log(1π0(x0)).

(3.3.1)
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Replace log P ({x}, {y}) with equation 3.3, model 3.2 is

Θ̂ = argmin
Θ

{ T∑

t=1

(1
2
[yt − Cxt]

′R−1[yt − Cxt]
)
− T

2
log|R|

+

T∑

t=1

(1
2
[xt −Axt−1]

′[xt −Axt−1]
)
− T

2
log|I| − log(1π0(x0))

+ λ1‖A‖1 + λ2‖C‖22
}
.

(3.3.2)

Denote the target function in the parenthesis asΦ(Θ, {y},x), thenΦ can be optimized

with an Expectation-Maximization (EM) algorithm.

3.3.1 E Step

The E step of EM requires computing the expected log likelihood,

Γ = E[log P ({x}, {y}|{y})].

This quantity depends on three expectations: E[xt|{y}], E[xtx
′
t|{y}] and E[xtx

′
t−1|{y}].

We denote them by the symbols:

x̂t ≡ E[xt|{y}]

Pt ≡ E[xtx
′
t|{y}]

Pt,t−1 ≡ E[xtx
′
t−1|{y}].

(3.3.3)
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Expectations 3.3.3 are calculated with a Kalman f lter/smoother, which is detailed in

Appendix to Chapter 3.

3.3.2 M Step

The parameters are Θ = {A,C,R, π0}. Each of them is re-estimated by taking the

corresponding partial derivatives of Φ(Θ, {y},x), setting to zero and solving.

Denote estimations from previous step as Θold = {Aold, Cold, Rold, πold0 } and current

estimations as Θnew = {Anew, Cnew, Rnew, πnew0 }. Estimation for output noise covariance R

has closed form solution,

∂Φ

∂R−1
=

T

2
R−

T∑

t=1

(1
2
yty

′
t − Cx̂ty

′
t +

1

2
CPtC

′
)
= 0

R =
1

T

T∑

t=1

(yty
′
t − Cnewx̂ty

′
t)

Rnew = Diag
{
1

T

T∑

t=1

(yty
′
t − Cx̂ty

′
t)

}

At the bottom line, diagonal of the estimated R is taken, as we constrain R to be diagonal

in Constraint 4.

Estimation for initial state also has closed form. The relevant term log(1π0(x̂0)) is

minimized only when

πnew0 = x̂0

Estimation for transition matrix C also has closed form solution, but the solution can
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only be derived by rearranging the terms properly. Terms relevant to C in equation 3.3 are

T∑

t=1

(
1

2
[yt − Cxt]

′

R−1[yt − Cxt]

)
+ λ2‖C‖2 = fλ2(C; {x}, {y}). (3.3.4)

In fλ1(C; {x}, {y}), C is a matrix and need to be vectorized for optimization. Here

we follow the methods of Turlach et al Turlach et al. (2005). Without loss of generality,

assumeR is the identity matrix in equation 3.3.4; otherwise, one can always write equation

3.3.4 as
T∑

t=1

(
1

2
[R− 1

2yt −R− 1
2Cxt]

′

[R− 1
2
yt −R− 1

2Cxt]

)
+ λ2‖R− 1

2C‖

Let

w = (y11, . . . , yT1, y12, . . . , yT2, . . . , y1p, . . . , yTp)
′

be a Tp× 1 vector from rearranging {y}. In addition, let

W =




W ′

. . .

W ′




pT×pd

whereW =

(
x1, . . . ,xT

)
. Finally, vectorize Cold as

cold = (Cold
11 , . . . , C

old
1d , C

old
21 , . . . , C

old
2d , C

old
p1 , . . . , C

old
pd )

′ (3.3.5)
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whereCij is the element at row i and column j ofC. With these new notations, the equation

3.3.4 is equivalent to

fλ2(C; {x}, {y}) = ‖w−Wc‖22 + λ2‖c‖22. (3.3.6)

With the Tikhonov regularization Tikhonov (1943), equation 3.3.6 has closed form solution

cnew = (W′W + λ2I)
−1W′w

Cnew = Rearrange cnew by equation 3.3.5
(3.3.7)

Last but not least, let’s look at parameter A. Terms involving A in equation 3.3 are,

T∑

t=1

(1
2
[xt − Axt−1]

′[xt −Axt−1]
)
+ λ1‖A‖1 = fλ1(A; {x}, {y}). (3.3.8)

Similar to what we have done to C, equation 3.3.8 is equivalent to

fλ1(A; {x}, {y}) = ‖z− Za‖22 + λ2‖a‖1. (3.3.9)

where z is a Td × 1 vector from rearranging {x} and Z is a block diagonal matrix with

diagonal component Z ′ = (x0, . . . ,xT−1)
′. Unfortunately, equation 3.3.9 does not have

closed form solution due to the L− 1 term.

Though not having a closed form solution, fλ1(A; {x}, {y}) can be solved numerically

with a Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) Beck and Teboulle (2009)
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Hoerl and Kennard (1970). FISTA is an accelerated version of the Iterative Shrinkage-

Threshholding Algorithm (ISTA). ISTA is linearly convergent while FISTA is quadratic

convergent. Steps of a general FISTA algorithm can be found in Appendix to Chapter 3.

FISTA requires calculating the Lipschitz constant L for ∇g(z) = Z′(Za − z), where

g(z) = ‖Z′a− z‖22. Denote ‖Z‖ as the induced norm of matrix Z, then L is

L = sup
x6=y

‖Z′(Zx− Zy)‖
‖x− y‖ = sup

x6=0

‖Z′Zx‖
‖x‖ ≤ ‖Z′‖‖Z‖ = ‖Z ′‖‖Z‖.

