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Abstract

We develop a game-theoretic model of centralized clearing to analyze a clearing-

house’s choice of transaction fee and collateral requirements. The clearinghouse’s

requirements affect not only the size and riskiness of her participating client base,

but also the transaction fees charged to clients by her clearing member. We show

that empirically observed low fee-to-collateral ratios can be explained as the equi-

librium arising from strategic interactions between profit maximizing agents.

We analytically characterize the equilibrium fee-to-collateral ratio and find that

it depends on the relative riskiness of the contract (relative to the depth of clients’

private trading benefits). In particular, when the contract is very risky, so that

participating clients are mostly speculators, the clearinghouse imposes a very high

collateral requirement; when the contract is not risky, so that participating clients

are mostly fundamental value traders, the clearinghouse imposes a very low collat-

eral requirement.

This thesis was completed under the supervision of Dr. Gregory Duffee (advisor)

and Dr. Agostino Capponi (reader).
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1 Introduction

Clearinghouses use collateral, essentially a security that pays off only when there is a

default, to protect themselves from counterparty risk. In comparison, the transaction

fees that clearinghouses charge are guaranteed upfront payments in all states of nature,

and are their main source of revenue. Since the default probability of each individual

client is usually small, it might be tempting to conclude that the clearinghouse should

be indifferent between increasing collateral levels by a large amount and increasing fees

by a small amount.

However, this stands in contrast with empirical evidence. High collateral levels

(relative to fees) consistently prevail in many derivatives markets. For example, for

the year 2014, a conservative estimate of Intercontinental Exchange’s (ICE) collateral

holdings pledged for cleared CDS trades was around 20 billion USD, while the company’s

revenue from CDS transactions totaled 161 million USD. Assuming an average five-year

maturity of the CDS trades, this gives a fee-to-collateral ratio of around 161 × 5
20,000 ≈

4%. This indicates that ICE preferred collateral a lot more than fees.

Intuitively, a clearinghouse desires high levels of collateral either if she deems the

client to have high probability of default, or if she is very risk averse, i.e. she places

significant emotional weight on the states of nature where default occurs. Since a clear-

inghouse could decide to not clear contracts when clients are deemed likely to default,

the more plausible explanation seems to be that clearinghouses are very risk averse.

This paper shows that this needs not be the case. The empirically observed low

fee-to-collateral ratios can be explained as an equilibrium phenomenon arising from the

strategic interactions between risk-neutral, rather than highly risk-averse, agents. We

design a game where the profit maximizing clearinghouse clears client trades submitted

via a clearing member bank. She sets transaction fee and collateral requirements for

cleared trades which directly affect not only the size and riskiness of the clearinghouse’s

participating client base, but also the transaction fees charged to clients by her clearing

member. Clients have the option to default, and may do so when the contract value

moves against them. The bank may choose to leave the clearinghouse if the client clear-

ing business is not profitable. We show that the resulting equilibrium fee to collateral

ratio can involve fee-to-collateral ratios close to zero, depending on the riskiness of the
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traded contract and the benefits that clients can capture from trading.

The clearinghouse’s requirements obviously reduce the clients’ profits from trading:

the transaction fee directly lowers the clients’ overall surplus from trading, and collateral

lowers the value of the client’s default option. Since the only participating clients are

those who can realize sufficient benefits from trading, increasing these requirements

reduces the clearinghouse’s participating client base. In addition, we show that the

profits of the clearing member bank decrease when requirements are higher, so that the

clearinghouse may lose profitable client business if the bank chooses to not become a

clearing member.

The requirements also act as a screening device. When they are high, participating

clients have smaller incentives to default either because they can capture large benefits

from maintaining the trade or because they would lose large amounts of collateral if

they default. This means that the fraction of participating clients who default, given a

fixed realization of the contract value, is thus lower. The need for using such screening

devices comes from the fact that the bank and clearinghouse either cannot or choose

to not discriminate between clients. In practice, while clearinghouses often have access

to the identities of the clients submitting trades, there are often too many clients for

the clearinghouse to individually keep track of every one of them. Indeed, transaction

fees and collateral are usually charged based on some portfolio specific rule rather than

tailored to client specific characteristics.1 In particular, firm specific characteristics such

as credit quality and asset size often do not factor into the fee and margin calculations.

We set up a model consisting of three groups of risk neutral agents: the clearing-

house, a potential clearing member bank, and a continuum of clients who may trade

a single, mandatorily cleared, contract. We consider a two period economy, ex-ante

and ex-post the realization of the contract value. Prior to the realization, agents decide

whether or not to participate in the clearing process. The clearinghouse sets her fee and

collateral requirement. The bank then sets his own transaction fee and participates if

the business is deemed profitable; that is, if his revenue can cover his operational costs

for participation. High fee and collateral requirements both disincentivize the clients

1ICE Clear Credit charges every clearing member with the same CDS portfolio the same amount of
initial margin. Every client currently pays the transaction fee of $6 per million notional cleared for CDS
index contracts. For more detail see ICE Clear Credit’s schedule of fees and online documentation of
margining rules.

2



from trading. After the realization, clients default strategically, resulting in losses which

are borne by the clearinghouse.2 Client’s trades are motivated by their private bene-

fits and the value of their default option. Non-defaulting clients receive (heterogenous)

private benefits when they carry out cleared trades.

We find that when the operational cost of becoming a clearing member is low, so

that the bank’s individual rationality constraint is non-binding, the prevailing subgame

perfect equilibrium is either one involving infinite collateral (when the contract is very

risky) or one that involves zero collateral (when the contract is not risky). We find that

it is the relative riskiness of the contract, measured by the volatility of the contract value

over the depth of the private benefits to be realized, that determines which equilibrium

prevails. This means that infinite collateral equilibria prevails when many clients trade

for speculative purposes (when the default option value is high) and zero collateral

equilibrium prevails when clients trade more for fundamental value (private benefits are

large).

