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Abstract 
 

 Malaria is a devastating tropical disease, accounting for 2 million infections and 

440,000 deaths in 2015. The most effective treatment for malaria is chemotherapy to 

kill the blood stage parasite. Recent spread of drug resistance against the most effective 

anti-malarial known, raises concerns about the future efficacy of existing blood stage 

chemotherapy.  

 It is therefore necessary to identify and study unique biochemical pathways in 

the parasite that hold the potential for chemical intervention. Mitochondrial lipoylation 

in Plasmodium falciparum is one such pathway. Recent evidence suggests that 

mitochondrial lipoylation in the blood stage uses a novel redox mechanism. This 

pathway appears to be a suitable drug target for blood stage malaria and further 

characterization of the mechanisms involved are needed.  

 In this study two of the key proteins involved in this pathway, lipoate ligase 1 

(LipL1) and the H-protein, were expressed in E. coli and purified using FPLC. The purified 

proteins along with the cofactors necessary to drive the protein-protein interaction 

were screened for crystal formation in an attempt to collect x-ray diffraction data that 

could be used for structural determination. Crystals were grown and subjected to x-ray 

radiation, but produced poor quality diffraction data and no structural determinations 

could be made.  

 The dissociation constant and binding kinetics of the protein-protein interaction 

under reducing and non-reducing conditions were studied using isothermal titration 

calorimetry (ITC). Data collected from ITC experiments yielded an average dissociation 
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constant of 0.097µM under non-reducing conditions and 4.8µM under reducing 

conditions. Surface Plasmon Resonance (SPR), which uses a fraction of the protein 

sample compared to ITC, was also used to study the binding between LipL1 and the H-

protein. Data collected from SPR experiments yielded a dissociation constant of 0.39µM 

under non-reducing conditions. 

 The above dissociation constants suggest that lipoylation of the H-protein takes 

place due to its increased affinity for the LipL1-lipoyl-AMP complex, which dominates 

under non-reducing conditions. Under very reducing conditions, the LipL1-dihydrolipoyl-

AMP complex dominates and as can be inferred from the dissociation constants, binding 

and subsequent lipoylation of the H-protein is diminished allowing for binding or 

lipoylation of other substrates.   
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Introduction 
 
Malaria 

There have been great strides made in the reduction of malaria cases and deaths 

over the past 15 years. This reduction is due to a number of factors such as increased 

distribution and use of insecticide-treated mosquito nets (ITNs), increased coverage of 

indoor residual spraying (IRS), increased chemoprevention in pregnant women and 

children, increased distribution and use of diagnostic testing, specifically rapid 

diagnostic tests (RDTs), and increased use of artemisinin-based combination therapy 

(ACT) as antimalarial drug treatment (1).  Although there have been great reductions in 

the number of malaria cases and deaths over the past 15 years, malaria remains a 

devastating disease. The World Health Organization (WHO) estimates that there were 

214 million malaria cases and 440,000 malaria related deaths in 2015 and nearly 70% 

(306,000) of those deaths occurred in children under the age of 5 (1).   

 
Malaria Lifecycle 

 
Malaria is a disease caused by the intracellular, protozoan parasites of the genus 

Plasmodium. Humans can become infected with the Plasmodium parasite when they are 

bitten by an infectious female Anopheles mosquito. Currently, five species of 

Plasmodium: P. falciparum, P. knowlesii, P. malariae, P. ovale and P. vivax are known to 

cause disease in humans. Of the five species of Plasmodium that infect humans, P. 

falciparum accounts for the majority of malaria related deaths (1).  

To say that the lifecycle of the Plasmodium parasite is complex is an 
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understatement. Upon probing for a blood meal, the infectious female Anopheles 

mosquito releases the sporozoite form of the parasite from her salivary gland into the 

human host via her proboscis (figure 1). Sporozoites migrate through the human 

bloodstream into the liver where they invade hepatocytes. Once in the hepatocyte, the 

sporozoite undergoes replication for 2-16 (species dependent (sd)) days until thousands 

of merozoites are released into the blood stream. These merozoites invade 

erythrocytes, where they undergo schizogony to produce 8-32 (sd) new merozoites per 

infected erythrocyte. The infected erythrocyte ruptures 48-72 (sd) hours’ post-invasion 

releasing merozoites which invade more erythrocytes and perpetuate the asexual 

erythrocytic or blood stage cycle (2). A subset of merozoites differentiate into male and 

female gametocytes within the erythrocyte. These non-replicating, asymptomatic 

gametocytes are responsible for parasite transmission back into the mosquito vector 

upon ingestion of a blood meal. Once inside the mosquito midgut, the gametocytes 

differentiate into male and female gametes and fuse to form a zygote. The zygote 

further develops into another form of the parasite known as an ookinete. Once formed, 

the ookinete moves through the mosquito mid-gut epithelium and forms an oocyst on 

the outer midgut epithelium. Thousands of sporozoites are produced in each oocyst and 

after rupture of the oocyst they migrate to the mosquito salivary gland where they wait 

to be transmitted to the human host during the next blood meal (2). 
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         Figure 1.  Lifecycle of the human malaria parasite (2). 

 

This complicated two organism life cycle offers many hurdles in the pursuit to 

control malaria, however, an optimist would contest that it also offers many 

opportunities to disrupt the parasite at various stages during its lifecycle. There are 

numerous labs dedicated to understanding the interplay of the parasite and its host 

environment in all stages of the lifecycle. The research in the laboratory of Dr. Sean 

Prigge is primarily dedicated to studying the blood stage of P. falciparum, since this is 

the only stage that causes the clinical symptoms of malaria in people.  The work 

presented in this thesis is concentrates on the mechanism of protein lipoylation in the 

mitochondrion – a process known to be essential for the survival of blood stage P. 

falciparum parasites.  
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Drug Resistance in Malaria 
  

One of the remaining challenges for malaria control and elimination is the 

geographical spread of drug resistant parasites (1). Drugs have been used to prevent 

and treat persons infected with malaria for centuries. Chloroquine (CQ), an antimalarial 

first synthesized in the 1930’s, became widely used in the early 1950’s due its safety, 

low cost, and efficacy.  CQ resistant parasites were anecdotally reported in 1957 and in 

1960 the first CQ resistant parasites were confirmed in Colombia and also along the 

Cambodia-Thailand border. Over the next three decades CQ resistant parasites spread 

from the Cambodia-Thai border throughout Southeast Asia, Micronesia, Melanesia, 

India, and into Africa. By 1987 CQ resistant parasites had been confirmed in more than 

40 countries. The emergence of CQ resistant parasites reduced the therapeutic efficacy 

of CQ as an antimalarial in these regions, but also severely hampered early malaria 

eradication efforts (2–4). 

Sulfadoxine-pyrimethamine (SP), a safe and cheap antimalarial treatment, began 

seeing widespread use as CQ resistant parasites began to spread. Sulfadoxine and 

pyrimethamine target and inhibit two enzymes involved in folate metabolism, a 

different mechanism of action than CQ (5). SP was introduced in Thailand in the late 

1960’s and its use spread throughout Southeast Asia and South America in the 1970’s 

and eventually saw use in Africa in the early 1980’s (6–9). Just as was seen with CQ, 

increased use of SP led to increased parasite resistance; in the 1980’s SP failure rates 

were between 60-70% in parts of Thailand, in the 1990’s many endemic regions of South 

America could no longer effectively use SP treatment, and in Africa SP resistance was 
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first documented in the 1980’s and rapidly spread from East Africa into West Africa (7–

11).   