With FISTA and L, matrix A can be update:

Anew = FISTA(‖Z′aold − z‖22, λ2) (3.3.10)

3.3.3 The Complete EM

The complete EM algorithm for PLDS is addressed as follows.
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Algorithm EM Algorithm for PLDS

M Step

1. Rnew = Diag
{

1
T

T∑
t=1

(yty
′
t − Coldx̂ty

′
t)

}

2. πnew0 = x̂0

3. Update Cnew as in equation 3.3.7

4. Update Anew with FISTA, as in equation 3.3.10

E Step

0. Initialize Θ = {A,C,R, π0} if f rst loop

1. Update the expectations in 3.3.3 with the Kalman f lter smoother in ??
Notice that all the terms involving {x} in the M-step are approximated with the condi-

tional expectations calculated in E-step.

Denote Y = [y1, · · · ,yT], a p × T matrix. The singular value decomposition (SVD)

ofY is

Y = UDV′ ≈ Up×dDd×dV
′
d×T = Up×dXd×T (3.3.11)

whereUp×d is the f rst d columns ofU andDd×d is the upper left block ofD. This notation

also applies toV′
d×T .

C is then initialzed as Up×d, while the columns of Xd×T are used as input for a vector

autoregressive (VAR) model to estimate the initial value for A.

The major factors that affect the eff ciency and scalability of the above EM algorithm

involve the storage and computations of covariance matrixR. The following computational

techniques are utilized to make the code highly eff cient and scalable.
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First, a sparse matrix is used to represent R. When dimension p gets higher, the size

of R increase quadratically, which will easily exceed the memory capacity of a computer.

Fortunately, with Constraint 4,R is sparse and can be represented with a sparse matrix. For

example, when p = 10, 000, the full R matrix takes over 100 Gigabyte memory, while the

sparse matrix takes less than 1 Megabyte.

In addition, to update R in the M step, directly calculate its diagonal without calculating

the full matrix R.

Finally, in the E-step, the following termKt involving R need to be calculated,

Kt = V t−1
t C ′(CV t−1

t C ′ +R)−1

which involves the inverse of a large square matrix of dimension p by p. As stated pre-

viously, such a matrix exceeds available memory when p is high. The Woodbury Matrix

Identity is employed to turn a high dimensional inverse to low dimensional problem:

(CV t−1
t C ′ +R)−1 = R−1 − R−1C[(V t−1

t )−1 + C ′R−1C]−1C ′R−1

With the above three techniques, the EM algorithm can scale to very high dimensions

in terms of p, d and T , without causing any computational issues.
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3.4 Result

3.4.1 Parameter Estimations

Two simulations of different dimensions are performed to demonstrate the model and

its parameter estimations.

In the low dimensional setting, p = 300, d = 10 and T = 100. The A matrix is

generated such that the conditional number is no less than some threshold, 50 being used.

Elements with small absolute values are then truncated such that 20 percent of elements

are zeros. Eigen values of A are controlled within [−1, 1] to avoid diverging time series.

Matrix C is generated as follows. Each column contains random samples from a standard

Gaussian distribution. Then the sample is sorted in ascending order. Covariance Q is the

identity matrix and covariance R is a multiple of the identity matrix. At time 0, a zero

vector 0 is used as the value of x0.

In the high-dimensional setting, p = 10,000, d = 30 and T = 100. The parameter are

generated in a similar manner.

To evaluate the accuracy of estimations, some distance measure should be f rst def ned.

Here the distance between two matrices A and B is def ned as follows

d(A,B) = max
P∈P (n)

Tr
(
P × CA,B

)

where CA,B is the correlation matrix between columns of A and B, P (n) is the collection
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of all the permutation matrices of order n and P is a permutation matrix.

The calculation of d(A,B) is essentially a linear assignment problem and can be solved

in polynomial time with the Hungarian algorithm Kuhn (1955).

Both the generic LDS and the penalized LDS are applied to the simulation data. As

the true parameters are sparse, we expect that the penalized algorithms would yield better

estimations with some proper penalty parameters. When the penalties are approaching

0, the penalized algorithm should converge to the generic model. In addition, when the

penalties are getting larger, the penalized algorithm’s estimations should become worse.

A sequence of tuning parameters λC are utilized, ranging from 10−6 to 104. λA = kλC

is set to increase proportionally with λC , where k is a constant.

Estimation accuracies are plotted against penalty size λC in Figure 3.1. Results from

LDS and PLDS are overlayed in one plot for comparison. As the f gure shows, PLDS

converges to the LDS when the penalties are approaching zero. Estimation accuracies f rst

increase with penalty size and then decrease due to over-shrinkage.

As a concrete example, estimations from both methods are compared to the true values

of parameters in Figure 3.2. One can see that true values in each column of C matrix

are decreasing smoothly. Ĉλm
, which is estimated with optimal penalties λC = λm and

λA = kλm, shows similar pattern. In terms of A, the true value is sparse with many

0 (blue) values. PLDS estimation Âλm
is also sparse, denoted by the off-diagonal blue

values. However, LDS estimation Âλ−∞
is not sparse, with many yellow and red off-

diagonal values.
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(a) Low dimensional setting (b) High dimensional setting

Figure 3.1: x axis is tuning parameter λC under log scale and y axis is the distance between
truth and estimations; λA is increasing proportionally with λC
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Figure 3.2: Row 1: A truth; non-penalized estimation of A; optimally penalized estimation
of A. Row 2: C truth; non-penalized estimation of C; optimally penalized estimation of C.

