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Abstract

School-aged children play an important role in influenza. In this thesis we present

a social network analysis of contacts among 746 students in 3 different schools and a

genomic analysis of influenza viruses from 180 students in 9 schools. These schools are

located in urban and suburban areas in and near Pittsburgh, Pennsylvania, USA and

include elementary, middle, and high schools. We collected a proxy for social contact

information using wireless sensor devices worn by the students, programmed so that they

regularly record other nearby devices if they are closer than 4 meters. We analyzed these

networks to identify the patterns of proximal interactions of children in different classes

and grades, identify community structure within schools and examine the impact of the

physical environment on proximal contacts between students. We created undirected

weighted networks from the data recorded by these devices and conducted social network

analyses of these networks. In elementary and middle schools we observe high number

of intra-grade and intra-classroom contacts, and relatively low number of inter-grade

contacts. However, in high schools, contact networks are well connected and mixed and

are difficult to separate into specific grades or classrooms. The high modularity of lower

grades suggests that assumptions of homogeneous mixing within schools in epidemic

models may be inappropriate whereas lower modularity in high schools suggest that

homogenous mixing assumptions may be more acceptable in these settings. Genomic

data of the influenza viruses was analyzed via phylogenetic trees. This thesis was advised

by Derek Cummings and read by Robert Scharpf.
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Quantifying proximal contacts between school children during

school, outside of school and during school closures

Introduction

The 2009 novel H1N1 pandemic disrupted schools, businesses, governmental entities and the

general public with real and uncertain health risks of the virus and by debate regarding the

most effective interventions. The H1N1 pandemic also reinforced the previous experience

that “the fires of the epidemic are carried by healthy school-age children” (Glezen 1996).

However, Influenza causes great economic damage every year due to lost productivity, medical

treatment and preventative measures (Zhou et al. 2012). School summer holidays apparently

helped reduce influenza transmission after the pandemic initial wave (Earn 2012). School

reopening dates (fall, 2009) in the US coincided with a large second pandemic wave (Chao,

Halloran, and Longini 2010). Numerous reports from CDC (2016) and European countries

(WHO 2016) and studies (Cauchemez et al. 2011), document the central role of school-age

children in spreading the pandemic virus. Children experience higher rates of infection, shed

influenza virus for approximately twice as long as adults (Esposito et al. 2011), and are

thought to have much higher rates of contacts than the rest of the population (Mossong et

al. 2008).

Mixing patterns among school-children may be important to flu and other respiratory and

close-contact infections (READ et al. 2012). A key unknown is the mixing rates and patterns

of encounters relevant to the spread of infections during normal school times, and during

both planned and unplanned school closures. The statistical properties of social interaction

as characterized by social networks are crucial in determining patterns of epidemic spread.

Knowing the structure of social contact networks enables us to test and assess the effect of

different interventions that may change the dynamics of epidemics or stop it.

Vaccination has been shown to be the most effective way to mitigate the impact of influenza

across all ages. Antivirals also have their place in treatment (Ferguson et al. 2006). However,

flu vaccine is not always available in a timely manner, as was the case with the H1N1
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pandemic. Vaccine is not always effective, as in the current (2014-15) season, where vaccine

effectiveness is 22% overall and 26% in the 6 mo. – 18 yr. age group which includes school

children. (Cdc.gov 2015a) Non-pharmaceutical interventions are the only things available

when vaccine is absent or ineffective. These reduce the spread of disease in school children

by reducing the risk of transmission or reducing the number of contacts. Hygiene programs

(hand sanitizer/washing/cover coughs and sneezes) have been shown to reduce influenza A by

46%. (Stebbins et al. 2011) Keeping children home when sick with influenza is recommended

to parents by the CDC (Cdc.gov 2011). Distancing efforts in school, such as reducing mixing

during recess, lunch etc. reduces the number of interactions, and should be helpful. None of

this has been specifically proven to reduce the incidence of influenza.