Artemisinin was first reported to cure malarious patients in China in 1979 (12). It 

was first introduced on the world stage in the mid 1990’s as multidrug resistant 

parasites had developed in Southeast Asia. Artemisinin and its derivatives clear blood 

stage parasites more rapidly than any other currently available antimalarials and 

artemisinin in combination with other antimalarial drugs (called ACT) has been 

recommended by the WHO as a treatment for drug resistant P. falciparum malaria since 

2001 (13, 14). The WHO has also strongly recommended that artemisinin only be used in 

combination with other antimalarials and in 2006 urged artemisinin manufacturers to 

stop marketing artemisinin monotherapies; both of these recommendations were made 

to help combat the possibility of artemisinin resistant parasites (4, 14). Despite the 

WHOs best efforts, ACT resistant parasites have recently emerged in Southeast Asia (13, 

15, 16).  

The possibility of ACT resistant parasite spreading into other parts of the world 

poses a major threat to global malaria control efforts, as ACT is one of the last remaining 

treatments for multi drug resistant P. falciparum malaria.  In an effort to combat the 

spread of malaria, it is necessary to find novel or existing compounds that lack adverse 

effects in the human host, but are effective at clearing parasites during blood stage 

infection. One approach to uncovering these compounds is the biochemical and 

structural characterization of pathways that are unique to the parasite.  One particular 

pathway of interest as a target for drug intervention is the mitochondrial lipoylation 
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pathway in P. falciparum.   

Alpha Lipoic Acid 

-lipoic acid is an eight carbon cyclic disulfide derivative of octanoic acid (figure 

2). Above pH 4.7 the deprotonated and charged form, lipoate, exists as the dominate 

species (17). -lipoic acid was first crystallized from liver extracts in 1951 and at the 

time was thought to be a novel B vitamin due to its ubiquity in biological sources, high 

activity, and evidence of its catalytic role in the oxidative decarboxylation of pyruvate 

(17). The notion of lipoate as a B vitamin has since been abandoned as there is no 

known human disease associated with lipoate deficiency and strong evidence exists for 

mammalian synthesis of lipoate (18). Nevertheless, lipoate plays a key role as a cofactor 

in several metabolic pathways.  

 

 
Figure 2. Octanoic acid derivatives. (A) Octanoic acid in its deprotonated form. (B) The R  
stereoisomer of lipoate. (C) The structural analogue 8-bromooctanoate has been used in  
parasite growth inhibition studies. (D) The reduced form of lipoate, dihydrolipoate.    

 
Synthesis and Scavenging of Lipoate  

 Lipoylation is the term used to describe the posttranslational modification or 

covalent attachment of lipoate to proteins. Two mechanisms of lipoylation are known to 
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exist: lipoate scavenging, which refers to the ligation of free exogenous lipoate to a 

protein and lipoate synthesis, which refers to the generation of protein bound lipoate 

from an 8-carbon, octanoylated precursor (19).  

 Lipoate metabolism is present in most bacterial, fungal, and protozoan 

pathogens and a thorough review of the nuances of the lipoylation strategies and 

lipoylated proteins present in these pathogens can be found in reference (20). The two 

mechanisms of lipoylation have been best characterized in E. coli and will be described 

here, before introducing the pathways in Plasmodium.  

 In E. coli, lipoate scavenging occurs through the ligation of free exogenous 

lipoate by a lipoate ligase, LplA, to a conserved lysine residue on either of the apo-E2 or 

apo-H-protein subunits of the known lipoylated complexes (described below) (21). All 

lipoate ligases work in similar manner to catalyze a two-step ATP dependent reaction: 1. 

ATP activates free lipoate to form lipoyl-AMP, releasing pyrophosphate. 2. Upon binding 

of apo-E2 or apo-H-protein subunits, the activated carbonyl of lipoyl-AMP forms a 

lipoamide bond with a conserved terminal lysine residue on these proteins, releasing 

AMP and the now lipoylated holo-E2 or holo-H-proteins (21). It has also been shown 

that LplA can use octanoate and 8-bromooctanoate as a substrate in lieu of lipoate, with 

8-bromooctanoate resulting in E. coli growth inhibition (21–23).   

 Lipoate synthesis in E. coli is catalyzed by an octanoyl transferase, LipB, which 

transfers an octanoyl group from octanoyl acyl carrier protein to the apoproteins, E2 or 

H (19). After this transfer, a lipoate synthase, LipA, inserts two sulfur atoms on the 

octanoylated proteins forming the dithiolane ring of lipoate (19, 22, 24). 
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 It is worth noting that the lipoyl domain of the E2 subunits and the H-protein 

share structural similarities, as would be expected considering that they are modified by 

the same lipoylation enzymes (27). 

 

Lipoate’s Dual Role 

Lipoate plays two major roles in the cell. First, lipoate is a unique antioxidant as 

it confers free radical protection in both its oxidized and reduced forms. The lipoate – 

dihydrolipoate redox couple and its wide ranging antioxidant properties can be 

reviewed in references (25) and (26). Second, lipoate serves as a key co-factor in several 

multi-enzyme complexes involved in metabolism. Three of these five complexes are -

ketoacid dehydrogenases, the fourth is an acetoin dehydrogenase, and the fifth is the 

glycine cleavage complex (GCV) or glycine cleavage system (GCS) (20).  

The three -ketoacid dehydrogenase complexes are pyruvate dehydrogenase 

(PDH), -ketoglutarate dehydrogenase (KDH), and branched-chain -ketoacid 

dehydrogenase (BCDH). These three -ketoacid dehydrogenase complexes as well as 

the acetoin dehydrogenase complex share a three subunit architecture with the three 

subunits commonly referred to as E1, E2, and E3 (27, 28). These dehydrogenase 

complexes are massive; the bovine heart PDH complex, for example, is 9.5 MDa and 

consists of 30 copies of the E1 heterotetramer, 12 copies of the E3-binding protein 

monomer, and 12 copies of the E3 homodimer all arranged around a 20 copy core of the 

E2 trimer in an icosahedral configuration (29). The GCS has a much different 

architecture as no stable complex is formed, it is composed of four loosely associated 



 9 

and independent proteins, known as P, T, H and L (30). 

The -ketoacid dehydrogenase complexes all work in a similar manner in that 

they catalyze the decarboxylation of -ketoacids to produce acyl-coenzyme A (acyl-

CoA), NADH, and CO2 by related reaction mechanisms (27). Essentially, the reactions 

begin with the decarboxylation of the substrate by the E1 subunit and acylation of one 

of the sulfur atoms in lipoamide, leaving the second sulfur reduced. The E2 subunit 

active site catalyzes the transfer of the acyl moiety from the lipoamide to CoA. The E3 

subunit then oxidizes the reduced dihydrolipoamide back to lipoamide in a NAD-

dependent reaction (27) (figure 3A).  The various substrates and fates of the -ketoacid 

complexes can be in found in table 1. 

 

-ketoacid 
complex 

Substrate Products Pathways 

PDH pyruvate Acetyl-CoA TCA cycle 
Fatty acid synthesis 
Fatty acid elongation 
Isoprenoid biosynthesis 

KDH -ketoglutarate Succinyl-CoA TCA cycle 
Heme biosynthesis 
Amino acid biosynthesis 

BCDH -ketoisovalerate  

-ketoisocaproate 

-keto--methylvalerate 

Isobutyryl-CoA 
Isovaleryl-CoA 

-methylbutyryl-CoA 

TCA cycle intermediates 
Branched chain fatty- 
    acid biosynthesis 

Table 1.  -KDH complex substrates. The various substrates of the -KDH complexes, the products that are 
produced and the relevant metabolic pathways. 

 

The glycine cleavage complex catalyzes the reversible decarboxylation of glycine 

into CO2, NADH, NH3, while transferring a methylene group to tetrahydrofolate (THF) 

forming 5,10-CH2-THF (30). 5,10-CH2-THF then serves as a one-carbon donor molecule, 
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used by the cell primarily during the synthesis of pyrimidine nucleotides (31) (figure 3B).  