In addition to the improved estimation accuracy, the proposed algorithm is also com-

putational eff ciency and highly scalable. As a demonstrate, we measure the running times

of multiple simulation scenarios and summarize them in Table 3.1. When both p and d are

high dimensional, the algorithm can still solve the problem in a reasonable time.

Table 3.1: PLDS Running Time

p 100 1000 10000 100000 100000

d 10 30 50 100 500

T 100 300 500 1000 1000

Time (min) 0.04 0.50 51.28 208.82 1801.00

3.4.2 Making Predictions

Another perspective when considering the PLDS model is its ability to make predic-

tions. When the parameters Θ and the latent states xT are estimated, one can f rst use

estimated xT to predict xT+1 and use xT+1 to predict yT+1. Similarly, more predictions

yT+2, . . . , yT+k can be made. Intuitively, properly chosen penalties give better estimations

and good estimations should give more accurate predictions. This idea is demonstrated

with a simulation. The parameter settings for this simulation follow Section 3.4.1. The

correlation between the predicted signal and true signal is used as a measure of prediction

accuracy. The prediction accuracy over penalty size is shown in Figure 3.3.
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Figure 3.3: Estimation and prediction accuracies.

Observations and f ndings from these plots include:

• The prediction accuracy f rst improves then drops when the penalties increase

• The prediction accuracy peaks when the penalty coeff cient λA and λC are around

10−3. This make sense as the same λ pair also gives the best estimation for coeff -

cients A and C, as in Figure 3.1.

This second observation provides us a way to pick tuning parameters in real applica-

tions, as detailed in Section 3.5.
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3.5 Application

When applied to fMRI data analysis, the model has very good interpretability. Each yt

is a scan of the brain. Each column of the C matrix is interpreted as a time-invariant brain

network. At each time point, the observed brain image, yt, is a linear mixture of these

networks and xt contains the mixing coeff cients. Matrix A describes how xt evolves over

time. A can also be viewed as a directed graph if each network is treated as a vertex. Brain

networks are spatially smooth and connectivities among them are empirically sparse. This

naturally f ts into the sparsity and smoothness assumptions in PLDS.

The PLDS is applied to analyze the motor cortex of human brains from the KIRBY 21

Data. These data are resting-state fMRI scans consisting of a test-retest dataset previously

acquired at the FM Kirby Research Center at the Kennedy Krieger Institute, Johns Hop-

kins University Landman et al. (2011). Twenty-one healthy volunteers with no history of

neurological disease each underwent two separate resting state fMRI sessions on the same

scanner: a 3T MR scanner utilizing a body coil with a 2D echoplanar (EPI) sequence and

eight channel phased array SENSitivity Encoding (SENSE; factor of 2) with the following

parameters: TR 2s; 3mm×3mm in plane resolution; slice gap 1mm; and total imaging time

of 7 minutes and 14 seconds.

In this application, test-retest scans from two subjects are analyzed. The imaging data

are f rst preprocessed with FSL, a comprehensive library of analysis tools for fMRI, MRI

and DTI brain imaging data Smith et al. (2004). FSL is used for spatial smoothing with

Gaussian kernel. Then PLDS is applied on the smoothed data.
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The following are basic descriptions of the data and model parameters.

• Number of voxels, p = 7396

• Number of scans, T = 210

• Number of latent states, d = 11

• Tuning parameters: λA = 0.00001, λC = 0.00001

• Max number of iterations: EM 30 steps, L-1/L-2 regularized subproblems, 30 steps

The number of latent states, d, can be manually selected based on related research that

maps the primary motor region to human activities. For instance, Meier et. al mapped the

motor region to 9 human organs: tongue, lips, squint, f ngers, wrist, forearm, elbow, foot

and saccade Meier et al. (2008).

A more f exible technique to choose the number of latent states involves the prof le

likelihood method proposed by Zhu et. al Zhu and Ghodsi (2006). As a f rst step, eigen

values of the data matrix are calculated with Principal Component Analysis (PCA). The

cumulative eigen values as a percentage of the sum of all eigen values are then plotted - see

Figure 3.4. Visually one notes that the f rst 10 eigen values take over 80% of all variations.

The number of latent states can be selected as the smallest number (of eigen values) that

explains over 80% of total variation in the data. However, the drawback of this method

is clear: the choice of threshold percentage (here 80%) is highly subjective. The prof le

likelihood method overcomes this problem and could pick the dimension automatically.
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The above method assumes that the f rst k eigen-values are samples from a Gaussian

distributionN(µ1, σ
2), while the rest are from a different Gaussian distributionN(µ2, σ

2).

Then the prof le likelihood can be calculated given k, for all k = 1, · · · , T and selecting

the optimal k as the one with the highest prof le likelihood. As shown in Figure 3.4, when

the prof le likilihood method is applied to the f rst scan of subject one, d = 11 is selected.

Apply the method to all four scans, the numbers of latents states selected are 6, 11, 14 and

15 respectively. Their average, d = 11, is used.