It has been suggested that school closure is an effective means to reduce the spread of

influenza. Markel showed in the 1918–19 influenza pandemic that cities closing schools

early and keeping them closed for a long time reduced the impact of the pandemic. Median

closure time in the 43 cities Markel studied was 6 weeks. There was a statistically significant

association between increased duration of nonpharmaceutical interventions and a reduced

total mortality burden (Spearman r=-0.39, P=.005) (Markel, Stern, and Cetron 2008). A

study in Israel in 2000 during a 12 day work stoppage found an impact on respiratory

morbidity. (Heymann et al. 2004) Similarly Cauchemez found reductions in disease over

school holidays, which are typically 10-14 days. (Cauchemez et al. 2008) Lee et al (2010)

simulated a school closure and found that it could have an impact on a pandemic if maintained

for 8 weeks. Jackson et al (2013) reviewed 79 studies and concluded “School closures appear

to have the potential to reduce influenza transmission, but the heterogeneity in the data

available means that the optimum strategy (e.g., the ideal length and timing of closure)

remains unclear.”

It seems that school closure was effective in 1918–19, however, the world has changed

significantly since then. School children have vastly larger social networks. All of the studies

cited above share the concern that school children recongregate significantly outside of school

and during school holidays, both planned and unplanned. Children (89%) in a school closure

in NC children recongregated in a large public setting even though instructed not to do so.
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Many were observed by the school superintendent at the mall. (Johnson et al. 2008)

In 21st century America, school closure may be a problem. Short term school closure is

manageable, but may not be of sufficient length to be effective. Longer term closure which

might be effective would be disruptive, impacting economic and social costs. This would

involve disruption of adults’ lives, loss of income, an disruption in Kids’ Lives, including

education, meal programs, internet access, etc. (Cauchemez et al. 2009; Cdc.gov 2015c)

Research suggests that some workers in the health care system would have to care for children

and not be able to come to work when the system is stressed with influenza. Estimates

range form 6-19% of workers (Lempel, Epstein, and Hammond 2009), 30% (Sadique, Adams,

and Edmunds 2008) and 38% (Dalton, Durrheim, and Conroy 2008). CDC seems to be

undecided about school closure at this time. Their Guidance for School Administrators to

Help Reduce the Spread of Seasonal Influenza in K-12 Schools does not even mention school

closure. (Cdc.gov 2015b)

This discussion on school closure involves student’s social networking patterns. There are

numerous ways to measure the social mixing of school children, including diaries, surveys

and observation. (Wallinga, Teunis, and Kretzschmar 2006; Mossong et al. 2008). New

technologies offer automatic collection of high-resolution interaction data over a short or

long period of time (Lazer et al. 2009; Waber et al. 2010; Read, Eames, and Edmunds

2008). Recent advances in digital electronics have enabled the development of low-cost,

low-power, multifunctional sensor nodes (also known as sensor motes or simply motes) that

can measure proximity between devices over time (Akyildiz et al. 2002; Laibowitz, Pentland,

and al. 2006). Having children wear these motes over a given time period can measure their

interactions. Social network analysis, as a fundamental tool to study social structures, has

shown great progress during the last decade parallel to explosion in data and advancements

in the computational methods.

Studies have used diaries, survey and observation. One study (Wallinga, Teunis, and

Kretzschmar 2006) demonstrated that explanation of observed infection incidence of mumps

and influenza was improved if models accounted for the contact patterns. The POLYMOD

study (Mossong et al. 2008) quantified mixing patterns for 8 European countries. This study
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found strong assortative mixing of age groups, and particularly high rates of assortative

mixing among school-aged children. Although the POLYMOD study found relatively few

differences in mixing patterns across the countries, it is unknown if the information generated

is appropriate for use for public health purposes within the USA, particularly in school-aged

children, given differences in education systems and other establishments. These studies rely

on human observations, which make them labor intensive, and provide a human a source of

error with faulty memories and observations.