When the operational cost of becoming a clearing member is high, so that the bank’s

individual rationality constraint is binding, the clearinghouse can opt to set reduced

requirements to increase the bank’s profit, and incentivize him to participate as a clearing

member. In this case the collateral levels may still be large but finite. The fact that

the bank’s individual rationality constraint may be binding can be observed from the

recent exit of many clearing members. For instance, in May 2014, the Royal Bank of

Scotland announced the wind down of its clearing business due to increasing operational

costs. This was followed by State Street, BNY Mellon, and more recently, Nomura; each

shutting down part or all of their OTC clearing business.

To the best of our knowledge, our paper is the first theoretical study to explain collat-

eral levels in a centralized clearing setting. Previous work in the context of collateralized

trading often assume that either margining rules are exogenously given (Garleanu and

Pedersen (2011)), or that margins are set following some mix of the expected short-

fall, VaR, and maximum shortfall measures (Anderson and Jõeveer (2014), Duffie et al.

(2015)). Johannes and Sundaresan (2007) and Capponi (2013) assume that (variation)

margin collateral payments on the valuation of swaps are set exactly to track mark to

2We are implicitly assuming that the clearinghouse is acting as a true central counterparty. All
counterparty risk and collateral management duties are borne by the clearinghouse.
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market value changes. In contrast, our work looks for a micro-founded collateral set-

ting rule via solving a profit maximization problem. Our modeling approach is closely

related to those of Stiglitz and Weiss (1981) in the modeling of strategic defaults, and

Holmström and Tirole (1997) in the inclusion of private benefits.

On the other hand, the determination of optimal levels of collateral has been ex-

tensively analyzed in the corporate finance literature. For instance, Stiglitz and Weiss

(1981) and Besanko and Thakor (1987) both find collateral as a useful screening de-

vice either through adverse selection or incentive effects, and that collateral levels arise

from profit-maximizing Nash equilibria. Geanakoplos (1997) analyzes (general) collat-

eral equilibria for the case when assets are used to collateralize security trades, implicitly

assuming the “smallness” of each agent. The centralized clearing setting is quite dif-

ferent, however. First, all agents trade publicly available contracts and are exposed to

the same market risks, rather than bringing independent individual borrower risk to

the table (Diamond (1984)), thus there is less asymmetric information about the risks

clients are taking on. Second, the direction of future exposure is uncertain as either

counterparty could be out of the money in the future. Third, collateral posting is not

between clients, but is often unilateral from the clients to the clearinghouse. While

initial margins is posted by clients to the clearinghouse, the clearinghouse usually does

not post initial margins to the clients (Pirrong (2011)). Fourth, the clearinghouse often

has significant market power.3

The rest of the paper is organized as follows. Section 2 explains the set-up of the

model. Section 3 solves for subgame perfect Nash equilibria. Section 4 concludes. All

proofs are delegated to the appendix.

2 The model

Our model consists of three groups of risk neutral agents: the clearinghouse (CH), a

potential clearing member bank (CM), and a continuum of clients trading a single,

mandatorily cleared, derivative contract. There are two periods, separated by the real-

ization of the contract value. Agents choose their participation in the trading/clearing

process ex-ante; ex-post, clients default strategically and the clearinghouse bears the

3For instance, while ICE, CME, and LCH all clear CDS, the bulk of CDS are still cleared through
ICE both in the US and Europe.
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losses.4 The clearinghouse has a large endowment of equity and does not default on

her obligations. The bank only serves as an intermediary in the model so he does not

default.

Before the contract value is realized, the clearinghouse can set her collateral C and

fee δc requirements per contract cleared. The bank is the prime broker of a continuum

of clients with unit mass, whose “private benefit parameters” B are described by the

distribution F , i.e. F (t) is the fraction of clients whose private benefits that do not

exceed t. In view of C and δc, the bank can set his fee per contract cleared δb. After δc, C

and δb have been declared, each client, characterized by his private benefit parameter

B, has the choice between trading long one contract (L), trading short one contract (S),

and not-trading (NT ). These actions provide private benefit B, −B, and 0, respectively.

Since each individual client is small, he cannot become a clearing member himself and

cannot afford to trade more than one contract.5

Client choices are submitted to the bank. After receiving the trade orders, the bank

has a choice between joining (J) and not joining (NJ) as a clearing member. The bank

incurs an operational cost G for joining.6 The bank’s payoff is given by:

Bank’s Payoff = δb × mass of clients who trade −G. (2.1)

If the bank were to become a clearing member, a clearing channel is set up. Clients

who trade pay the total fee of δ := δb + δc where δc goes to the clearinghouse and

δb to the bank, before the contract value is realized. They also post collateral to the

clearinghouse.

After this is done, the contract value is realized with value ε ∼ H. The distributions

F and H are assumed to be Laplace with parameters (0, λ) and (0, γ), respectively.

4Since there are only two periods, it suffices to consider only initial margins and not variation margin
posting.

5In practice, clients usually are asset management funds or money market funds and are very small
compared to clearing members, who are usually large broker-dealers (Pirrong (2011)).

6As a clearing member, the bank needs to meet certain capital requirements, contribute to a default
fund, set up operational channels for client clearing, and, in extreme circumstances, bear large losses of
the clearinghouse.
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That is, the cumulative distribution functions are

F (t) =















1 − 1
2e

−λt , t ≥ 0

1
2e

λt , t < 0

,

H(t) =















1 − 1
2e

−γt , t ≥ 0

1
2e

γt , t < 0

.

We use f and h to denote the associated density functions. Notice that while H is a

probability distribution describing the random realization of a random variable ε, F is

not; it is used to describe the distribution of deterministic private benefits among a unit

mass of clients.