          

 
Figure 3. Reactions of lipoylated complexes (20). (A) The -Ketoacid dehydrogenase complexes have 
analogous reaction mechanisms. The E1 subunit decarboxylates the substrate and transfers the acyl group 
to lipoamide on the E2 subunit. The E2 subunit transfers the acyl group to coenzyme A. Lipoate is 
regenerated through reduction of NAD+ by the E3 subunit. (B) The Glycine cleavage complex catalyzes the 
reversible oxidative decarboxylation of glycine into carbon dioxide, ammonia, and a methylene group.  The 
H-protein serves as a mobile substrate, shuttling between the active sites of the P, T and L proteins.  

 
 
Lipoylation pathways in P. falciparum 
 
 The P. falciparum genome encodes four proteins that are expressed and 

lipoylated in blood stage parasites, the E2 subunits of the PDH, KDH, BCDH and the H-

protein (32–34). The E2 proteins of the KDH and BCDH contain a single lipoyl domain 

while the PDH E2 contains two lipoyl domains (35). The lipoylated proteins are 

partitioned in two different organelles within the parasite, the apicoplast and 

mitochondrion (36).  

 The apicoplast harbors a lipoate biosynthesis pathway that has been shown to 

be superfluous during blood stage infection, but critical for parasite development during 

the liver stage (34, 37, 38).  The PDH complex is localized solely to the parasite 

apicoplast and the lipoylation of the PDH E2 subunit proceeds in a manner analogous to 
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E. coli lipoate synthesis, with PfLipB acting as the octanoyl transferase and PfLipA 

serving as the lipoate synthase (35, 36). The P. falciparum LipB gene has been 

successfully disrupted with no deleterious growth defects on blood stage parasites, 

suggesting that the P. falciparum lipoate synthesis pathway is dispensable during the 

blood stage and therefore would not make a suitable drug target. 

 The parasite is dependent upon host scavenged lipoate in order to lipoylate the 

E2 subunits of the BCDH and KDH as well as the H-protein of the GCS, all three of which 

are found exclusively in the mitochondrion (33, 36, 39). Substrate lipoylation in the 

parasite mitochondrion is dependent upon two enzymes, lipoate ligase 1 (LipL1) and 

lipoate ligase 2 (LipL2). LipL1 is strictly localized to the mitochondrion, while LipL2 is 

found in both the mitochondrion and the apicoplast (34, 36). Both LipL1 and LipL2 genes 

appear to be refractory to disruption, suggesting that the lipoate scavenging pathway is 

necessary for parasite blood stage development and therefore would make an attractive 

target for therapeutic intervention (40, 41). The evidence for the necessity of lipoate 

scavenging is further strengthened by inhibition studies conducted with the lipoate 

analogue 8-bromooctanoate (8-BrO) (figure 2). Treatment of parasites with 8-BrO, 

which is presumed to enter the parasite via the same transporter as lipoate, interferes 

with the integration of scavenged lipoate and results in blood stage growth inhibition 

(33).    

 A recently published paper from our lab provides evidence for two distinct 

mitochondrial lipoylation pathways in P. falciparum.  The findings also suggest that the 

switch between these pathways is dependent upon the redox conditions within the 
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mitochondrion, a mechanism that has not been described in any other organism (42). 

Under slightly reducing conditions LipL1 works independently to lipoylate the H-protein. 

However, under strong reducing conditions LipL1 and LipL2 work in conjunction to 

almost exclusively lipoylate the E2 subunits of the BCDH and KDH complexes, while the 

H-protein shows almost no lipoylation as visualized by western blot analysis in (42). The 

current model for P. falciparum mitochondrial lipoylation can be seen in figure 4.   

 

 
Figure 4 – Lipoylation via lipoate scavenging in P. falciparum. Under less reducing conditions LipL1 
lipoylates the H-protein. Under conditions where lipoate is reduced to dihydrolipoate LipL1 and LipL2 work 
in concert to lipoylate the E2 subunits of the BCDH and KDH complexes.   

 

Structural studies of E. Coli lipoylation  

 A key to understanding what may be going on in the P. falciparum 

mitochondrion can be found if we turn our attention back to the E. coli lipoylation 
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machinery. The crystal structure of the E. Coli lipoate ligase, LplA, in complex with lipoyl-

AMP has been determined at 2.05 Å as well as the ternary structure of LplA, octanyl-

AMP, and the E. coli H-protein at 3.00 Å (43). Their structures show that upon activation 

of lipoate to lipoyl-AMP, LplA undergoes a structural rearrangement where the C-

terminal domain rotates by 180o. It is only after this structural rearrangement that 

binding and subsequent lipoylation of the H-protein can occur.  

 
Aims of the project. 
 
 I hypothesize based on evidence from the Afanador (42) paper that PfLipL1 

undergoes different structural rearrangements depending on whether it binds lipoyl-

AMP or the reduced dihydrolipoyl-AMP. This structural difference is the molecular 

switch causing LipL1 to recruit either LipL2 (for the lipoylation of KDH and BCDH), or the 

H-protein. I would therefore predict that the H-protein would bind tightly to a LipL1/ 

lipoyl-AMP complex, but not to a LipL1/ dihyrolipoyl-AMP complex. Unfortunately, 

formation of the ternary H-protein/LipL1/lipoyl-AMP complex should rapidly lead to 

product formation. By mutating the site of lipoylation on the H-protein, from lysine to 

alanine (HK96A), we can theoretically abrogate its lipoylation while still being able to 

study the binding.  

 Using the HK96A mutant, I attempted to crystallize the H-protein/LipL1/lipoyl-

AMP complex in order to determine its structure using x-ray crystallography. I also set 

out to determine the dissociation constant of HK96A for the LipL1/lipoyl-AMP complex 

under reducing and non-reducing conditions using isothermal titration calorimetry and 

surface plasmon resonance. The work is done in an attempt to better characterize and 
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understand the mechanisms of mitochondrial lipoylation in Plasmodium falciparum, as 

this pathway is unique to the parasite and appears to be a good target for drug 

development against blood stage malaria.  

 
 
 

Materials and Methods  
 
 
Expression Plasmids 

 Expression plasmid pMALcHT-Hprot (42), encoding residues E35-K200 (lacking 

the predicted N-terminal mitochondrial transit peptide) of the Pf H-protein 

(PF3D7_1132900) was subjected to site directed mutagenesis (SDM) in order to mutate 

the conserved lysine residue at position 96 to an alanine residue for binding studies. 

pMALcHT-Hprot was subjected to PCR amplification with forward and reverse primers 

coding for the lysine to alanine mutation (see appendix - primers). The resulting PCR 

reaction mixture was incubated with DpnI endonuclease at 37oC for 1hour to digest any 

of the template pMALcHT-Hprot plasmid. The amplicons were then subjected to ethanol 

precipitation and re-suspended in H2O. Plasmids were transformed into BL21-Star (DE3) 

cells (Invitrogen), grown for 1 hour in SOC media at 370C, 250rpm and plated on LB agar 

+ carbenicillin to select for the pMALcHT plasmid. After 24 hours at 37oC colonies were 

selected, grown in 5ml of circle grow media + carbenicillin overnight at 370C, 250rpm. 

Plasmids were isolated using Qiagen plasmid mini-prep protocol and sent for DNA 

sequencing for verification. One of the three colonies sent for sequencing was verified 

as having the lysine to alanine mutation at position 96. This plasmid was renamed 
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pMALcHT-HK96A for this study. Expression plasmid pMALcHT-LipL1 (42) was used 

without modification for this study.  

 A plasmid encoding the Pf H-protein (residues E35-K200) with a lysine to 

methionine mutation at position 96 (HK96M) fused to Pf LipL1 (minus the mitochondrial 

targeting sequence) via a 17 amino acid linker region was purchased from GeneArt 

(appendix, figures 12, 13). This fusion protein construct was designed to be used for 

crystallization studies and was named pMK HK96M-LipL1 for this study. We used pMK 

HK96M-LipL1 to generate a similar plasmid with the K96A mutation instead of K96M. 

pMK HK96M-LipL1 was incubated with restriction enzymes PvuI-HF and AatII overnight 

at 37oC to remove a small sequence including the lysine to methionine mutation at 

position 96. One hour prior to gel purification of the cut plasmid, 0.5µl of Shrimp 

Alkaline Phosphatase (NEB) was added to the reaction to remove the 5’ and 3’ terminal 

phosphates.  The cut pMK plasmid was visualized on a 1% agarose gel and the resulting 

band was excised and gel purified using a Qiagen QIAquick gel extraction kit. Duplex 

DNA encoding the K96A mutation was formed from adaptamer primers (see appendix). 