It would be more reliable to be able to track school children electronically, without any

human influence. A study of school based contacts was carried out in a US high school

(grades 9–12) consisting of 800 students, teachers, and staff using motes (Salathe et al. 2010).

Their main finding is that the social network formed by connecting individuals who were

in close contact (3 m), was a very dense network (about 750,000 close contacts) with low

mean network distances between individuals and a relatively homogeneous connectivity

distribution. Our study - the Social Mixing and Respiratory Transmission (SMART) study

- conducted multi-trial studies with school children wearing motes during the school day

and taking them home overnight and over school holidays (planned and unplanned). This

report will show school day social networks and compare them to evening and non-school

day networks.

Study Design and Methods

Participants

SMART was conducted in two school districts in Western Pennsylvania (Pittsburgh, PA

Standard Metropolitan Statistical Area). Canon-McMillan is a public school district with 10

schools and 4700 students in grades K to 12. The district has an urban core, but is mostly

suburban, with some areas classified as rural (Education 2016). Propel Charter School

System has 8 schools in urban areas with 2700 K-12. SMART worked with 7 schools in

these two districts on the facets of the research described herein.

The demographics of the study population differed from those of the Pittsburgh SMSA
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(population >2.6 million; 89.8% White, 7.7% Black, 1.1% Asian, and 0.7% Hispanic). The

subject population was less white (70.5%), more African American (25.8%), and less Asian

(0.9%) than originally projected, reflecting a more urban population.

Table 1: Population Description

School Grade Motes Male Students Female Students Classes

Elementary School A 0 42 19 23 2

Elementary School A 1 42 13 29 3

Elementary School A 2 39 21 18 3

Elementary School A 3 55 34 21 3

Elementary School A 4 40 20 20 3

Elementary School A 5 157 79 78 8

Elementary School B 0 16 8 8 1

Elementary School B 1 31 21 10 2

Elementary School B 2 43 22 21 2

Elementary School B 3 34 24 10 2

Elementary School B 4 35 18 17 2

High School A 9 75 37 38 8

High School A 10 74 32 42 8

High School A 11 52 27 25 9

High School A 12 11 7 4 6
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Table 2: Mote Deployment Description

School Grade Contacts Within Class Contacts Within Grade Contacts

Elem. School A 0 209,520 188,985 190,656

Elem. School A 1 150,579 113,005 123,802

Elem. School A 2 113,498 72,908 87,390

Elem. School A 3 277,463 200,945 230,786

Elem. School A 4 114,660 74,678 93,712

Elem. School A 5 760,957 637,220 751,199

Elem. School B 0 24,029 12,458 12,458

Elem. School B 1 64,405 39,420 43,833

Elem. School B 2 151,025 90,295 101,353

Elem. School B 3 70,860 39,675 46,368

Elem. School B 4 105,174 52,459 59,867

High School A 9 371,803 91,470 272,385

High School A 10 493,024 147,265 367,372

High School A 11 239,052 35,428 160,036

High School A 12 32,377 5,164 12,854

Recruitment

School districts were recruited based on predetermined interest, identified by prior contact

with the University of Pittsburgh School Based Research and Practice Network. Investigators

met with district and school administrators and provided a detailed summary of the research,

along with the opportunity to ask questions and discuss participation. School personnel who

were authorized to approve participation did so using a formal letter.

Project staff met with school boards, parent-teacher organizations, school staff, and school

nurses in order to introduce the project and distribute written explanatory materials.

Students and parents were provided with a concise, readable summary of the study including
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disclosure of potential risks and a signature section for opting out. After reviewing this

material, students and parents could opt out of the study by signing and returning the

form. A student could opt out of all surveillance at any time by refusing to participate,

though no student refused to wear a mote. Parents and students had access to investigators

via telephone or email to answer questions. This study was approved by the University of

Pittsburgh IRB #PRO11020500 and CDC IRB# IRB00000319.

Across all schools, SMART had a 93.5% participation rate in year 1. The opt-out rates by

school ranged from 1.0% to 18%. The 18% opt-out occurred in a school in which nearly one

whole third grade class opted out. Participation was 88.9% in year 2; opt-out rate ranged

from 0.4 to 23.5%.