Before proceeding further, we discuss the economic interpretation of the parameters

γ and λ. The mean absolute deviation of a Laplace (0, γ) distribution is 1
γ . γ serves as

a measure of the volatility of the random contract value, with the contract value being

more volatile when γ is small. It thus represents the extent to which clients trade due to

speculation, generating surplus primarily from the default option. λ, on the other hand,

serves as a measure of the depth of deteministic private benefits to be realized from

financial trading. When λ is small, there are many clients with large private benefits. It

thus represents the extent to which clients trade due to fundamental value, generating

surplus primarily from capturing private benefits.

After the contract value is realized, clients default strategically. If a long client choose

to not default (ND), he receives his private benefit B and the contract realization ε; if

he chooses to default (D), he does not receive the private benefit and loses his collateral

C. The short case is analogous: he either receives −B and −ε or loses C. They default

whenever it is more profitable to do so.

Last, the clearinghouse collects payments from clients who are out of the money and

is obligated to pay the clients who are in the money. When out-of-the-money clients

default, the clearinghouse experiences a shortfall in payments and must make up for the

difference using her own equity thereby incurring a loss. The clearinghouse’s payoff is

thus

δc × client trades − loss per contract × clients who trade and default. (2.2)
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CH

δc, C

CM

δb

CT

{L, S, NT }

CM

{J, NJ}

Fee collection

ε realized

CT

{D, ND}

CH suffers losses

Figure 1: The extensive form game timeline

A graphical illustration of the timeline of the game is given in Figure 1.

3 Equilibrium fee-to-collateral ratio

In this section we solve for the subgame perfect Nash equilibria using backward induc-

tion. We first solve for clients’ choice of defaults, assuming that the clearing channel

has been set up. Since clients default whenever it is more profitable, the long client’s

payoff function is:

max(B − δ + ε,−δ − C). (3.1)

The short client’s payoff function is

max(−B − δ − ε,−δ − C) (3.2)

Notice that clients default only when the market moves against them. In particular, if

ε < 0, all long buyers with insufficient private benefit B+ ε ≤ −C will default; if ε > 0,

all short buyers with insufficient (negative) private benefit −B − ε ≤ −C will default.

Next, the bank joins (J) as a clearing member if the client clearing business is

profitable:

δb × mass of clients who trade −G ≥ 0.

Clients trade when their ex-ante expected payoff is positive. Our first theorem shows

that there is a unique private benefit threshold governing the trading decisions of the

clients.

Theorem 1. For fixed δ ≥ 0 and C ≥ 0, there exists a unique trading threshold B̃ =

B̃(δ, C) such that a client wants to trade long if B ≥ B̃, and wants to trade short if

B ≤ −B̃.
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−ε−C multiplied by the mass of clients who traded long ex-ante and defaulted ex-post

(F (−C−ε)−F (B̄))+. The last term is the aggregate loss from short clients who default.

The case of long clients defaulting on a negative realization of ε is illustrated in Figure

3. When a low contract value εL is realized all clients with private benefits between B̄

and −C − ε have traded long the contract and choose to default, creating losses to the

clearinghouse. When a high value εH is realized, there are no defaults, since the clients

who would have defaulted did not trade in the first place.

The clearinghouse’s expected payoff can be explicitly computed and is given by

E[X(δc, C)] = δce
−λB̄ − λ

2(λ+ γ)
e−λB̄−γ(B̄+C)

(

1

γ
+

1

λ+ γ
+ B̄

)

. (3.4)

We can now define our subgame perfect Nash equilibria.

Definition 1. An equilibrium is a triple (δc, C, δb(·)) such that

(δc, C) ∈ argmax
(x,y)∈R2

+

E[X(x, y)]; (3.5)

δb(x, y) ∈ argmax
z∈R+

z(1 − F (B̃(x+ z, y))) for all (x, y) ∈ R2
+; (3.6)

R(δb; δc, C,G) ≥ 0 (3.7)

E[X(δc, C)] ≥ 0. (3.8)

Notice that we only focus on the clearinghouse and the bank’s choice in equilibrium

to reduce clutter. In equilibrium, the bank, in response to δc and C, chooses a fee level

that maximize his expected payoff. The clearinghouse takes this into account and sets

δc and C to maximize her profits. The last two constraints are the individual rationality

constraints of the bank and the clearinghouse, respectively. The bank only joins when

his revenue covers his costs, and the clearinghouse will only initiate the business if her

profits are positive.

We next show that the bank always has a unique choice of fees that maximizes his

payoff:

Theorem 2. For fixed δc ≥ 0, C ≥ 0, R(δb; δc, C,G) has a unique local maximum

δb = δb(δc, C) for all δc ≥ 0 and C ≥ 0. In addition, δb(δc, C) is continuous.

The above theorem indicates there will not be a sudden “jump” in bank fees when the
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distributional parameters change or when the clearinghouse changes her requirements.

Interestingly, although δb(δc, C) is continuous, depending on δc and C, the bank’s

response to increases in clearing fees and collateral may be increasing their fees (aug-

menting fees) or decreasing their fees (complementing fees). It will be convenient to

define the function

ξ(δc, C) := 1 + λδc − 1

2
e−γC

(

1 +
λ

γ

)

(3.9)

Our next result gives the precise conditions identifying the two regimes.

Theorem 3. The following statements hold:

1. (Augmenting fees.) If ξ ≥ 0, δb is given as the unique solution to

γ(δc + C) + log 2 − 1 = −(λ+ γ)δb − log(1 − λδb), (3.10)

greater than or equal to γ
λ+γ

1
λ . In this case ∂δb

∂δc
= ∂δb

∂C ≥ 0, and B̃ ≥ 0.

2. (Complementing fees.) If ξ < 0,

δb =
1

2γ
e−γC − δc. (3.11)

In this case ∂δb

∂δc
< 0, ∂δb

∂C < 0, and B̃ = 0.