1µL of 100µM forward and reverse HK96A adaptamer primers were mixed with 1µL of 

10x PCR buffer (NEB) and 8µL of water. This mixture was placed in a heat block at 92oC 

for one minute and allowed to cool/anneal at room temperature. After cooling, the 

duplex DNA insert was diluted to a concentration of 1µM and 0.1µM.  A 12µL ligation 

reaction was initiated using 6µL of New England Biolabs (NEB) 2x ligase buffer, 1.2µL 

quick ligase (NEB), and 4.8µL of the cut pMK plasmid. After mixing, this 12µL reaction 

was immediately split into 3 equal parts and incubated with 2µL H20 (control), 2µL of 
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1µM HK96A adaptamer, and 2µL of 0.1µM HK96A adaptamer. After 15 minutes at room 

temperature, these ligation reactions were transformed into Top10 E. coli cells 

(Invitrogen) as described above.  Plasmids from carbenicillin-resistant colonies were 

isolated and sequence verified as described above. The resulting plasmid was named 

pMK HK96A-LipL1.  

 The protein coding portions of the pMK plasmids were subcloned into the 

expression plasmid pMALcHT (44) for protein production. pMK HK96M-LipL1 and pMK 

HK96A-LipL1 were digested with EcoRI and HindIII overnight at 37oC to remove the H-

LipL1 fusion sequence from the plasmid. The digestion products were visualized on a 1% 

agarose gel and the band corresponding to the H-LipL1 sequence was excised and gel 

purified as described above.  This sequence was then ligated into the pMALcHT vector 

which had also been digested with EcoRI and HindIII. The sequences were verified and 

the resulting plasmids were renamed pMALcHT HK96M-LipL1 and pMALcHT HK96A-

LipL1.   

 The HK96A-LipL1 fusion construct was designed with multiple restriction enzyme 

sites in the 17 amino acid linker region between the two proteins in order to have the 

option to adjust the length of the linker (appendix, figure 12). The restriction enzymes 

SpeI and NheI were used to cut out a 15 amino acid stretch of this linker. The cut 

plasmid was visualized on a 1% agarose gel, the band was cut out, gel purified, and 

subjected to ligation. The sequence was verified and the product was renamed 

pMALcHT HK96A-LipL1 d15. Another truncation was made in a similar manner with the 
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restriction enzyme KpnI-HF, removing 9 amino acids from the linker region. The 

sequence of this construct was verified and was renamed pMALcHT HK96A-LipL1 d9.  

 Expression plasmid pMALcHT (33, 44) was used to express LipL1, HK96A, HK96M-

LipL1 fusion protein, and HK96A-LipL1 fusion protein as maltose binding protein (MBP) 

fusion proteins with a linker region composed of a tobacco etch virus (TEV) protease cut 

site followed by a six histidine affinity tag.   

Protein expression and purification  

 Plasmids pMALcHT-LipL1, pMALcHT-HK96A, pMALcHT HK96M-LipL1, pMALcHT 

HK96A-LipL1, pMALcHT HK96A-LipL1 d15, and pMALcHT HK96A-LipL1 d9 were 

transformed into BL21-Star (DE3) cells (Invitrogen) and co-transformed with the pRIL 

plasmid isolated from BL21- CodonPlus-RIL cells (Agilent) and plasmid pRK586 encoding 

the Tobacco Etch Virus (TEV) protease (45), as previously described (33, 42). These cells 

produce the protein of interest fused to an amino-terminal six histidine-tag (the MBP 

tag is cleaved in vivo by TEV protease). Transformed cells were grown in 500mL of 

Terrific Broth (TB) at 250rpm, 37oC until OD (600nm) = 3.0. The expression of 

recombinant proteins was induced by the addition of 0.4mM IPTG and cultures were 

incubated for 10 hours at 20oC. Proteins were harvested by pelleting cultures at 

4200rpm for 20 minutes. Cell pellets were re-suspended in approximately 50mL of 

buffer containing 20mM HEPES, 300mM NaCl, 20mM imidazole, pH 7.5 and 

supplemented with EDTA free protease inhibitor cocktail, (Complete Protease Mini; 

Roche Diagnostics Corp.). Re-suspended cells were cooled on ice and lysed via 
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sonication at 33% amplitude, a pulse of 0.5s on, 0.5s off, in three 1-minute iterations, 

with one minute of cooling between sonication. Lysed cells were centrifuged at 

19000rpm for 25 minutes. The supernatant was then subjected to metal chelate 

chromatography (HisTrap HP 5mL). Captured protein was gradient eluted with 1M 

imidazole pH 8.0 into 5mL fractions. Fraction samples were analyzed via SDS-PAGE. 

Fractions containing the protein of interest were consolidated and subjected to 

desalting/buffer exchange (20mM HEPES, 50mM NaCl, pH 7.5 for HK96A and LipL1 or 

50mM MES, 50mM NaCl, pH 6.0 for H-LipL1 fusion) with 2x HiPrep 26/10 columns with 

the flow through passing directly onto ion exchange columns (HiTrap SP FF 5mL column 

for LipL1 and H-LipL1 fusion: HiTrap Q HP 5mL column for HK96A). Proteins were 

gradient eluted from ion exchange columns with 20mM HEPES, 1M NaCl, pH 7.5 for 

HK96A and LipL1 or 50mM MES, 1M NaCl, pH 6.0 for H-LipL1 fusion and collected in 5mL 

fractions.  Fraction samples were analyzed via SDS-PAGE. Fractions containing the 

protein of interest were consolidated and subjected to gel filtration/size exclusion 

chromatography on a HiPrep 26/60 Sephacryl S-100 high resolution column. Proteins 

were collected in 5 mL fractions that were analyzed via SDS-PAGE. Fractions containing 

the protein of interest were consolidated and concentrated using Amicon Ultra 

centrifugal filters, 10kD MWCO and 30kD MWCO for HK96A and LipL1, respectively. 

Purity was confirmed by SDS-PAGE using Coomassie staining. Stock protein 

quantification was performed using a Nanodrop ND-2000 spectrophotometer at 280nm 

absorbance. The absorbance values along with the predicted extinction coefficient 

obtained through the ExPASy protparam tool (http://web.expasy.org/protparam) were 

http://web.expasy.org/protparam)
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used to calculate the protein concentration. Concentrated protein stocks were used 

immediately or stored at -80oC. All purification techniques were conducted at 4oC using 

an AKTA FPLC system. All columns used were manufactured by GE Healthcare Life 

Sciences. 

Crystallization 

 Purified LipL1 and HK96A were thawed on ice and spun at 13000rpm for 15 

minutes at 4oC in a tabletop centrifuge to pellet any aggregates, the supernatant was 

transferred to a clean Eppendorf tube after centrifugation. Purified, concentrated LipL1, 

HK96A, ATP and R-Lipoic acid were combined into a master mix with final 

concentrations of 100µM, 130µM, 1mM, and 130µM, respectively. 