Study Procedures

Schools provided a roster with the name, grade, and class of each participating student. An

anonymous ID was assigned to each student in a database prior to any interaction with

individual students. IDs were not assigned to individuals who opted out of the study. The

link between this anonymous ID and the student’s name were kept in secure study computers

at the University of Pittsburgh. These IDs were used to link motes to specific children.

Motes

All consented students in all participating schools were given motes to wear. Motes are small

electronic devices about the size of their two AA battery pack (1”x3”x3/4”) worn around an

individual’s neck. Each mote is programmed to send and receive a signal from other motes

when in proximity to one another. SMART used TelosB (made previously by Crossbow

Technologies, now by Memsic Inc) wireless sensor motes (Polastre, Szewczyk, and Culler

2005). TelosB sensors utilize an IEEE 802.15.4 compliant RF transceiver, 2.4 GHz globally

competitive ISM band, 8 MHz TI MSP430 microcontroller with 10 KB RAM, and 1 MB

external flash memory for logging contacts. Motes are considered very low energy, operating

on 2400 MHz to 2483.5 MHz frequency, similar to cordless phone and Wi-Fi. There is no
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known exposure risk.

The sensor motes were programmed to continuously receive a signal from other nearby

motes, and transmit a signal every 20 seconds, balancing the time resolution of data with

the battery-life.. Whenever a mote receives a signal from another mote, it records the other

mote’s unique ID, the current time stamp and a radio signal strength indicator (RSSI). Signal

strength provides a measure of proximity of the sensor motes and hence the individuals

wearing the motes. Initial pilot investigation found that the signal strength between two

motes dropped to about -80 dBm when they are face-to-face and about 3–4 meters away

from each other. This distance was assumed to be meaningful to influenza transmission, and

densities of signal strength were investigated by school and time window. Signal strength

depends on many factors, including the line-of-sight and the presence of obstructions between

the motes. Each recording is assumed to correspond to a continuous 20-second contact

between the students. For example, x recordings between a pair of students throughout

the day indicate x/3 minutes of aggregated contact time between them on that day. Mote

programming uses Tiny OS 2.1.2, an open source system, running in a Linux environment.

During a school day, motes were worn by individuals, primarily students, but also teachers

and staff who volunteered to wear them. The students wore motes inside in a waterproof

pouch and attached to an adjustable lanyard. The motes were light and compact and so

did not interfere with the student’s activities. The entire unit, as worn, weighted 2.8 oz.

Stationary sensor motes were also deployed in classrooms (1-2 motes per classroom) and

common areas (1-5 motes each) to determine the spatial location of contacts. The locations

of stationary motes were determined by studying floor plans to determine where common

points occur. Finally, a master mote was created to send a signal to other motes to begin

recording data. This saved battery life, and insured that all motes were synchronized.

Mote distribution started with compilation of class lists containing only participating

students. Batteries were placed in motes as close to the time of deployment as possible

to reserve battery life. Motes were first set at idle and did not record data until receiving

a signal from a master mote. Bags of motes, along with a distribution list of consented

students, were delivered to each classroom, typically during the first period. The motes
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were distributed, and the mote number recorded next to the student number by the study

staff. A SMART staff member stayed in the building all day to answer questions and resolve

problems. Students wore the motes all day, except during vigorous activity where they

might pose a hazard for the students. Students left school still wearing the motes, with the

instruction:

Keep the mote with you at all times. Wear the mote to all normal activities.

Remove the mote only if playing rough sports, sleeping, getting wet or if it is

otherwise not practical to wear the mote.

After two nights of wearing the motes, students returned the motes at school (typically in

the last period). The motes were collected and the batteries removed to stop data collection.

Motes were later plugged into a computer via usb port to download data.

In the three instances where two schools are shown, the K-4 elementary school is a feeder

school for the intermediate school (5-6), so that the students would be riding the same school

us system, and siblings may attend both schools.