We refer to the first regime as the bank imposing augmenting fees. In this regime,

when the clearinghouse increases requirements, the participating clients base shrinks; in

response, the bank increases his fee, which further decreases the participating client base.

However, the gain from increased fee outweighs the loss in the mass of participating

clients. We refer to the second regime as the bank imposing complementing fees. In

this regime, the entire client base is participating; when the clearinghouse increases

requirements, the participating clients base again shrinks. Since the clearinghouse’s

requirements are low, the bank decreases his fee so that again the full client base is

participating. In this case, the loss from the decreased fee is outweighed by the gain in

the mass of participating clients. Some examples of the revenue functions (income as a

function of the bank’s fee) the banks face is given in Figure 4.
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Figure 4: Revenue as a function of the bank’s fees. The bank’s choice of fees is always unique.
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Figure 5: The clearinghouse’s strategy space is separated into two sections. Depending on her choice
of requirements, the bank reacts in different regimes. The complementing regime is feasible only when
γ

λ
< 1.

Additionally, theorem 3 shows that the clearinghouse’s strategy space is separated

into two distinct regions. Which regime the bank adapts to depends on her choice of

clearing requirements. Figure 5 illustrates this phenomenon. Notice that the comple-

menting fee regime is feasible only when γ
λ < 1, i.e. when the contract is sufficiently

risky.

After characterizing the bank’s response, we can solve for the clearinghouse’s action.

When the clearinghouse sets her requirements, she must take into account the two

possible regimes that can result from her actions. For future purposes, it is convenient
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to work with the normalized quantities:

u := λδb,

v := γδc

w := γC,

θ :=
γ

λ
.

(3.12)

We first start with solving for the equilibrium assuming that the individual rationality

constraint given by Eq. (3.7) is non-binding.

Theorem 4. Equilibria in which (3.7) is non-binding can occur only at two points:

(i) (Infinite collateral equilibrium) w = ∞ and v = θ,

(ii) (zero collateral equilibrium) w = 0, v uniquely maximizes E[X(δc, 0)].

Which equilibrium prevails depends only on the value of θ.

Theorem 4 shows that the empirically observed low fee-to-collateral ratio can be

explained as a result of risk neutral agents’ strategic actions. We can easily demon-

strate numerically that there exists situations in which either equilibrium is achieved,

depending on the value of θ. Table 1 gives some numerical values of the expected payoff

function when λ = 1.

γ||(δc,C,E[X(δc, C)]) Infinite Collateral Zero Collateral

0.2 (1,∞, .1353)∗ (2.9493, 0, .1119)
0.59 (1,∞, .1353) (1.3261, 0, .1356)∗

1 (1,∞, .1353) (1.0681, 0, .1380)∗

∞ (1,∞, .1353)∗ (1, 0, .1353)∗

Table 1: Expected payoffs at possible extrema for λ = 1. Asterisks describe which equilibrium is
chosen by the clearinghouse.

By plotting the optimized expected payoff as a function of γ, fixing λ = 1, we see

an even stronger phenomenon. As illustrated in Figure 6, there is a critical value γ∗

beyond which the clearinghouse chooses zero collateral, and below which the clearing-

house chooses infinite collateral. When γ is small, the contract value is very volatile and

the expected loss of the clearinghouse from client defaults is high. The clearinghouse

thus chooses to eliminate all defaults by setting high levels of collateral. When γ is

large, the contract value is not as volatile and the expected loss of the clearinghouse
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Figure 6: Maximum clearinghouse expected payoff as a function of γ for λ = 1. The clearinghouses
chooses infinite collateral is below the threshold value γ∗. Beyond this threshold value, the clearinghouse
chooses zero collateral.

from client defaults is low. The clearinghouse thus chooses to incentivize more clients

to trade by setting collateral at very low levels. As γ approaches infinity, the contract

value converges to zero. In this case the decisions of clients become independent of the

collateral requirements, so that the zero collateral equilibrium and the infinite collateral

equilibrium coincide and give the same optimized value.

The phenomenon observed in Figure 6 is quite general. By Theorem 4 we know

that which equilibrium prevails depends only on the relative riskiness (relative to the

depth of private benefits) of the contract value, θ. Since from Figure 6 the threshold

γ∗ ≈ 0.58, we know that θ∗ = γ∗/1 also serves as a threshold for all pairs (γ, λ): if

θ > θ∗, the clearinghouse chooses zero collateral (infinite fee-to-collateral ratio), and

infinite collateral (zero fee-to-collateral ratio) otherwise.

4 Conclusion

Our model of centralized clearing is designed to explain the fee-to-collateral ratios ob-

served in the market. Our results indicate that fee and collateral choices of the clearing-

house affect her payoffs in two different ways: they influence the payoff per client cleared

and the mass of clients who trade. We have analyzed the equilibrium that results from

the profit maximization process of all agents in the model. It should be noted that we

are not asserting that the low fee-to-collateral ratios must result from strategic expected

profit maximization, but rather propose it as a plausible alternative to assigning agents
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some (unobservable) high level of risk aversion.

Our results can be easily extended to the case of multiple clearing members when the

clearinghouse sets requirements separately for each clearing member client base. A more

interesting but difficult extension is to consider multiple clearing members where the

clearinghouse is restricted to set uniform requirements for clients clearing via all member

banks. In this case one must take into account all of the private benefit distributions and

the relative sizes of the potential client bases that can be cleared through the clearing

member. We expect that when one clearing member has many more clients than others,

the clearinghouse would choose requirements close to the case of one member treated in

this paper.

Our choice of the Laplace distribution is due to the straightforward economic inter-

pretation of its parameters and the analytical tractability. However, it is also desirable to

assess the robustness of our results with respect to different distributional specifications

of private benefits and contract value.