Figure 3.4: Eigen-values and Corresponding Prof le Likelihood Plot

The A matrices as connectivity graphs are f rst plotted in Figure 3.5. One can group

the scans correctly with the A matrices. Specif cally, denote the A matrix estimation for

the f rst scan of subject one as A11. Similary notations apply to the other scans. Then
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the canonical correlations among the four matrices are summarized in Table 3.2. Another

permutation invariant measure of square matrix similarity, the Amari error, is also provided

in the table Amari et al. (1996). Notice a higher d(A,B) or a smaller Amari error means

more similarity. From both measures, one can group the four scans correctly. This implies

that the graph contains subject-specif c information.

Figure 3.5: Connectivity Graph: The wider edge means stronger connectivity; the red edge
means negative connectivity and blue edge means positive connectivity.
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Table 3.2: Similarities Among Estimated AMatrices

Pairs A11, A12 A11, A21 A11, A22 A12, A21 A12, A22 A21, A22

d(·, ·) 10.2 9.9 10.0 10.0 10.0 10.1
Amari Error 0.88 1.05 1.02 1.08 1.09 0.98

As an example, the 3D renderings of the columns of matrix C from the f rst scan of

subject one are shown in Figure 3.6 (after thresholding). The biological meaning of those

regions need to be further validated. It is helpful to compare those regions to other existing

parcellations of the mortor cortex. As an example, the blue region above accurately matches

the DM (dorselmedical) parcel of the f ve-region parcellation proposed by Nebel MB et al.

Nebel et al. (2014b).

Figure 3.6: 3D Rendering of Columns of Matrix C

Another application of the algorithm is predicting brain signals. To demonstrate this,

the algorithm is applied to the Human Connectome Project (HCP) data. Using the prof le

likelihood method, d = 149 is picked. The data has T = 1200 time points. The f rst

N = 1000 are picked as train data, while the rest are used as test data. Then both the
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SVD method in Equation and the PLDS algorithm are used for prediction. The prediction

accuracies are shown in Figure 3.7. The f rst observation is that, the PLDS algorithm is

giving signif cantly better predictions for the f rst 150 predictions compared to the SVD

method. As the SVD method is also used to intialize the PLDS algorithm, this shows that

the PLDS algorithm improves estimations from the SVD method in terms of short-term

predictions. Another observation is, the PLDS algorithm’s performance get worse when

one predicts into the “long” future (> 150 steps). This is reasonable, as there is no way that

we can predict the two noise terms in the model, therefore the prediction errors from each

step will accumulate and yields deteriorating predictions.

Figure 3.7: Prediction accuracies comparison on HCP data
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3.6 Discussion

By applying the proposed model to fMRI scans of the motor cortex of healthy adults,

we identify limited sub-regions (networks) from the motor cortex. A statistical procedure

should be further developed to match these regions to existing parcellations of the motor

cortex.

In the future, this work could be extended in two important directions. First, assump-

tions on the covariance structures in the observation equation could be generalized. Prior

knowledge could be incorporated to covariance R. The general rule is that R should be

general enough to be f exible while suff ciently restricted to make the model useful. A lot

of other platforms such as tridiagnol and upper triangular could also be considered. Mo-

hammad et. al have discussed the impact of auto correlation on functional connectivity,

which also provides us a direction for extension Arbabshirani et al. (2014).

Finally, the work can also be extended on the application side. Currently, only data

from a single subject is analyzed. As a next step, the model can be extended to a group

version and be used to analyze more subjects. The coeff cients from the algorithm could be

used to measure the reproducibility of the scans.
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Abstract

Physical pain is most often measured by self-report. This sole reliance on individual

recollection hampers diagnosis and treatment. In addition, self report is not calibrated

across individuals. Accurate biomarkers of pain would revolutionize pain management.

However, the development of accurate biomarkers remains a diff cult and unsolved prob-

lem in this area. Functional magnetic resonance imaging (fMRI) is widely used in neuro-

science for quantifying brain function in vivo. Its excellent spatial resolution and ability to

measure time varying cognitive function via BOLD signals make it a promising tool as a

biomarker for pain. In this article, a functional regression model is built to extract features

from high-dimensional time series and then a support vector machine (SVM) is trained

with the features for physical pain prediction with fMRI data. It was found that with fMRI

signal, one can predict the physical pain with a accuracy of over 78%.

keywords: physical pain, biomarker, fMRI, machine learning, functional regression

62



CHAPTER 4. FMRI BASED BIOMARKER FOR PHYSICAL PAIN

4.1 Introduction

Functional magnetic resonance imaging (fMRI) is a neuroimaging procedure using

MRI technology that measures brain activity by detecting associated changes in blood f ow.

This technique relies on the fact that celebral blood f ow and neuronal activation are cou-

pled: when an area of the brain is in use, blood f ow to that region also increases.

Functional MRI has been widely used in medical research. Notably, people have ex-

plored the potential of fMRI as a biomarker for perception and thinking. For example,

Nishimoto et al. (2011) used fMRI to predict what a subject has seen when watching a

movie.

Physical pain is an aff iction associated with enormous cognitive, social and economic

costs (Simon, 2012). It is mainly assessed via self-report, an imperfect, uncalibrated and

subjective measure. In addition, the capacity to reliably report pain is limited in some

populations, such as the elderly, young children and people with cognitive impairments.

Moreover, self-report provides little insight into the neurophysiological processes underly-

ing pain.

It is promising to derive a fMRI-based biomarker for pain assessment combining fMRI

technology and pain measurement. In fact, Wager et al. (2013) have used fMRI as a

biomarker to predict the scale of pain that a subject feels from heat stimuli. The research

in this manuscript builds upon their work and aims to improve prediction accuracy by ex-

ploring better features and classif ers.