 Initial crystal screening conditions were performed using a 96-well 3 sitting drop 

Intelli-Plate (Art Robbins Instruments). Crystals were identified from a screen set up 

with 200nL of the above master mix and 200nL reservoir using a Mosquito crystallization 

robot (TTP Labtech). The Hampton Crystal Screen, MORPHEUS protein crystallization 

screen (MRC Labs), and the Wizard Classic crystal screen (Rigaku) were used in the initial 

screening conditions.  Crystals were observed in the Hampton crystal screen, conditions 

6, 12, and 46. Crystal optimization was attempted around these conditions using a 24-

well 4 sitting drop Intelli-Plate with reservoir containing 500µL of mother liquor. Sitting 

drops contained 1µL of the above master mix and 1µL of reservoir solution. All trays 

were covered and placed in 20oC to equilibrate. See appendix for optimization 

conditions. Crystal optimization was unsuccessful. Initial screen crystals were mounted 
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in a 0.1mm nylon cryoloop (Hampton Research) and flash frozen directly in liquid 

nitrogen before shipping to the Stanford Synchrotron Radiation Lightsource (SSRL) for 

data collection.  

 Purified HK96A-LipL1 fusion protein was thawed on ice and spun at 13000rpm 

for 15 minutes at 4oC in a tabletop centrifuge to pellet any aggregates and the 

supernatant was transferred to a clean Eppendorf tube after centrifugation. Purified, 

concentrated HK96A-LipL1, ATP and R-Lipoic acid were combined into a master mix with 

final concentrations of 60µM (3.2 mg/mL), 1mM, and 100µM, respectively. Initial 

screening conditions were carried out as described above using the following screens: 

Hampton Crystal Screen, MORPHEUS protein crystallization screen (MRC Labs), Wizard 

Classic I and II crystal screens (Rigaku), PEGs Suite (Qiagen), Classics Suite (Qiagen). No 

crystals were observed in any of these conditions. Optimization was not attempted. 

Isothermal Titration Calorimetry 

 HK96A and LipL1 were thawed on ice and dialyzed overnight at 4oC in 1L of 

50mM TRIS-HCl pH 7.4, 150mM NaCl using 3,500 molecular weight cut off Slide-A-Lyzer 

dialysis cassettes (Pierce). ITC experiments were carried out using a MicroCal VP-ITC 

calorimeter.  A titrant containing 20-fold molar excess of HK96A was titrated into a 

1.4mL sample of 2µM LipL1 at 25oC. Both titrant and sample cell solutions contained 

100µM ATP, 100µM MgCl2, and 100µM R-lipoic acid. For one experiment, 5mM TCEP 

was added in addition to the above small molecules. A single 2µL injection followed by 

twenty-nine 5µL injections was used for each experiment. The baseline was corrected 

manually and the corrected data were fit to a single-site binding model using Origin 
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software. Experiments not containing TCEP were carried out in triplicate and the 

experiment containing 5mM TCEP was performed only once due to limited quantities of 

HK96A.  

Surface Plasmon Resonance 

 SPR data was collected on a Biacore 3000 instrument. All protein solutions were 

spun at 13000rpm for 15 minutes at 4oC in a tabletop centrifuge to remove any 

aggregates prior to data collection. All buffers were filtered through a 0.22-micron 

sterile filter device and degassed prior to use. Each time a new sensor chip was docked 

or running buffer was replaced, the system was primed three times to flush and 

equilibrate all internal pumps, tubing and chambers. Purified, concentrated LipL1 or 

HK96A was diluted to 20-50µg/ml in 200µL of 10mM sodium acetate buffer at pH 6.5, 

6.0, 5.5, 5.0, 4.5, 4.0 and pH scouting for optimal pre-concentration conditions on 

sensor chips CM5 and CM3 was performed. This procedure identifies the pH conditions 

that maximize protein accumulation on the sensor chip surface due to electrostatic 

interactions between the protein to be bound (ligand) and the carboxymethylated 

dextran (pKa = 3.5) on the sensor chip surface. Inspection of the sensorgram during pre-

concentration will indicate what pH is ideal for covalent immobilization, but also at what 

pH, if any, your protein may be denaturing and aggregating on the sensor surface. This is 

indicated by a persistent response on the sensor surface after the pre-concentration 

step has completed.  Sodium acetate pH 5 was determined to be the best pre-

concentration buffer for immobilization of HK96A, while sodium acetate pH 6 was the 

best pre-concentration buffer for LipL1. During pre-concentration at pH 5.5 or below, 
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LipL1 became “stuck” to the sensor chip surface and was unable to be removed even 

after harsh treatment with 50mM NaOH and 0.5% SDS. HK96A showed no indications of 

denaturation during pre-concentration.  

 HK96A or LipL1 were immobilized to the surface of a particular flow cell via 

amine coupling with 0.4M EDC/0.1M NHS using the Biacore surface preparation wizard. 

Coupling reactions were quenched with 1M ethanolamine pH 8.5. Chips were allowed to 

equilibrate for at least 2 hours in running buffer at a flow rate of 5µL/min following the 

coupling procedure. The reference flow cell was subjected to the same EDC/NHS 

coupling chemistry and ethanolamine quenching as the experimental flow cell, however 

no ligand was ever bound to the surface of the reference flow cell. The analyte was 

diluted in running buffer and a series of 2 fold dilutions were performed. Binding 

experiments were performed at a flow rate of 30µL/min, analyte injections were carried 

out using the kinetic injection (KINJECT) command in order to minimize analyte 

dispersion within the flow chambers prior to reaching the flow cell, an association time 

of 60 seconds (minimum), and a dissociation time of 120 seconds (minimum). 

Regeneration conditions could not be experimentally determined, therefore, after the 

dissociation step in each injection cycle, the flow rate was increased to 50µL/min for 10 

minutes prior to the next injection. This long wait time was added in order to allow for 

continued dissociation of the analyte ligand complex. Every binding experiment began 

with three blank injections of running buffer, that served to “warm-up” the instrument 

as well as provide a valuable second reference during data analysis. A single running 

buffer blank injection was also included in between the analyte concentration series 
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injections.  

 Data was analyzed using Scrubber (BioLogic) software. To correct for non-specific 

binding and baseline drifts, a double referencing method was applied using the 

reference flow cell as well as interspersed blank injections. 

 
 
Results 
 
 
Protein Purification 
 
 Typical yield from a 2 x 500mL Terrific Broth preparation of HK96A is 250µL at 

2.0 mg/mL. Typical yield from a 2 x 500mL Terrific Broth preparation of LipL1 is 1mL at 8 

mg/mL. Both proteins appear to be greater than 90% pure (figure 5c). Both HK96A and 

LipL1 elute well past the void volume (90mL) of the 26/60 Sephacryl S100 column (figure 

5a and 5b), indicative of a protein that has retained its native conformation and has not 

aggregated to form a large particle. 
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Figure 5 – HK96A and LipL1 protein purification.  (A) Typical gel filtration elution profile for HK96A, in this purification 
fractions A9-A12 (green lines) were pooled and concentrated. HK96A begins to elute around 120mL. (B) Typical gel 
filtration elution profile for LipL1, fractions A9-B2 were pooled and concentrated. LipL1 begins to elute around 130mL. 
(C) SDS-PAGE gel of purified, concentrated HK96A and LipL1.  Lane 1- ladder, Lane 2- Purified HK96A, Lane 3- Purified 
LipL1.   

 
 Typical yields from a 4L LB broth preparation of HK96A-LipL1 full length fusion 

protein was 1.1mL at 7.4 mg/mL. Typical yields from a 2L LB broth preparation of 

HK96A-LipL1 d15 fusion protein was 1.5mL at 2.1 mg/mL. The H-protein (19.2kD) has a 

theoretical isoelectric point of 4.74, while LipL1 (41.1kD) has a theoretical isoelectric 

point of 8.51. I assumed that the H-protein and LipL1 in the fusion protein construct 

would behave as independent globular proteins. After metal chelate chromatography 

using the HisTrap column, I chose to take advantage of the larger positively charged 

LipL1 for the ion exchange purification step. I found that by using 50mM MES at pH 6.0, I 

C 

B 

A 
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could increase the purity of the fusion protein during elution from the SP column, when 

compared to 20mM HEPES at pH 7.5 which was the buffer used during the ion exchange 

step for each of the individual proteins. The HK96A-LipL1 full length and HK96A-LipL1 

d15 fusion proteins can be seen below in figure 6. Neither of these protein constructs 

were subjected to size exclusion chromatography.  