It would also be interesting to analyze how costliness of collateral affects the re-

sulting fee-to-collateral ratio equilibrium. When collateral comes at a cost, collateral

requirements reduce both the overall surplus of clients’ trades and the default option

value. Obviously, the infinite collateral equilibrium would disappear since no clients

would trade.

A Proofs

Proof of Theorem 1. We start with the long case. Assume B̃ is to be a solution to

δ = E[(B + ε)1ε>−B−C − C1ε≤−B−C ] (A.1)

That is, B̃ is a level of private benefit at which expected profits for the client is zero.

We see that

lim
B→∞

φ(B) = lim
B→∞

E[B1ε>−B−C ] + E[ε1ε>−B−C ] − E[C1ε≤−B−C ]

= ∞ + 0 − C = ∞.
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by using the fact that E[ε] = 0 and applying the monotone convergence theorem. In

addition,

lim
B→−∞

φ(B) = lim
B→−∞

−(−B − C)E[1ε>−B−C ] + E[ε1ε>−B−C ] − C

= −C,

where we have used the fact that E|ε| < ∞ implies that limx→∞ xP (ε > x) = 0. Thus,

if δ ≥ 0 and C ≥ 0, there must exist B such that Eq. (A.1) is satisfied.

Next, notice that φ(B) is a strictly increasing function of B, given that

φ(B) =

∫ ∞

−B−C
B + x dH(x) +

∫ −B−C

−∞
−C dH(x),

φ′(B) = 1 −H(−B − C) > 0.

So the solution must be unique. Since H is symmetric, the short case follows by a

symmetry argument.

Proof of Theorem 2. We start with two propositions:

Proposition 1. Let δ ≥ 0 and C ≥ 0. Then B̃(δ, C) ≥ 0 if and only if

δ ≥ 1

2γ
e−γC .

Proof of Proposition. By definition

δ =

∫ ∞

−B̃−C
(B̃ + x) dH(x) +

∫ −B̃−C

−∞
−C dH(x)

= B̃ − (B̃ + C)H(−B̃ − C) +

∫ 0

−B̃−C
x dH(x) +

∫ ∞

0
x dH(x)

= B̃ − (B̃ + C)H(−B̃ − C) + xH(x)
∣

∣

∣

0

−B̃−C
−
∫ 0

−B̃−C
H(x) dx+

∫ ∞

0
(1 −H(x)) dx

= B̃ −
∫ B̃+C

0
(1 −H(y)) dy +

∫ ∞

0
(1 −H(x)) dx

= B̃ +

∫ ∞

B̃+C
(1 −H(x)) dx (A.2)

Here we used the layer cake representation of expectation to derive the third equality

and the fact that H is a symmetric distribution to derive the fourth equality. Now plug
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B̃ = 0 into Eq. (A.2), we have

δ =

∫ ∞

C
(1 −H(x)) dx =

1

2γ
e−γC .

Notice that

∂

∂B

(

B +

∫ ∞

B+C
(1 −H(x)) dx

)

= H(B + C) > 0,

so B̃(δ, C) ≥ 0 if and only if δ ≥ 1
2γ e

−γC .

The next proposition follows immediately from differentiating Eq. (A.2):

Proposition 2.

∂B̃

∂δ
=

1

H(B̃ + C)
> 0

∂B̃

∂C
=

1

H(B̃ + C)
− 1 ≥ 0

We next show the existence of a maximizer: let φ(x) := x(1 − F (B̄(x + δc, C)). By

Proposition 1, for large enough x, we have B̄(x+δc, C) = B̃(x+δc, C). By Proposition 2,

∂B̃
∂δ > 1 since H is a distribution function. Continuity of B̄ follows from differentiability

of B̃. Thus, it follows that

lim
x→∞

B̃(x+ δc, C) = ∞ (A.3)

lim
x→∞

x

B̃(x+ δc, C)
< ∞. (A.4)

Since
∫∞

0 tdF (t) = 1
2λ < ∞, it follows by dominated convergence:

lim
B→∞

B(1 − F (B)) = 0,

lim
x→∞

φ(x) = lim
x→∞

x

B̃(x+ δc, C)
lim

B̃→∞
B̃(1 − F (B̃)) = 0.

Where we used Eq. (A.3) and (A.4) to derive the second limit. Since φ(x) ≥ 0 and

φ(0) = φ(∞) = 0, and φ is continuous, there exists an interior maximizer of φ(x) on

(0,∞).

Next we show uniqueness. Fix δc, C ≥ 0. By Proposition 1, the bank’s payoff
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function can be written as

2δb(1 − F (B̄)) −G =















δbe
−λB̃(δb+δc,C) −G, δb + δc ≥ 1

2γ e
−γC

δb, δb + δc <
1

2γ e
−γC −Gbank′spayofffunction

(A.5)

Suppose y ∈
{

x
∣

∣

∣B̃(x+ δc, C) < 0
}

=
{

x
∣

∣

∣x+ δc <
1

2γ e
−γC

}

is a local maximizer of φ,

then φ can be always increased by choosing δb slightly larger than y, thus y is cannot be a

local maximizer. Therefore, a local maximizer must be in the region {x|B̃(x+δc, C) ≥ 0}.

This implies that a local maximizer either solves the equation

0 = B̃(x+ δc, C), (A.6)

or is a critical point of the differentiable function

ω(x) := xe−λB̃(x+δc,C).

Obviously, if Eq. (A.6) has a nonnegative solution, it must be x0 := 1
2γ e

−γC − δc, In this

case the bank’s payoff is exactly x0 −G by Eq (A.5).