Analysis

In this analysis, we compare contacts by three different time windows:

1. “Normal school hours” (8am – 3pm)

2. “Awake, non-school hours” (3pm-9pm, 6am-8am)

3. “Asleep, non-school hours” (9pm-6am)

Comparisons are made between in-school days and out-of-school days. We use the in-school

days as a reference to out-of-school days to estimate the proportional reductions of contacts

by time window.

Additionally, we constructed “student-pairs” from the data to determine factors associated

with number of contacts. Characteristics such as gender-gender, age difference, and others

are investigated.
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In order to visually inspect how contacts varied over time, we calculated the average contacts

per mote in a given hour. In this graph, the sets of vertical lines indicate the start of school

(8 AM) and the end of school (3 PM). Note that the studies were not concurrent but, for

comparison, are shown on the same time axis.
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Figure 1: Average Contacts per Mote over Time

A bootstrap analysis to compare the proportion reduction in mean hourly contacts between

the school closure day and normal school day was performed for all studies that had multiple

consecutive days of contact data. Since some studies included data from two days of school,

the school day with the most complete temporal data was chosen for comparison. Both days

are broken out into the three categories mentioned above. Comparison is made within these

categories between days. These estimates represent a crude measure of the effect of school

closure on contact between children not adjusting for differences between hours besides

designation into each of these categories.

We performed a regression analysis, regressing pairwise contacts between school children
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on various individual characteristics. Information collected by study coordinators included

grade, class, and sex. From the mote data, we calculated the number of pairwise contacts

between a given pair of school children. The dependent variable in the regression was

pairwise contacts in order to meet the independence assumption of linear models. Treating

number of contacts by student as the response variable would introduce dependence between

observations. Covariates for the regression were included in a pairwise fashion as well, such

as same grade and same class. Linear regression was performed, regressing school contacts

on the above covariates for each study. Additionally, logistic regression was performed, with

the outcome of at least one pairwise contact and – separately – at least 15 pairwise contacts.

Results
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Figure 2: Percent Reduction of off-school day Mean hourly contacts to in-school day (2000
Bootstraps)

Signal Strength

We plotted density estimates of the by-mote signal strengths to compare contact patterns

across studies and time windows. A lower number indicates closer proximity between motes,

and a higher number indicates more distal proximity between motes. Indicated on each

distribution is the median in blue and mean in red. It should be noted that signal strength

is only a correlation of distance and is not precise.
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From this density estimate, we can visualize how contact patterns vary by age group (using

school level as a proxy) and time of day. While this density plot only provides marginal

estimates, the shapes of the density – especially for out-of-school hours – provides insight

into how children of different age groups interact.
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Figure 3: Signal Strength by Time Window and School
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Pairwise Contacts

Here we show three different regression analyses. In the first model, we regressed the number

of log-adjusted pairwise contacts on several pairwise characteristics. In the second model, we

conducted a logistic regression of greater than or equal to one pairwise. In the final model,

we used the same logistic regression model, but with an outcome of at least 15 pairwise

contacts.

In the normal model, we included pairwise

• pairwise gender (relative to Male/Male)

• Grade Difference (abs(grade of student a – grade of student b))

• Pairwise grade/class indicator (relative to different grade/different class)

In the logistic models, we included all of these variables as well as an interaction between

pairwise grade/class and pairwise gender.