In this study, thermal stimuli of four different intensities are given to the left forearm of
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each participant in randomized sequences (trials). Each trial is followed by a fMRI scan of

the subject’s brain. Each participant underwent 12 trials at each of four intensities. The four

intensities consists of an innocuous warmth and three levels of painful heat. The innocuous

warmth is def ned with the use of self-report by participants as level 1 on a 9-point visual-

analogue scale (VAS), with temperature of 41.0 ± 1.9◦C. Similarly, the three levels of

painful heat correspond to participant-def ned levels 3, 5 and 7, with mean temperatures of

43.3± 2.1◦C, 45.4± 1.71◦C and 47.1± 0.98◦C respectively.

In each fMRI scan, the brain is spatially separated into small voxels (a three-dimensional

rectangular cuboid; 3d version of a pixel). A subject is scanned multiple times in each scan

session, generating a T × V matrix, where T is the number of time points and V is the

number of voxels. Denote the number of subjects as I . The number of stimuli given to sub-

ject i is Ni. Each stimulus is followed by a scan session, which contains T times of scan.

Let Yin be the pain scale reported by subject i after the n-th stimulus. The variable Cin is

the corresponding pain category, and Cin = 1, 2, 3, 4 corresponds to the innocuous warmth

and 3 painful heat stimulus respectively. The variableXin is a T × V matrix, denoting the

scan session following stimulus Yin.

The goal is to predict Yin from Xin. The biomarker development procedure consists of

two steps:

Feature Extraction: determine which voxels to include; determine which time courses

to include and how to combine them.

Statistical Learning: train a classif er with the selected feature for pain prediction.
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4.2 Feature Extraction

Feature extraction consists of two steps. As a f rst step, domain-specif c information is

used to pick out the most relevant voxels. After that, a time-weighted average of the vector

time series is used as the feature.

To elaborate on the f rst step, voxels within pain-related regions were selected based on

a meta-analysis of 224 previous studies. They were selected with the automated meta-

analysis toolbox Neurosynth (www.neurosynth.org) based on previous studies that fre-

quently use the word “pain” (Yarkoni et al., 2011;Wager et al., 2013). The voxels are based

on regions showing consistent results across 224 published studies out of 4, 393 studies in

the database. As a result, 22, 379 positive voxels whose activity positively predicted pain

and 10, 940 negative voxels that negatively predicted pain are selected (2 x 2 x 2 mm,

resliced to 3 x 3 x 3 mm for analysis). These voxels account for 9.45% of the total in-brain

volume.

In the second step, the vector time series are averaged over time. Unlike common

problems in machine learning, in this problem, each observation (pain Yin) corresponds to

a vector time series, instead of a feature vector. For instance, the covariates correponding
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to Y11 is in the following format:

X11 =




x11,11 · · · x11,V 1

x11,12 · · · x11,V 2

... . . . ...

x11,1T · · · x11,V T




.

One could vectorize the full time series matrix and use them as a feature. However, this

approach has at least two drawbacks. First this feature fails to take advantage of the internal

structure of the time series. In addition it is computationally ineff cient, even intractable. A

weighted average of the time series (over time) might be a good alternative, as long as the

weights could capture the most relevant time points.

Wager et al. (2013) uses a straight-forward box weight for averaging over time. An

alternative is to use Gaussian kernel. These two approaches are driven by some domain-

specif c information about the experiment, as explained below. In this research we designed

a data driven, functional data analysis (FDA) model to estimate the weights. The three

different weights are plotted in the Figure 4.1.
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Figure 4.1: Three weights for multivariate time series averaging

The idea for the box weight is very simple: use a equally weighted average of time

points 10 to 16 as the feature. The time points 10 to 16 were picked out based on prior

expert knowledge about the experiments. In fact, the 23 time points lie into f ve stages:

cue, pain, ISI 1, rating and ISI 2, where stage 3 (ISI 1) is the major stage that the pain

stimulus takes effect and leads to brain activity. The box weight is fast, but lacks f exibility

by using equal weights.

Gaussian weights are more f exible, as they can be tuned by changing the mean and

variance of the underlying Gaussian kernel. Yet they are still not ideal, since the same

weights are used across all voxels. In addition, its power is also limited by the symmetry

property of Gaussian distribution.

The last approach is driven by the data. It is assumed that each voxel has its own weight
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and the weights are learned from the data with a Functional Data Analysis (FDA) model

(Goldsmith et al., 2010):

yij = α0 +

∫ 1

0

βv(t)xijv(t)dt+ ǫij . (4.2.1)

Here, the dependent variable, yij is expressed as a integral over time. The continuous xijv(t)

function is estimated by smoothing the time series xij,vt, t = 1, · · · , T , while {βv(t)}Vv=1

is the smooth weight function. Then {βv(t)}Vv=1 are used to average the time series as the

feature.

In this functional regression model, one has a f nite number of observations with which

to determine the inf nite dimensional βv(t). This is not identif ed, as it is almost always

possile to f nd a βv(t) such that each ǫij = 0. More importantly, there are always an inf nite

number of solutions for βv(t) that produces the same predictions (Graves et al., 2009).

One strategy to deal with identif ability is to use a basis expansion of βv(t):

βv(t) =

K∑

k=1

ckφk(t), (4.2.2)

where φk(t), k = 1, · · · , K is a set of basis functions. In this application, the popular B-

splines basis system is used (Catmull and Clark, 1978). A B-spline system is determined

by its order, interior knots and two end points. Aside from the two end basis functions, each

basis function begins at zero and rises to a peak at a certain knot location before falling back

to zero and remaining there until the right boundary. The f rst and last functions rise from
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the f rst and last interior knot to the value of one on the right and left boundary respectively.