We now analyze the critical points of the function ω(x) strictly larger than 1
2γ e

−γC −

δc. We will show there is at most one such critical point. The first order condition is

0 = 1 − λx

1 − 1
2e

−γ(B̃(x+δc,C)+C)
(A.7)

By Eq. (A.2), we also have

x+ δc = B̃(x+ δc, C) +
1

2γ
e−γ(B̃(x+δc,C)+C) (A.8)

Thus, combining Eq. (A.7) and (A.8) any critical point of ω(x) must satisfy

γ(δc + C) + log 2 − 1 = −λx− γx− log(1 − λx) (A.9)

Define ψ(x) := −λx − γx − log(1 − λx), and A(γ) := γ(δc + C) + log 2 − 1 we see
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that

ψ(0) = 0

lim
x→1/λ

ψ(x) = ∞

ψ′′(x) =
λ2

(1 − λx)2
≥ 0, for x ∈ (0, λ−1).

Now, the unique minimum of ψ(x) is given by the first order condition:

ψ′(x) = −λ− γ +
λ

1 − λx
= 0.

x∗ =
γ

λ(λ+ γ)
<

1

λ
(A.10)

ψ(x∗) = −γ

λ
+ log

(

1 +
γ

λ

)

< 0

The above analysis shows that on {x|0 < λx < 1}, w(x) has exactly one critical point

when A(γ) > 0 or A(γ) = ψ(x∗) and exactly two critical points when ψ(x∗) < A(γ) < 0.

We will now show that when there are two critical points, the smaller critical point

is always less than 1
2γ e

−γC − δc. Define Y := γ(δc + C), u := λx, θ := γ
λ , then we can

rewrite Eq. (A.9) as:

Y + log 2 − 1 = −(1 + θ)u− log(1 − u). (A.11)

Fixing Y , we see that minγ(δc+C)=Y λ
(

1
2γ e

−γC − δc

)

occurs when δc = 1
γ (Y + log 2)

and C = − log 2
γ , with a minimized value of m̄(Y ) := 1

θ (1−log 2−Y ). It is clear that there

exists, for some choice of λ, γ, δc, C, two critical points of w(x) greater than 1
2γ e

−γC − δc

if and only if for some Y ∈ [0, 1 − log 2], the smaller solution to Eq.(A.11) is larger than

m̄(Y ).

Denote the smaller branch of solutions to Eq. (A.9) as u−(Y ). It holds that,

m̄(1 − log 2) = 0

u−(1 − log 2) = 0

By Eq. (A.10), we see that u−(Y ) < θ
1+θ . Since −(1 + θ) + 1

1−u > 0 for all u ∈ [0, θ
1+θ )
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we have explain the

∂

∂Y

(

m̄(Y ) − u−(Y )
)

= −1

θ
− 1

−(1 + θ) + 1
1−u

= −
u

1−u

θ
(

−(1 + θ) + 1
1−u

) < 0

Thus m̄(Y ) > u−(Y ) for Y ∈ [0, 1 − log 2]. Thus there is at most one critical point, x̃,

greater than x0. This allows us to conclude there is a unique maximizer: the function

is either maximized at x̃ or x0.

Since the payoff function is differentiable everywhere but at x0, the function cannot

be maximized simultaneously at x̃ or x0, unless they are equal. Indeed, using the mean

value theorem we have that if x̃ 6= x0, either φ(x̃) > φ(x0) or φ(x̃) < φ(x0). Again since

there is no critical point in between, only one of them can be a local maximizer.

The second statement of the theorem, i.e., the continuity of the function δb(δc, C),

follows from Berge’s maximum theorem.

Proof of Theorem 3. Notice that ξ < 0 implies that x0 := 1
2γ e

−γC − δc ≥ 0.

Suppose x0 ≤ 0. By Proposition 1 we have B̃(δb + δc, C) > 0 for all δb ≥ 0, thus δb

must be the larger solution to Eq. (3.10) by Eq. (A.9). Now suppose x0 > 0. we see the

right derivative of the bank’s payoff function Eq. (3.3) at x0 is given by

lim
x→x0

1 − λx

1 − 1
2e

−γ(B̃(x+δc,C)+C)
= 1 −

λ( 1
2γ e

−γC − δc)

1 − 1
2e

−γC

∝ 1 − 1

2
e−γC − λ(

1

2γ
e−γC − δc) = 1 + λδc − 1

2
e−γC(1 +

λ

γ
).

Since the local maximum of the payoff function is unique by Theorem 2, δb must be

the larger solution to Eq. (3.10) when the right derivative is positive, and equal to x0

when the right derivative is negative. The sign of the derivatives follow from direct

differentiation.

Proof of Theorem 4. For fixed λ, γ > 0, we search for all possible maxima over the

space K∗ := {(δc, C)|δc ≥ 0, C ≥ 0}. The payoff function is obviously continuous, and

is continuously differentiable on K∗ \ {ξ(δc, C) = 0}, where ξ is defined in Eq. (3.9).

We need only consider the set

K := {(δc, C)|δc ≥ 0, C ≥ 0, ξ ≥ 0}, (A.12)
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on the interior of which E[X(δc, C)] is continuously differentiable. Indeed, when ξ < 0,

by the second statement of Theorem 3, we have B̃ = 0 and the clearinghouse’s expected

payoff function Eq. (3.4) is therefore given as

E[X(δc, C)] = δc − γ

2
e−γC

(

1

γ
− 1

λ+ γ

)(

1

γ
+

1

λ+ γ

)

Thus, when ξ < 0, the clearinghouse can increase profits by increasing δc and C, and

thus will only choose δc, C such that ξ ≥ 0.