For each of these three models, three regressions were conducted – one for elementary school

A, one for elementary school B, and one for the high school. Below we show the estimates

and confidence intervals for the coefficients estimates. Each model (normal, two logistic

models) is represented as individual plots, with the coefficient estimates shown by point and

the 95% confidence intervals represented as lines.
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Figure 5: Logistic Model Predicting ≥ 1 Pairwise School Contacts
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Figure 6: Logistic Model Predicting ≥ 15 Pairwise School Contacts

Discussion

By the three times of days, we recorded

1. 7,124.889 contacts per hour (Non-school Sleeping hour)

2. 49,500.25 contacts per hour (Non-school Waking hours)

3. 391,082.714 contacts per hour (School hours)

Based on our bootstrap analysis we estimate that closing a high school will reduce contacts

between students by about 61.8% (CI 61.4-62.3%) during school hours. In elementary

schools, we estimate that contacts between students will be reduced by nearly 100% (99.6%

in elementary school A, 96.2% in elementary school B)

Two of the three schools with multiple days of data were elementary schools. In contrast to

the high school, the younger students showed a much greater reduction in contacts on off
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days relative to school days. In particular, the reduction in contacts between high schoolers

during school hours of off days was a nearly half of that of the younger students. This

suggests that a school closure may prevent many contacts among younger students, but high

schoolers will still have some contact with their peers.

Additionally, the distributions of signal strength show that interaction between students

was more likely to be at a close proximity during school hours. This observation shows the

importance of limiting contact during the school hours in the wake of an outbreak.

The regression analyses quantitatively verify some expected results. The logistic regression

modeling the log odds of at least 15 contacts between students shows that being in the

same class and grade is a very strong indicator of multiple contacts. The linear model again

repeats this finding. In all three models, the high school students show a weaker difference

of interacting with students in the same grade and same class relative to the elementary

school students.

In both logistic models, increasing grade difference in pairs is a strong predictor of having a

lower probability of contact between pairs. For every grade difference between a pair, there

is a roughly 35% lower probability of having contacts or contacts. The linear model also

shows a negative relationship between increasing grade difference and number of contacts,

though to a lesser degree (about one less contact per grade difference).

Limitations

While the motes provide a way to quantify contacts between children, the motes themselves

have limitations. Foremost among these limitations is the assumption that children wore

the motes as instructed (i.e. they did not remove the motes during school, forget the motes

at home, etc). Additionally, for the regression analysis, we have treated all contacts as being

equal. Instead, as demonstrated in the density graph, there is variation between signal

strengths, which is not accounted for in the regressions. Finally, the measure of distance

between motes is only correlation of distance. While the density plots gives a good guess as

to the distance between students by time window and school, it is not exact.
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Genomic Analysis of Influenza Infected Students

Introduction

Previously, we considered only data collected via the motes. After this information was

collected, students were followed throughout the influenza season with dates of symptom

onset from December 13, 2012 to March 24, 2013. Students who were diagnosed with an

influenza like illness (ILI) had the date of symptom onset recorded. In addition, a sample

was collected and a deep sequence of the whole genome of the influenza virus was collected.

This sequence contains the count of each nucelotide (A, T, C, G) at each nucleotide position.

This influenza data is combined with the previously collected epidemiological data, such as

school, grade, and class. This data can be used to investigate transmission by proximity.

In the data collected, there were 188 cases of influenza across 9 schools. There are over 2,000

students across these schools who were eligible for infection.

Data were split up by strain - H3N2 and influenza B. Before proceding with estimation of

transmission and epidemiological characteristics, we examine the number of cases by strain

and school. While these aggregated cases are not adjusted by size of the school, it is of

note that the four schools with the largest number of cases are predominantly influenza B

infections.
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Figure 7: Influenza Cases by School and Strain

Methods

Reproductive Number

We investigate the transmission dynamics of these two strains of influenza in schools by

calculating the reproductive number - the average number of secondary cases caused by an

infection. The reproductive number is calculated for each school by each strain. We estimate

the reproductive number by the Wallinga-Teunis method (Wallinga 2004). Implentation of

this procedure was performed by the EpiEstim package in R (Cori et al. 2013).

Wallinga-Teunis estimation of the reproductive number requires an a priori specification of

the serial interval - the time between transmissions. The serial interval is typically calculated

from symptom onset of a primary case to symptom onset of a secondary case. Based on a

prior study (Cowling et al. 2009), we parameterized the serial interval with a mean of 3.6

days and standard deviation of 1.6 days.
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In this implementation of the Wallinga-Teunis method, the serial interval is described via

gamma distribution. Instead of calculating an overall reproductive number, the Wallinga-

Teunis method estimates reproductive numbers over time. The reproductive numbers are

estimated over a moving window, which we specified as seven days. 95% confidence intervals

for these time-varying reproductive numbers are determined by Monte Carlo simulation.