In this work, the order and knots of B-splines are determined manually. Two sets of B-

splines basis are used, one for data smoothing and one for the β coeff cients. The number of

basis should be big enough to catch the structure of the data, but not too big to cause overf t-

ting. The model is implementedwith R package fda (Febrero-Bande and Oviedo de la Fuente,

2012). The package has good support for functional data smoothing and functional regres-

sion. The prediction is implemented with the e1071 package (Suykens and Vandewalle,

1999; Dimitriadou et al., 2008). Details are given in Section 4. A visual plot of {βv}Vv=1 is

shown in Figure 4.2.

Figure 4.2: Weights estimated with functional regression: white color is more weight while
green color is less weight

This plot validated the previous two approaches for feature averaging. In the heat map,

whiter regions indicates higher weight. One could notice that the time points 10 to 16 has
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higher weights almost across nearly all voxels.

4.3 Support Vector Regression

With the feature extracted above, we can proceed to f nd a good classif er for pain pre-

diction. In this research the ǫ-Support Vector Regression (SVR) is adopted (Drucker et al.,

1997; Gunn et al., 1998; Smola and Schölkopf, 2004).

The ǫ-Support Vector Regression (SVR) (Vapnik et al., 1997), is a Support Vector Clas-

sif er (SVC), which tries to maximize the margin between two classes. It seeks to f nd a

function f(x) that has at most ǫ deviation from the actually observed outcome, yi, for all

the training data, and at the same time is as “f at” as possible. In this section, we will intro-

duce this powerful regression algorithm and explain how it was applied in our prediction

problem.

4.3.1 Linear Regression

In the case that f(x) is a linear function, suppose x is a p-dimensional vector represent-

ing the predictor, we have:

f(x) =ωTx+ b, where ω ∈ R
p, x ∈ R

p, and b ∈ R
1.
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The “f atness” is this case, means small values of ω, i.e. we want to minimize the l2

norm: ||ω||2 = ωTω. Ideally, the regression problem transforms to a convex optimization

problem:

minimize ||ω||2

subject to |yi − ωTxi − b| ≤ ǫ

The above constraint indicates that a function f(x) approximates the training data with at

most ǫ absolute error. However, such function may not actually exist. In order to cope with

such a situation, slack variables ξ and ξ∗ can be introduced to the constraints. Then we

have:

minimize
1

2
||ω||2 + C

n∑

i=1

(ξi + ξ∗i )

subject to ∀i,





yi − ωTxi − b ≤ ǫ+ ξi

ωTxi + b− yi ≤ ǫ+ ξ∗i

ξi, ξ
∗
i ≥ 0

.

The constant C > 0 is called the cost parameter, which determines how much we want to

penalize on the sum of outlying errors. Intuitively speaking, if C is small, then the function

will tend to be f at, since our tolerance for ξi and ξ∗i are large. As C gets larger, the ‖ω‖2

will get larger, but we will have smaller training error. Thus we need to decide how to trade
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off between model complexity and goodness-of-f t.

Note that, in this formulation, the optimization problem corresponds to dealing with a

so called ǫ-insensitive loss function |ξ|ǫ def ned by:

|ξ|ǫ :=





|ξ| − ǫ if |ξ| > ǫ

0 if |ξ| ≤ ǫ.

In practice, this loss function can be def ned in other forms, such as using squared loss

instead of absolute loss.

4.3.2 Non-linear Regression and the Kernel Trick

The power of SVR comes with its capability to deal with the non-linear regression

problem. Suppose we have an arbitrary basis function,Φ, that maps x fromR
p toRq, where

in most cases q > p. For example, x = (a, b),Φ(a, b) = (a2, b2,
√
ab). Then by replacing

xi with Φi = Φ(xi), we are able to formulate some complex non-linear regression problem
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as below:

minimize
1

2
||ω||2 + C

n∑

i=1

(ξi + ξ∗i )

subject to ∀i,





yi − ωTΦi − b ≤ ǫ+ ξi

ωTΦi + b− yi ≤ ǫ+ ξ∗i

ξi, ξ
∗
i ≥ 0

.

This type of optimization problem is often easier to solve in its dual form. Thus by applying

the Lagrange Multiplier, ηi, η∗i , αi, α
∗
i (all non-negative), the primal Lagrangian is:

L :=
1

2
‖ω‖2 + C

n∑

i=1

(ξi + ξ∗i )−
n∑

i=1

(ηiξi + η∗i ξ
∗
i )

+
n∑

i=1

αi(ω
TΦi + b− yi − ǫ− ξi)

+
n∑

i=1

α∗
i (yi − ωTΦi − b− ǫ− ξ∗i ).

By taking the f rst derivative of L wrt to the primal variables, ω, b, ξi, ξ∗i , and setting them to

zero, we will have the KKT conditions. We then plug them back to the Lagrangian, which

73



CHAPTER 4. FMRI BASED BIOMARKER FOR PHYSICAL PAIN

yields the dual optimization problem:

maximize − 1

2

n∑

i,j=1

(αi − α∗
i )(αj − α∗

j )Φ
T
i Φj−

ǫ

n∑

i=1

(αi + α∗
i ) +

n∑

i=1

yi(αi − α∗
i )

subject to
n∑

i=1

(αi − α∗
i ) = 0 and αi, α

∗
i ∈ [0, C].