 

 
Figure 6 – Fusion protein purification. SDS-PAGE gel of purified HK96A-LipL1 fusion protein.  Lane 1 is the ladder. Lane 
2 is the f𝑢𝑙l length HK96A-LipL1 fusion protein. Lane 3 is the HK96A-LipL1 d15 fusion protein. The predicted size of the 
HK96A-LipL1 fusion protein is 61,700kD while the HK96A-LipL1 d15 fusion protein is 60300kD. Lanes represent proteins 
after two steps of purification: metal chelate chromatography with a HisTrap column followed by SP cation exchange.     

 
 
 
Crystallization 
 
 Four LipL1/lipoyl-AMP/HK96A complex crystals were sent to SSRL, but did not 

produce a diffraction pattern of significant quality and therefore could not be used for 
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further structural studies.  On a positive note, the diffraction pattern was not that which 

is characteristic of a salt crystal. Upon return of the crystals from the SSRL, they were 

washed and subjected to SDS-PAGE in an attempt to visualize which protein(s) actually 

crystallized. Protein bands were not visible in the SDS-PAGE lanes following two days of 

staining. 

 

  
Figure 7. LipL1-HK96A protein complex crystals. (A) One of two presumed protein complex crystals grown in Hampton 
Research Crystal Screen (HR), condition #12. (B) The second of two presumed protein complex crystals grown in HR, 
condition #12. (C) Sole crystal grown in HR, condition #46. (Not pictured crystal grown in HR, condition #6 – 0.2M 
MgCl2 hexahydrate, 0.1M TRIS-HCl pH 8.5, 30% w/v PEG 4000). 

  
 
 
Isothermal Titration Calorimetry 
  
   Prior to adding 40µM HK96A into the injection syringe and 2µM LipL1 into the 

sample cell, both proteins were incubated with 100µM ATP, 100µM MgCl2, and 100µM 

R-lipoic acid for 10 minutes. The small molecules were added to LipL1 in order to allow 

the formation of the lipoyl-AMP conjugate. The small molecules were added to HK96A 

in order to minimize the heat of dilution during the titration.  

 The average dissociation constant for the HK96A with LipL1/lipoyl-AMP 

interaction under non-reducing conditions (figure 8) was determined to be 0.097µM. 

A B C 

0.2M MgCl2 Hexahydrate 
0.1M HEPES pH 7.5 
30% v/v 2-propanol 

0.2M MgCl2 Hexahydrate 
0.1M HEPES pH7.5 
30% v/v 2-propanol 

0.2M Calcium Acetate hydrate 
0.1M Sodium  
cacodylate trihydrate pH 6.5 
18% w/v PEG 8000 
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The dissociation constant for this interaction under reducing reductions (figure 9) is 

presented here as 4.8µM. The experiment under reducing conditions was only 

performed once due to limited amounts of purified HK96A. Table 8 (appendix) 

summarizes the data collected from the successful ITC. 

 

       
        Figure 8 – ITC binding data – non-reducing conditions. (A) The binding isotherm (red) is fit to the integrated  
        peaks (B - top panel) using a 1:1 binding model. The KD for this experiment is 0.142µM. (B) Top panel – Each  
       peak represents the heat released, due to binding, for each injection of HK96A into LipL1. As LipL1 becomes  
       more saturated with each subsequent injection of HK96A, less binding and therefore less heat of binding can  
       be measured until the only the heat of dilution is measured. (B) Bottom panel – The binding isotherms 
       created by plotting the integrated heat peaks against the molar ratio of LipL1.  

 

B A 
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        Figure 9 – ITC binding data – reducing conditions. (A) The binding isotherm (red) is fit to the integrated  
        peaks (B - top panel) using a 1:1 binding model. The KD for this experiment is 4.8µM. 

 
 
Surface Plasmon Resonance 
  
 Numerous attempts to measure the binding affinity of the H-protein and 

LipL1/lipoyl-AMP were made using various buffers, at various concentrations, with 

additves such as BSA and soluble dextran to reduce non-specific binding and increase 

the signal to noise ratio. Table 7 summarizes the experimental conditions and 

observations from the various SPR experiments that I conducted.  I initially started the 

SPR binding experiments using a CM5 sensor chip which has a very high density of 

carboxymethylated dextran. Due to the very high level of non-specific binding that was 

observed when flowing LipL1 or HK96A as the analyte on the CM5 chip, I abandoned the 

CM5 chip for a CM3 sensor chip, which has shorter dextran polymers and significantly 

less carboxymethylated coupling sites. The sensorgram in figure 10 was generated using 

A B 
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a CM3 chip with 2946 response units (RU) of LipL1 bound to chip surface. A 7mg/mL 

LipL1 sample was diluted in 200µL of 10mM sodium acetate buffer pH 6 to a final 

concentration of 35µg/mL. Flow cell 1 on the CM3 chip was activated with EDC/NHS 

using the Biacore surface preparation wizard. The 35µg/mL LipL1 sample was then 

allowed to flow into the activated flow cell 1 at 5µL/min for 1 minute in order to 

accomplish covalent coupling of LipL1 to the surface of the sensor chip. After 1 minute 

the coupling reaction was immediately quenched by the the flow of 1M ethanolamine 

pH 8.5 for 7 minutes. The activation, coupling, and quenching was automated and 

performed in immediate succession by the Biacore surface preparation wizard. I allowed 

the activated chip to equilibrate in the running buffer (25mM K-Na PO4 pH 7.5, 65mM 

NaCl, 3mM EDTA, 0.005% (v/v) tween 20) for 4 hours before beginning binding studies. 

A 153µM HK96A solution was diluted to a final concentration of 5µM HK96A in running 

buffer with 1mM ATP and 100µM R-lipoic acid. Four, 2-fold serial dilutions of this 

sample were made yielding final concentrations of HK96A at 5µM, 2.5µM, 1.25µM 

625nM, and 312nM.  

 The binding experiments were carried out at 30µL/min, with an association time 

of 150 seconds, dissociation time of 180 seconds, and 2 separate 60 second quick 

injections of 1M NaCl per cycle in an attempt to dissociate any bound H-protein 

(regeneration). Three “blank” running buffer injections cycles were followed by a 

conjugation formation injection cycle consisting of just 1mM ATP and 100µM R-lipoic 

acid. This conjugation formation injection cycle was followed by another blank running 

buffer injection and finally the concentration series injections beginning with the 5µM 
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HK96A concentration and proceeding to the lower concentrations. For this experiment 

flow cell 4 was used a subtractive reference cell and the average of the running buffer 

blank injections were used to double reference the sensorgram. Flow cell 4 was 

unmodified by any coupling chemistry. The 5µM HK96A concentration injection data 

was inconsistent with the other concentration sensorgram curves and was removed 

prior to curve fitting. The association and dissociation of the analyte HK96A to bound 

LipL1/lipoyl-AMP can be seen below in figure 10. Binding data from this SPR experiment 

with LipL1 bound and HK96A under flow, yield a dissociation constant of 0.396µM under 

non-reducing conditions.   

 
Figure 10 – SPR binding data – non-reducing conditions. His6-LipL1 was immobilized on a CM3 chip and His6-HK96A 
was injected at four 2-fold serial dilutions (2.5µM-312.5nM). The blue curve is the HK96A 2.5µM concentration 
injection. The sensorgram plots response units on the Y-axis vs. time on the X-axis. Straight lines over the raw 
sensorgram curves indicate the best fit model used by Scrubber (Biologic) data processing software to derive an 
equilibrium dissociation constant of 0.396µM for this interaction. 

 
Discussion 
 
 By increasing the length of the sonication to three 1-minute iterations and by 
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adding 20mM imidazole to the lysis/running buffer during lysis and initial His-trap 

purifications, I was able to increase the yield and purity of PfHK96A. This is important for 

future work as HK96A was the limiting reagent in all of these experiments.   