Probability of Tranmission Matrices

To examine transmission patterns between infected students, we constructed a matrix

of probabilistic transmission. Using a similar parameterization of serial interval as the

reproductive number estimation, we calculated pairwise probability of transmission. This

probability was calculated using the dates of symptom onset. We calculated probability

of transmission between a pair of infected students using a log-normal distribution with

mean of log(3.6) and standard deviation of log(1.6). Note that the matrix of pairwise

transmission probabilities is not symmetric - if student A is infected before student B, there

is a nonzero probability that student A infected student B, but a zero probability that

infection occurred in the opposite direction.

After calculating these pairwise probabilities of transmission, matrices of pairwise probability

of transmission by strain were restricted in three different ways

1) Transmissions can only occur within a class (zero probability of transmission occurring

between classes, grades, or schools)

2) Transmissions can occur between and within classes but only within grade (zero

probability of transmission occurring between grades or schools)

3) Transmissions can occur between grades but only within the same school (zero proba-

bility of transmission occurring between schools)

Phylogenetic Trees

To further explore models of transmission between infected children, we make use of the

genomic sequences of isolated influenza viruses. Phylogenetic trees are a commonly used
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tool in molecular epidemiology to create possible transmission trees (Holmes et al. 1995).

Based on the created phylogenetic trees, we can assess which infected students are more

closely related on a transmission chain.

Phylogenetic trees are fit using the R package phangorn (Schliep 2011). Multiple substitution

models were used including Jukes-Cantor (Jukes and Cantor 1969) and Generalized Time

Reversible (Tavaré 1986). Model selection was performed using Akaike Information Criterion

(AIC). For both strains of influenza, the Generalized Time Reversible substitution model

was selected.
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Probability of Transmission Matrices

Below, we depict the three transmission models per strain as heatmaps. The plots depict

the probability of transmission from a student on the x axis to a student on the y axis. The

probabilities are represented as colors ranging from “white” (no probability of transmission)

and “dark blue” (high probability of transmission). Students are ordered by school, grade,

and class. Thus, for a given student, the student is adjacent to students in the same class,

nearest to students in the same grade, and within a connected set of students in the same

school.

For the three models proposed, it can be seen how much of transmission is driven by classes,

grades, and schools. Based on the degree of increasing “heat” in the plots, this depicts the

relative amount of transmission driven by class, grade, or school according to this model.
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Figure 9: Flu B Transmission by Class

Figure 10: Flu B Transmission by Grade
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Figure 11: Flu B Transmission by School

This model suggests that very little transmission is driven within classes, and instead most

transmission occurs between classes and grades, as seen by the drastically increasing “heat.”

The four schools with more infections have a larger portion infections driven between grades

than the smaller schools. However, since there are so few cases, this potential model is

especially sensitive to the choice of serial interval.
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Figure 12: H3N2 Transmission by Class

Figure 13: H3N2 Transmission by Grade
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Figure 14: H3N2 Transmission by School

In this model of H3N2 transmission, there is very little within class transmission. Instead,

transmission is driven largely by within grade/between class contact. Unlike the transmission

models demonstrated above for influenza B, little transmission appears to occur within

school/between grades.

Phylogenetic Trees

Here we depict the phylogenetic trees as fit by phangorn according to the Jukes-Cantor and

Generalized Time Reversible substitution models. In these rooted trees, horizontal lines,

but not vertical lines, separating students indicates the relative amount of genetic distance

between the isolated influenza viruses.