Since one the KKT conditions is that ω =
∑n

i=1(αi − α∗
i )Φi. Thus by solving the dual

problem, ω can be completely described as a linear combination of Φi. In a sense, the

complexity of a functions representation by the support vectors (SVs) is independent of

the dimensionality of the input space X, and depends only on the number of SVs. This

property gives us the power to estimate complex non-linear relation between x and y.

Moreover, note that to solve the dual problem, we need is the dot product form: ΦT
i Φj .

By pluging in ω =
∑n

i=1(αi − α∗
i )Φi to f(x) = ωTΦ(x) + b, the representation of f(x)

also only depends on the the dot product form: Φ(xi)
TΦ(x). Hence it is suff cient to know

K(x, x′) := Φ(x)TΦ(x′) rather than Φ explicitly. In theory, Mercer’s Theorem rigorously

characterizes the kernel function. In practice, there are 4 types kernel functions that are

most commonly used:

1. linear kernel: K(xi, xj) = xT
i xj

2. polynomial kernel: K(xi, xj) = (γxT
i xj + c0)

d, γ > 0

3. radial basis function(RBF): K(xi, xj) = exp(−γ‖xi − xj‖2), γ > 0
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4. sigmoid kernel: K(xi, xj) = tanh(γxT
i xj + c0)

4.4 Application to Pain Prediction

The SVM method is applied to predict pain intensity. The analysis consists of three

parts.

In part one, SVMmodels are trained for pain prediction, which show that the functional

regression based features improve prediction accuracy compared to box weights. In section

two, by further averaging the features within a pain category for a subject, prediction ac-

curacies for both functional regression weights and box weights are further improved. The

former still gives higher prediction accuracy. In part three, we explored why the functional

regression weights give better prediction accuracy by clustering voxels in the pain related

regions are clustered according to their weights. The three parts are detailed as below.

4.4.1 Prediction Acurracy

In this analysis, the dataset is f rst divided into train and test data by subject. To be

specif c, 12 (60%) of the 20 subjects are used for training, while the remaining 8 are testing

subjects. Then the weight matrixWV×T is estimated with model (4.2.1) using the training

data only. ApplyWV×T to both train and test data, we get corresponding features. Finally a

SVM model is trained from training data and used for prediction on test data. The correla-

tion between the predicted pain intensities and the real intensities is calculated as a measure
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of prediction accuracy.

A leave-1-subject-out cross validation procedure was applied to search for the opti-

mal prediction parameter setting. Leave-1-subject-out means that we did a 12-fold cross-

validation, but instead of randomly permuting the data set, at iteration i, the 4 rows from

subject i were picked out as the testing set and the rest were used as the training set.

In the functional regression, a B-spline basis system of order 12 is used for data smooth-

ing, while another B-spline basis system of order 3 with breaks at 1, 10, 13, 16 and 23 is

used for the regression coeff cient. A grid search is performed, where the data smoothing

basis order ranges from 4 to 20 and the beta coeff cient basis order ranging from 1 to 6.

The orders combination with the best prediction accuracy is picked.

We did a grid search for all the four kernels introduced above, while the RBF had the

best performance. For the RBF kernel, the searching grid involves three tuning parameters:

(ǫ, C, γ). In the grid, ǫ ∈ [0.005, 1], C ∈ [1, 300] and γ ∈ (10−8, 1], and by running

the leave-1-subject-out cross-validation on each combination of parameters in the grid, we

obtained the set of optimal parameters in terms of MSE and correlation(yi, ŷi).

The analysis is repeated 20 times using different training and test data. The same pro-

cedure is performed for box weight.

A comparison of the prediction accuracies with functional regression weights and box

weights is shown in Figure 4.4. Performing a t-test to test the prediction accuracy differ-

ence, we get a mean difference of 0.041 with a p-value of 0.0002.
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Figure 4.3: Prediction accuracies comparison. The mean correlations for functional regres-
sion weights and box weights are 0.554 and 0.513 respectively.

Another set of analysis is performed to further show the validity of the result. We

changed the proportion of training data set to be 70%. The comparison is shown in Figure

4.4. Similarly, we get a mean difference of 0.04 with a p-value of 0.0009.
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Figure 4.4: Prediction accuracies comparison. The mean correlations for functional regres-
sion weights and box weights are 0.55 and 0.51 respectively.

These shows that the functional regression based method has better prediction power

than the simple box-weight method.

4.4.2 Further Improving Prediction Accuracy

This analysis differs from the above one in that the features are further averaged over

pain categories for each subject. Essentially in this analysis, average intensities of four pain

categories for each subject are averaged and predicted. In the above analysis, pain intensi-

ties for each stimulus given to a subject is used predicted. As expected, higher accuracy is
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achieved in predicting the average intensities and the functional regression weights again

yields higher accuracy. Similar to above, a random sample of 60% of subjects are used for

training and the rest are used for testing. The analysis is repeated 30 times.

A comparison of the prediction accuracies in predict stimulus-level intensities and av-

erage intensities is shown in 4.5. The prediction accuracies has a mean difference of 0.03

and a p-value of 0.00004. Notice that though the accuracies here are very high, the analysis

has its limitations, as it could only predict average pain intensities in a pain category for a

subject.