 It is also worth noting that the size of the E. coli pellet during expression of 

HK96A was significantly reduced as compared to the size of the E. coli pellet during 

expression of Lipl1. This casual observation could indicate that the overexpression of Pf 

HK96A is toxic to E. coli, possibly due to competitive binding of the E. coli H-protein to 

LplA.  

 Although PfHK96A is roughly half the size of LipL1 it starts to elute from the S100 

gel filtration column about 10mL prior to LipL1. Typically, larger proteins tend to elute 

first, with smaller proteins eluting after. I performed one of the many HK96A gel 

purifications under reducing conditions to see if the early HK96A elution was due to 

dimerization through a disulfide bond. The reducing conditions had no effect on the gel 

filtration elution profile of HK96A, suggesting that HK96A is not a disulfide-linked dimer 

and therefore does not explain the early elution of HK96A. It may be that HK96A exists 

as a non-covalent dimer or has an unusual non-globular shape, resulting in a large 

hydrodynamic radius. It is worth noting that the Pf H-protein has an extended 40 amino 

acid tail not found in prokaryotic H-protein sequences and this region could be 

responsible for the unexpected elution profile from the gel filtration column. 

 The fusion protein constructs were not subjected to size exclusion 

chromatography prior to attempting crystallization. Getting a cleaner fusion protein, via 

gel filtration, prior to setting up crystal conditions could increase the chances of 
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producing ternary complex crystals that produce diffraction patterns at high enough 

resolution that lead to structural determination.  

 I moved away from ITC as a technique for determining the binding affinities for 

the protein-protein interaction due to that fact that each experiment consumed a large 

quantity of the purified HK96A protein used as the titrant. Typical yields for a 5-day long 

expression and purification from the gel filtration column were 250µL at 2mg/mL.  A 

2mg/mL concentration of HK96A is roughly 120µM. For the single experiment shown in 

Figure 8, 350µL of 40µM HK96A was used. I turned to SPR as a second method to 

determine the binding affinities of the proteins. Due to the highly sensitive nature of the 

technique very small quantities of proteins are needed. In theory, this should facilitate 

studying this interaction since HK96A is poor overexpressing protein and it is difficult to 

obtain large amounts.  

 SPR was not without its challenges. One of the major challenges of capturing the 

binding response was overcoming the response due to non-specific binding (NSB) of the 

analyte to the sensor chip surface. Theoretically, you can run SPR experiments with 

either binding partner bound to the chip surface. I tried multiple experiments with 

HK96A bound to the chip surface and flowing LipL1 as the analyte. I could not find 

conditions to overcome the LipL1 non-specific binding response. I settled on the amine 

coupling of LipL1 to the chip with HK96A as the analyte, as early experiments showed 

that HK96A had significantly less NSB. I was finally able to get a characteristic binding 

sensorgram after switching to a less carboxymethylated CM3 sensor chip. Results from 

the dilution series SPR experiment described above suggest a dissociation constant of 
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396nM under non reducing conditions, which is not far from the 97nM dissociation 

constant calculated under non-reducing conditions using ITC.  

  The binding data from the ITC experiments suggest that HK96A does indeed 

have an increased affinity for LipL1/lipoyl-AMP under non-reducing conditions as 

compared to reducing conditions. It remains to be seen whether the SPR experiment 

will yield reproducible results and a similar SPR experiment has yet to be conducted in 

the presence of a strong reducing agent, in order to compare the SPR dissociation 

constant under reducing conditions to that calculated by ITC. In the absence of 

structural data, it is impossible to explain why LipL1 preferentially lipoylates the H-

protein under non-reducing conditions vs. reducing conditions. In order to draw a 

complete picture of the mechanism of this pathway it is necessary to solve the crystal 

structures of the LipL1/lipoyl-AMP/H-protein complex as well as LipL1 in complex with 

dihydrolipoyl-AMP or its structural analogue 6,8 dichlorooctanoate to corroborate what 

we are seeing with the binding data of these two proteins.  

 Further inquiries into the actual role of the H-protein are also needed to 

understand the H-protein’s role after it is lipoylated. The P and T proteins of the GCS are 

absent in Plasmodium falciparum; therefore, the H-protein cannot perform its canonical 

role in glycine metabolism. It may be that the Pf H-protein has a function similar to that 

recently elucidated in Trichomonas vaginalis (46). In T. vaginalis, the P and T proteins 

are absent, with the H and L proteins being found in the hydrogenosome. It was shown 

that the H and L proteins work to deliver electrons to osmotically inducible protein, 

OsmC, which in turn reductively detoxifies harmful peroxides which are formed during 
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the interaction between the host’s immune response and T.vaginalis parasites (46).  
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Appendix 
 
Primers used for site directed mutagenesis, lysine to alanine mutation at position 
 96 of the Plasmodium falciparum H-protein. 
 
 Forward: 
 5’ – GATTGTATAGCGACAATTGAAAGTGTCgcgAGTGTAGGAGATGTATATACTCCTGT-3’ 
  
 Reverse: 
 5’ – ACAGGAGTATATACATCTCCTACACTcgcGACACTTTCAATTGTCGCTATACAATC-3’ 
 
Primers used for creating the adaptamer in order to change methionine at position 96 in 

the HK96M-LipL1 fusion protein to alanine, yielding the HK96A-LipL1 fusion protein 
 
 Forward: 
 5’ – Phos-CGAAAGTGTCgcgAGTGTAGGAGACGT – 3’ 
  
 Reverse: 
 5’ – Phos-CTCCTACACTcgcGACACTTTCGAT – 3’ 
  
Primers used for sequencing the pMALcHT plasmid. 
 
 Forward: 
 5’ – GCCCTGAAAGACGCGCAGAC – 3’ 
 
 Reverse: 
 5’ – CGCCAGGGTTTTCCCAGTCACGAC – 3’ 
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GGAATTGTGAGCGGATAACAATTCCTAGGAGGAGGTTGGATCCATGGAATTCATTAAAATCGA

AGATGGCAATCTGAACAACCGCAAAGATATGACCAATGTGAAATGCAAAATTGGCATCAGCAA
TTACGGCACCCATAAACTGGGTGAAATTGTTTATGTTGATGTGGCCCATAACATCAACGACCAT

GTTAAAAAAGGTGATTGCATTGCAACGATCGAAAGCGTTATGAGCGTTGGTGACGTCTATACA

CCGGTTAGCGGCAAAATTATCAATATCAACAACAAAATCATCGATAACGTGAACCTGATGAAC
GAACAGAGCGAAATTGATGGTTGGATTATGGAACTGGAAACCAACCAGATCAACGAAAAAGA

AATTATGAACATCAGCGAATATGAAAAAATGTGCGAGGAAGAAGAACAGAACGAAGAGAAA

AAAATCCAGCAGAACGAGATCAATTGCATGGAAGAAAAAAACAAAAACAAAATCTTTGATATT
AATGACATGAAAAACATCGAAAACAAAGGCCAGGGTGGTAAAACTAGTAGCGGTACCTCTGG

GCCCAGCGGGCCCTCTGGTACCAGCGCTAGCAATGGTCCGCTGGTTCTGGTTAGCAATAATCA
GAACATTCACTTTAACCTGAGCCTGGAAAACTTTCTGCTGAACAACTATAACGACCTGCTGAAA

TATCTGAACATTAACACCATCGAGAAATTCAACGAACCGATTCTGTTTCTGTGGCGTAATAATC

GCAGCATTATTATCGGCAAAAACCAGAACATTTGGAGCGAATGTAACCTGAAAAACATTAAAG
AAGATGGCGTTCTGGTTGCACGTCGTTTTACCGGTGGTGGTGCAGTTTATCACGATCTGGGTA