We start with searching for critical points in the interior of K. Recall that in the

interior of K, B̃ and δb(δc, C) are implicitly defined by:

0 = 1 − 1

2
e−γ(B̃+C) − λδb (A.13)

δb + δc = B̃ +
1

2γ
e−γ(B̃+C) (A.14)

Rearranging Eq. (A.14), we have

B̃ = δb + δc − 1

γ
+
λ

γ
δb (A.15)

This in turn implies that,

γ(δc + C) + log 2 − 1 = −λδb − γδb − log(1 − λδb). (A.16)

By implicitly differentiating Eq.(A.16), we have

∂δb

∂δc
=
∂δb

∂C
=

γ

−λ− γ + λ
1−λδb

. (A.17)

Define

V := δce
−λB − λ

2(λ+ γ)
e−λB−γ(B+C)

(

λ+ 2γ

γ(λ+ γ)
+B

)
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A direct computation gives,

∂V

∂δc
= e−λB

∂V

∂C
= e−λB−γ(B+C) λγ

2(λ+ γ)
(B +

λ+ 2γ

γ(λ+ γ)
)

∂V

∂B
= e−λB

(

−λδc − λ

2(λ+ γ)
e−γ(B+C) +

λ

2
e−γ(B+C)(B +

λ+ 2γ

γ(λ+ γ)
)

)

(A.18)

Evaluating each derivative in Eq. (A.18) at B = B̃, we obtain

eλB̃ ∂V

∂δc
= 1. (A.19)

eλB̃ ∂V

∂C
= (1 − λδb)

λγ

(λ+ γ)
(δb + δc − 1

γ
+
λ

γ
δb +

λ+ 2γ

γ(λ+ γ)
)

= (1 − λδb)
λ

(λ+ γ)2
((λ+ γ)2δb + γ(λ+ γ)δc + γ)

= (1 − u)

(

u+
v

1 + θ
+

θ

(1 + θ)2

)

(A.20)

eλB ∂V

∂B
= −λδc − λ

2(λ+ γ)
e−γ(B+C) +

λ

2
e−γ(B+C)(B +

λ+ 2γ

γ(λ+ γ)
)

= −λδc − λ

(λ+ γ)
(1 − λδb) + λ(1 − λδb)

(λ+ γ)2δb + γ(λ+ γ)δc + γ

γ(λ+ γ)

= λ

(

−δc + (1 − λδb)

(

(λ+ γ)δb + γδc

γ

))

=
λ

γ
(−δb(λ(λ+ γ)δb + γλδc − (λ+ γ)))

=
u

θ
((1 + θ)(1 − u) − v) (A.21)

∂B̃

∂δ
=

1

H(B̃ + C)
=

1

λδb
=

1

u
. (A.22)

1 +
∂δb

∂δc
=

λ2δb

λ− (1 − λδb)(λ+ γ)
=

u

1 − (1 − u)(1 + θ)
(A.23)

Where to derive the above results we have used the definitions and results given by

Eq. (3.12), Eq. (A.15), and Proposition 2.

The first order condition of the clearinghouse’s expected payoff function E[X(δc, C)]

with respect to δc is

0 =
∂V

∂δc
+
∂V

∂B

∂B̃

∂δ

(

1 +
∂δb

∂δc

)

(A.24)
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which, using the expressions given by Eq.(A.19)–(A.23) , gives

0 = θ(1 − (1 − u)(1 + θ)) − u((1 + θ)u+ v − (1 + θ)),

leading to

v =
−θ2 + (θ + 1)2u− (1 + θ)u2

u
. (A.25)

The first order condition with respect to C is

0 =
∂V

∂C
+
∂V

∂B

(

∂B̃

∂δ

∂δb

∂C
+
∂B̃

∂C

)

=
∂V

∂C
+
∂V

∂B

(

∂B̃

∂δ

∂δb

∂δc
+
∂B̃

∂δ
− 1

)

=
∂V

∂C
+
∂V

∂B

∂B̃

∂δ

(

∂δb

∂δc
+ 1

)

− ∂V

∂B

=
∂V

∂C
− ∂V

∂δc
− ∂V

∂B

which, using the expressions given by Eq.(A.19)–(A.23), yields

0 = (1 − u)

(

u+
1

1 + θ
v +

θ

(1 + θ)2

)

− 1 − u

θ
((1 + θ)(1 − u) − v)

leading to

v =
θ((1 + θ)2 − θ) + (1 + 2θ + 2θ2)u− (1 + θ)2u2

(1 + θ)(θ + u)
(A.26)

Since at a critical point both Eq. (A.25) and Eq. (A.26) must fold:

0 =
−θ2 + (θ + 1)2u− (1 + θ)u2

u
− θ((1 + θ)2 − θ) + (1 + 2θ + 2θ2)u− (1 + θ)2u2

(1 + θ)(θ + u)

= −θ2(u− 1)(u− θ2 − θ)

u(1 + θ)(θ + u)

The above equation implies that critical points can occur only at (u∞, v∞) := (1, θ) and

(uint, vint) := (θ+θ2, 1−θ3 − θ3

1+θ ). (u, v) = (1, θ) directly implies C = ∞ by Eq. (A.16).

These results, along with Eq. (A.16), give what we refer to as the infinite collateral

equilibrium and the interior equilibrium, respectively.
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Next we consider maxima occurring on the boundary of K, where we recall that K

has been defined in Eq.(A.12). The boundary of K consists of the lines δc = 0, δc =

∞, C = 0, C = ∞, and ξ = 0. We will consider each line separately.

From Eq. (3.4) we see that the clearinghouse is making positive profits 1
λe

−2 when

C = ∞. Using Eq. (3.4) and Eq. (A.15), we see that the clearinghouse is making zero

profits when δc = ∞, and nonpositive profits when δc = 0. We can thus rule out the

latter two cases.

When C = ∞, E [X(δc,∞)] = δce
−λ(δb+δc), implying that expected payoff along the

line (δc, C = ∞) is maximized at δc = 1
λ .

When ξ = 0, we can consider the maximization problem:

max
δc,C

E[X(δc, C)]

subject to ξ := 1 + λδc − 1

2
e−γC(1 +

λ

γ
) = 0.