Figure 4.5: Prediction accuracies comparison. The mean correlations for functional regres-
sion weights and box weights are 0.75 and 0.72 respectively
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4.4.3 Clustering Voxels

As shown above, the functional regression based weights give better prediction accu-

racies in different analysis scenarios. A naturally question to ask is: whether the weights

are biologically meaningful? To explore this question, we clustered the voxels according

to their estimates weights over time. The K-Means algorithm is adopted for clustering.

The number of clusters 5 is selected from the following sum of squared error (SSE)

plot.

Figure 4.6: Pick number of clusters: the SSE drops very slowlywhen the number of clusters
is over 5.
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As a demonstration, the centers and spatial plots of two clusters are shown below.

4.5 Discussions and Future Work

By exploring two different class of features and a SVM classif er, we have developed a

reliable fMRI base biomarker for physical pain. We believe there are some more space for

improvement. A possible way is to design a deep learning algorithm which combines that

feature selection and classif er learning steps. Another direction for improvement is use a

penalized functional regression model, as proposed by Goldsmith et al. (2011), to obtain
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better weights.
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Chapter 5

Discussion and Future Work

The analysis of fMRI covers a wide ranges of topics, from the initial acquisition of

raw data to its use in measuring brain activity, making inferences about brain activity and

making predictions about physical, psychological and disease states. Statistics has already

played a crucial role on many of the important issues. However, there are still areas where

statistics has been underutilized and hopefully will have an increased role in the future.

In this research, three novel methods are proposed for fMRI data analysis. The methods

have both advantages and shortcomings.

The f rst method, parallel group independent component analysis, or PGICA algorithm,

is much faster than the sequential one with the help of parallel computing. Essentially we

used parallel computing to turn a time intensive problem into constant time problem. The

algorithm is also implemented in R and published on CRAN. For an overview of using R

to analyze fMRI data, see Eloyan et al. (2014). Nonetheless, we still have not analyzed
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the 1000 Functional Connectome Project dataset in its entirety. The main remaining ob-

stacles are site-specif c variations, which plague the quality of results. More specif cally,

functional imaging data collected in each data collection site have different features, such

as population demographics, scanner types, data quality and so on. The data in each site

have been collected for addressing specif c research questions introducing issues while an-

alyzing the data collectively. The factors for different sites interfere when analyzing data

together. Thus we have found a degradation in the quality of results as more data is in-

cluded. For future work, aggregating methods to properly combine data from different

sites are needed.

The second method, penalized linear dynamical system (PLDS) is a very general model

that can be applied to many applications. A parameter estimation algorithm is also devel-

oped based on the Expectation-Maximization algorithm (EM). It is worth mentioning that

when the dimension is very high, the EM algorithm is not as robust, due to loss of precision

in large matrix operations. Moreover, in the application, biological meaning of the found

regions need to be further validated. It is helpful to compare those regions to other existing

parcellations of mortor cortex. For example, we can develop a quantitative procedure to

compare them to the f ve-region parcellation proposed by Nebel et al. (2014b).

The third method, a two-stage procedure to predict physical pain from fMRI scans,

aims to connect brain activity to physical feelings. The procedure has higher prediction

accuracy, compared to existing methods. The improvement is not huge, but is signif cant

nonetheless. Considering that fMRI images are expensive to acquire, the improvement is
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meaningful. In the future, the method should be applied to data collected from different

sites. Thus we can evaluate whether it continues to achieve better prediction across different

datasets.
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A1 Appendix to Chapter 3

Kalman Filter Smoother

Algorithm Kalman Filter Smoother

0. Def ne xτ
t = E(xt|{y}τ1),Vτ

t = Var(xt|{y}τ1), x̂t ≡ xT
t and Pt ≡ V T

t + xT
t x

T
t
′

1. Forward Recursions:

xt−1
t = Axt−1

t−1

Vt−1
t = AVt−1

t−1 +Q

Kt = Vt−1
t C ′(CV t−1

t C ′ +R)−1

xt
t = xt−1

t +Kt(yt − Cxt−1
t )

V t
t = V t−1

t −KtCV t−1
t

x0
1 = π0, V 0

1 = V0

2. Backward Recursions:

Jt−1 = V t−1
t−1 A

′(V t−1
t )−1

xT
t−1 = xt−1

t−1 + Jt−1(x
T

t
−Axt−1

t−1
)

V T
t−1 = V t−1

t−1 + Jt−1(V
T
t − V t−1

t )J ′
t−1

Pt,t−1 ≡ V T
t,t−1 + xT

t x
T
t
′

V T
T,T−1 = (I −KTC)AV T−1

T−1
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FISTA

In general, FISTA optimize a target function

min
x∈X

F(x;λ) = g(x) + λ‖x‖1 (A.1.1)

where g : Rn → R is a continuously differentiable convex function and λ > 0 is the

regularization parameter.

A FISTA algorithm with constant step is detailed below
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Algorithm FISTA(g, λ).

1. Input an initial guess x0 and Lipschitz constant L for∇g, set y1 = x0, t1 = 1

2. Choose τ ∈ (0, 1/L].

3. Set k ← 0.

4. loop

5. Evaluate∇g(yk)

6. Compute x1= Sτλ(yk − τ∇g(yk))

7. Compute tk+1 =
1+
√

1+4t2
k

2

8. yk+1 = xk +
(

tk−1
tk+1

)
(
xk − xk−1)

9. Set k ← k + 1

10. end loop

In the above

Sλ(y) = (|y| − λ)+sign(y) =





y − λ if y > λ

y + λ if y < −λ

0 if |y| ≤ λ.
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