ATGTTTGTTTTACCTTCCTGAACAACAACATCAATACCAGCAGCAACTTTCTGATCATTCTGAAC

ACCCTGAAAAATCACTTCAACATCGAAGCAAAAACCCAGGGTCGTAATGATATTACCGTTAAC
GATCAGAAATGTAGCGGTAGCGCATTCAAAAAAATCAAAGATGTGTTTCTGCATCACGGCACC

ATTCTGATTAATCTGGAAAAAAACATCCTGAACAAATATCTGACACCGGACAAAATCAAATATA

TCAAACATGGTGTGAGCAGCGTTAATGCCCGTACCATTAATCTGAGCGAAATCAACAATAACA
TCACGTGCGAGAATTTATGCATTGCCCTGATCAAAGAATTTACCAAATTCTACGAGCAGAACTA

CAACACCAACATTATTCCGAACGACATCACTGTACATTATATCGATCAGAATAACAACATTACC

AAAAATCCGGAATTTCTGAAATATTACAATCTGCTGAAAGACTGGGATTGGTGCTATGGTAAA
ACCCCGAAATTTCAGAACCATATCTGGAAACAGTTTACCTTCGGTAAACTGGAACTGTTTTTTA

ACGTGAGCAACGGCTTCATTAAAGACGGCAACATTTTTAGCGATTGCCTGGATATTAACCTGAT

CGACCATCTGAAAAGCATCTTCAACAACGATATCAAATACAGCAAAGAGGATATCAGCATCTTT
TTCAAAAAACTGAACGTCGAGAACAAAAACTATCTGGATGAAGTTCGTAGCTGGATTCTGCAA

GAGCTCTAGAGGAGGTCACCATCACCATCACCATTGAAAGCTTCTCGAGCTTAAG	
Figure 11 – HK96M-LipL1 DNA sequence. Synthetic DNA sequence purchased from GeneArt which codes for the 
HK96M-LipL1 fusion protein. Red text represents the H-protein sequence, green text is the 17 amino acid linker, purple 
text is the LipL1 sequence. The highlighted bases represent the methionine that was mutated to alanine for this thesis 
work. The first and last underlined bases represent restriction enzyme (RE) cut sites EcoRI and HindIII respectively. The 
underlined bases on the same line with the highlighted methionine bases are the PvuI and AatII RE cut sites, which 
were used to insert the adaptamer coding for the alanine mutation. Underlined bases in the 17AA linker are the SpeI, 
KpnI, KpnI, and NheI RE cut sites which were used to adjust the length of the linker between the two proteins. 
 
MEFIKIEDGN LNNRKDMTNV KCKIGISNYG THKLGEIVYV DVAHNINDHV KKGDCIATIE 

SVMSVGDVYT PVSGKIININ NKIIDNVNLM NEQSEIDGWI MELETNQINE KEIMNISEYE 

KMCEEEEQNE EKKIQQNEIN CMEEKNKNKI FDINDMKNIE NKGQGGKTSS GTSGPSGPSG 

TSASNGPLVL VSNNQNIHFN LSLENFLLNN YNDLLKYLNI NTIEKFNEPI LFLWRNNRSI 

IIGKNQNIWS ECNLKNIKED GVLVARRFTG GGAVYHDLGN VCFTFLNNNI NTSSNFLIIL 

NTLKNHFNIE AKTQGRNDIT VNDQKCSGSA FKKIKDVFLH HGTILINLEK NILNKYLTPD 

KIKYIKHGVS SVNARTINLS EINNNITCEN LCIALIKEFT KFYEQNYNTN IIPNDITVHY 

IDQNNNITKN PEFLKYYNLL KDWDWCYGKT PKFQNHIWKQ FTFGKLELFF NVSNGFIKDG 

NIFSDCLDIN LIDHLKSIFN NDIKYSKEDI SIFFKKLNVE NKNYLDEVRS WILQEL	
 Figure 12 – HK96M-LipL1 amino acid sequence. Colored and highlighted text corresponds to figure 12. 
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Table 2 – Crystal tray optimization conditions #1. Optimization tray setup for attempt at co-crystallization of HK96A, LipL1, Lipoyl-AMP complex. No crystals were observed in 
these conditions. 
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Table 3 – Crystal tray optimization conditions #2.  Optimization tray setup for attempt at co-crystallization of HK96A, LipL1, Lipoyl-AMP complex. No crystals were observed in 
these conditions. 
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Table 4 – Crystal tray optimization conditions #3.  Optimization tray setup for attempt at co-crystallization of HK96A, LipL1, Lipoyl-AMP complex. No crystals were observed in 
these conditions. 
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Table 5 – Crystal tray optimization conditions #4. Optimization tray setup for attempt at co-crystallization of HK96A, LipL1, Lipoyl-AMP complex. No crystals were observed in 
these conditions. 
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Table 6 – Crystal  tray optimization conditions #5. Optimization tray setup for attempt at co-crystallization of HK96A, LipL1, Lipoyl-AMP complex. No crystals were observed in 
these conditions. 
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Chip Type Buffer Coupling Ligand Analyte Observations Results 

Ni-NTA 10mM HEPES 
150mM NaCl 
3mM EDTA 
0.005% p20 

Capture 6x His-LipL1 GST-HK96M Drifting  
Baseline 
NSB 

No kinetic data 
Affinity based on equilibrium concentration 
KD- 310nM from first pass experiment 
Ni-NTA chip costly, highly reusable, no need for regen 

CM5 10mM HEPES 
150mM NaCl 
3mM EDTA 
0.005% p20 

Amine  
Coupling 

6x His-LipL1 6xHis-HK96A Non specific  
binding  

High NSB with this chip. 
Could be due to amine coupling LipL1 @ pH 5 
With 100-300RU of LipL1 bound insignificant binding 

response 

CM5 10mM HEPES 
150mM NaCl 
3mM EDTA 
0.005% p20 

Amine  
Coupling 

6xHis-HK96A 6xHis-LipL1 Non specific  
binding 

Inconclusive 
Too much NSB. 
LipL1 seems to be very sticky. 

CM3 10mM HEPES 
150mM NaCl 
3mM EDTA 
0.005% p20 

Amine  
coupling 

6x His-HK96A 6xHis-LipL1 Non-specific 
 binding  

Less NSB than with CM5 chip. CM3 chip has shorter 
dextran.  

LipL1 has high NSB. Could not be overcome with 
soluble dextran or BSA 

CM3 30mM PO4 
65mM NaCl 
3mM EDTA 
0.005% p20 

Amine  
coupling 

6x His-LipL1 6xHis-HK96A Decent  
sensorgrams 
 

At 5M analyte plateaus at low RU 
At 2.5µM -600nM analyte conc. yields characteristic 

binding sensorgram 
Coupled 2900RU of LipL1 to surface-may be necessary 

in order to get decent signal due to random and 
cross coupling to dextran matrix 

Table 7 – SPR experimental notes. 
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ITC 
Experiment 

Buffer Cofactors Titrant Sample cell TCEP N KD Average 
KD 

1 50mM TRIS-HCl 
150mM NaCl 
pH 7.4 

100µM ATP 
100µM MgCl2 
100µM R-LA 

40µM HK96A 2µM LipL1 NO 1.1 0.142µM  
- 

2 50mM TRIS-HCl 
150mM NaCl 
pH 7.4 

100µM ATP 
100µM MgCl2 
100µM R-LA 

40µM HK96A 2µM LipL1 NO 0.91 0.071µM  
- 

3 50mM TRIS-HCl 
150mM NaCl 
pH 7.4 

100µM ATP 
100µM MgCl2 
100µM R-LA 

40µM HK96A 2µM LipL1 NO 0.95 0.077µM  
- 

        0.097µM 

4 50mM TRIS-HCl 
150mM NaCl 
pH 7.4 

100µM ATP 
100µM MgCl2 
100µM R-LA 

40µM HK96A 2µM LipL1 YES 
5mM 

0.06 4.83µM  
- 

Table 8 – ITC results. 
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