Notice that when ξ = 0, B̄ = 0 by Theorem 3 and Proposition 1. Introducing the

Lagrange multiplier µ, we obtain that the following must hold at optimum:

0 = 1 + µλ

0 =
γ2

2
e−γC

(

1

γ
− 1

λ+ γ

)(

1

γ
+

1

λ+ γ

)

− µ
γ

2
e−γC(1 +

λ

γ
).

Notice that this system of equations has no solution, so local maxima cannot occur along

the boundary ξ = 0.

This leaves us with the last boundary C = 0, which will give the zero collateral

equilibrium. To see the uniqueness of this equilibrium, we use the following proposition:

Proposition 3. E [X(·, 0)] has exactly one local maximum δ∗
c , at which E[X(δ∗

c , 0)] ≥ 0.

Proof of proposition. Set C = 0. By Theorem 3, the bank imposes augmenting fees

when

ξ(δc, 0) = 1 +
1

θ
v − 1

2

(

1 +
1

θ

)

≥ 0,
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where we are using the definition of ξ given in Eq. (3.9). This is equivalent to

v ≥ 1 − θ

2
.

We first consider the point v = 1−θ
2 , i.e. the threshold above which the bank is switches

from imposing complementing to augmenting fees. Notice this is only relevant when

θ < 1. At this point, we have from Eq. (3.11) u = λ
(

1
2γ − v

γ

)

= 1
2 and B̃ = 0. The

right derivative of E[X(δc, C)] with respect to δc is given by:

e−λB̃
(

1 +
1

θ
((1 + θ)(1 − u) − v) +

u

1 − (1 − u)(1 + θ)

)

. (A.27)

and is equal to

e−λB̃
(

1 +
1

θ
((1 + θ)(1 − u) − v) +

u

1 − (1 − u)(1 + θ)

)
∣

∣

∣

∣

v= 1−θ
2

= 2 +
1

1 − θ
> 0.

at v = 1−θ
2 . Thus the clearinghouse’s profits are increasing at this point. Next, consider

a point v > 1−θ
2 , then by Eq. (3.10), we have

v + log 2 − 1 = −(1 + θ)u− log(1 − u),

thus when v increases, u approaches 1 monotonically. Thus there exists some v∗(θ) such

that for v > v∗(θ) we have

∂E [X(δc, C)]

∂δc
< 0

by Eq. (A.27). Combined with the previous analysis this means that expected profits are

maximized at a finite point where banks are imposing augmenting fees. The condition

for optimality is then Eq. (A.25):

v =
−θ2 + (1 + θ)2u− (1 + θ)u2

u
.

Hence u is implicitly given by,

β(u) := − log 2 + 1 − log(1 − u) +
θ2

u
− (1 + θ)2 = 0.
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Notice that this function always has exactly two zeros on u ∈ (0, 1). We observe that:

β(0) = β(1) = ∞ (A.28)

β′(0) = −∞; β′(1) = ∞ (A.29)

β′(u) = 0 only at u∗ =
−θ2 + θ

√
θ2 + 4

2
< 1 (A.30)

β(u∗) =
2θ2

θ
√
θ2 + 4 − θ2

− log

(

1 − −θ2 + θ
√
θ2 + 4

2

)

− (θ + 1)2 + 1 − log(2) (A.31)

=
−θ2 + θ

√
θ2 + 4

2
− log

(

1 − −θ2 + θ
√
θ2 + 4

2

)

− 2θ − log(2) < 0, (A.32)

where the last inequality follows from the following two inequalities

θ ≥ − log

(

1 − −θ2 + θ
√
θ2 + 4

2

)

≥ −θ2 + θ
√
θ2 + 4

2
(A.33)

which holds true for all θ > 0. To show the first inequality, we notice that θ =

− log
(

1 − −θ2+θ
√

θ2+4
2

)

at θ = 0. In addition, a cumbersome but straightforward com-

putation shows that

∂

∂θ

(

θ + log

(

1 − −θ2 + θ
√
θ2 + 4

2

))

= 1 − 2

4 + θ2
≥ 0

Thus the first inequality in (A.33) holds. The second inequality follows from basic

calculus since − log(1 − x) ≥ x for all x ∈ [0, 1).

Since the expected payoff has at most two critical points, it can have at most one

local maximum.

Last, we show that an interior collateral equilibrium with uint = θ2 + θ, vint =
(

1 − θ3 − θ3

1+θ

)

cannot exist. Notice that the equilibrium is only well defined when

uint ≤ 1, and coincides with infinite collateral equilibrium at θ2 + θ = 1. At this point

vint =
(

1 − θ3 − θ3

1+θ

)

and we can evaluate

λB̃ =
1 + 3θ + θ2

1 + θ

γE[X(uint, vint)] = ve−λB̃ − 1

1 + θ
e−λB̃(1 − u)

(

1 +
θ

1 + θ
+ γB̃

)

= e− 1+3θ+θ2

1+θ
θ2(2 + θ)

1 + θ
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∂

∂θ
e− 1+3θ+θ2

1+θ
θ2(2 + θ)

1 + θ
= −e− θ2

θ+1
− 3θ

θ+1
− 1

θ+1 θ
(

θ4 + 2θ3 − θ2 − 5θ − 4
)

(θ + 1)3

∝ −θ4 − 2θ3 + θ2 + 5θ + 4 > 0

The last inequality follows from the fact that for uint < 1 we must have θ ≤ 1. Since

this derivative is positive, the maximum expected profit (maximized over all θ) of the

clearinghouse at the interior collateral equilibrium is θ2 + θ = 1. For every other θ, the

clearinghouse’s profit is strictly less than the infinite collateral equilibrium. It is thus

never a global maximum unless it coincides with the infinite collateral equilibrium.
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