To assess relationship of students, identifications were constructed. These identifications

were constructed as follows

• “s” followed by a number indicates the school number that the child was a member of
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• “g” followed by “K” or a number indicates the grade that the child was in

• “r” followed by a number indicates the room number (within the school and grade)

that the child belonged to

• “id” followed by a number is a unique id constructed within the school for each student.

This number has no meaning other than to separate two students in the same school,

grade, and room

Students that are grouped together in the phylogeny (little to no genetic distance between

the viruses) are referred to as clades.

To create the trees for the H3N2 virus, there were 49 students. For the influenza B

phylogenetic tree, there were 131 students.

27



s1g4r166id1

s1g4r167id7

s1g5r133id6

s1g5r133id8

s1gKr154id5

s1gKr157id2

s2g11r140id1

s2g11r150id2
s2g9r146id3

s3g1r205id10

s3g2r206id15

s3g2r211id11

s3gKr208id2

s3gKr208id7

s4g5r202id10

s4g5r203id14

s4g5r209id13

s4g6r308id9

s5g1r104id1

s5g1r105id2

s5g1r105id4

s5gKr200id3

s6g1r103id3

s6g1r103id5

s6g2r106id1

s7g1r204id1

s7g1r204id2

s9g4r11id30

s1gKr157id4

s3g1r205id14
s3g2r206id13
s3g2r209id5
s3g2r209id6
s3g4r103id1

s3g2r206id8
s3g2r209id18
s3g2r209id4

s3g2r211id21

s3gKr208id36

s4g5r203id3
s4g5r204id2
s4g5r204id8
s4g5r206id5
s4g5r208id6
s6g1r103id2

s5g2r102id7

s8g1r107id3
s8g1r107id31
s8g4r206id1

Figure 15: Jukes Cantor H3N2 Phylogenetic Tree

28



s1g4r166id1

s1g4r167id7

s1g5r133id6

s1g5r133id8

s1gKr154id5

s1gKr157id2

s2g11r140id1

s2g11r150id2
s2g9r146id3

s3g1r205id10

s3g2r206id15

s3g2r211id11

s3gKr208id2

s3gKr208id7

s4g5r202id10

s4g5r203id14

s4g5r209id13

s4g6r308id9

s5g1r104id1

s5g1r105id2

s5g1r105id4

s5gKr200id3

s6g1r103id3

s6g1r103id5

s6g2r106id1

s7g1r204id1

s7g1r204id2

s9g4r11id30

s1gKr157id4

s3g1r205id14
s3g2r206id13
s3g2r209id5
s3g2r209id6
s3g4r103id1

s3g2r206id8
s3g2r209id18
s3g2r209id4

s3g2r211id21

s3gKr208id36

s4g5r203id3
s4g5r204id2
s4g5r204id8
s4g5r206id5
s4g5r208id6
s6g1r103id2

s5g2r102id7

s8g1r107id3
s8g1r107id31
s8g4r206id1

Figure 16: Generalized Time Reversible H3N2 Phylogenetic Tree
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For both substition models depicted, children in the same schools are nearly perfectly

discriminated into clades. The exceptions - such as “s5gKr200id3” - possibly indicate an

exogenous (out of school) introduction of influenza.

Both models support the claim made earlier that transmission has only occurred somewhat

within class, and instead is mostly explained by transmission between classes and grades.
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Figure 17: Jukes Cantor Flu B Phylogenetic Tree
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Figure 18: Generalized Time Reversible Flu B Phylogenetic Tree
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In the phylogenies shown above for influenza B, we again see that most infections are relatively

closely related. There is only one infection that appears to be an exogenous introduction

- from school 5 - in both models. Here the transmission seems to have occurred to a less

extent within classes and grades, and instead the influenza B infections are transmitted

within the school as a whole.

Discussion

One of the strengths of this study is the collection of genomic sequences of viruses infecting

students with known contact patterns. In addition to the symptom onset information, we

are able to use the genomic data to construct likely transmission trees. These analyses have

shown that proximity drives transmission. Regardless of the model used, the data suggest

that close proximity to other infected students is a risk factor for respiratory infection.
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