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Abstract:	
	

Exploratory	factor	analysis	(EFA)	is	a	common	yet	powerful	tool	to	better	understand	

the	theoretical	structure	of	a	set	of	variables.	A	core	problem	of	conducting	an	EFA	is	

determining	the	number	of	factors	(m)	to	extract	and	examine.	In	this	thesis,	we	examined	the	

performance	of	existing	methods	of	estimating	m	while	proposing	and	assessing	a	cross	

validated	method	for	estimating	m	across	various	settings.	These	methods	were	then	

considered	in	a	study	incorporating	EFA	to	assess	the	relationship	and	categorization	of	self-

reported	chronic	rhinosinusitis	(CRS)	symptoms,	a	common	sinus	inflammatory	disease,	within	

three	cross	sectional	questionnaires	as	well	as	within	the	in	the	changes	in	symptoms	between	

questionnaires.		

A	cross	validated	approach	(trace)	was	developed	by	which	m	increases	until	the	

discrepancy	between	the	implied	correlation	of	a	partition	of	data	and	the	observed	correlation	

of	the	other	data	partition	increases.	In	order	to	assess	the	performance	of	this	new	method	as	

well	as	other,	common	approaches,	a	simulation	study	was	designed	in	which	valid	factor	

loading	matrices	were	simulated	using	a	new	procedure,	and	random	samples	were	drawn	

from	their	respective	correlation	matrices.	The	trace	method	displayed	quickly	increasing	

accuracy	when	more	samples	were	drawn,	a	phenomenon	not	observed	in	other	methods.	

Trace	was	also	applied	to	the	CRS	data,	suggesting	13	factors	to	be	extracted,	more	than	other	

methods.	This	non-agreement	possibly	highlights	the	differences	in	factor	extraction	

interpretations,	and	the	different	meanings	of	“correct”	m.		

An	EFA	was	carried	out	on	self-reported	CRS	symptoms	as	well	as	changes	in	symptom	

responses	over	time	in	order	to	identify	any	relationships	between	or	categorization	of	CRS	
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symptoms.	A	total	of	3535	primary	care	patients	were	included	this	study	having	responded	to	

three	questionnaires	of	37	repeated	questions	spanning	a	16-month	period.	After	extracting	

factors	from	all	three	questionnaires	and	two	symptom	difference	scores,	five	stable	factors	

were	identified	in	each.	The	factors	of	congestion	and	discharge,	facial	pain	and	pressure,	smell	

loss,	asthma	and	constitutional	as	well	as	ear	and	eye	symptoms	were	consistent	with	the	

hypothesis	that	CRS	symptoms	are	measuring	several	distinct	biological	processes.		

	

	 Readers:	Karen	Bandeen-Roche,	Brian	Schwartz	
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Chapter	1	-	Introduction	
	

Exploratory	factor	analysis	(EFA)	is	a	statistical	method	utilized	to	investigate	and	

summarize	the	joint	distribution	of	a	collection	of	variables	through	the	estimation	of	the	

relationship	between	these	observed	variables	and	unobserved	but	theorized	factors.	It	relies	

on	the	assumption	that	covariance	among	measured	variables	arises	from	a	smaller	set	of	

latent	factors	which	are	associated,	to	varying	degrees,	to	each	observable	variable	(known	as	

the	common	factor	model	assumption).	These	methods	are	commonly	utilized	when	there	is	

little	to	no	a	priori	knowledge	about	the	latent	structure	associated	with	variables,	and	have	

been	employed	across	a	variety	of	scientific	domains.	Commonly,	EFAs	are	employed	in	an	

attempt	to	better	understand	related	phenomena,	to	allow	researchers	to	create	scales,	and	as	

an	intuitive	way	to	study	what	a	collection	of	observations	is	measuring.		

Despite	being	a	long-established	technique,	considerable	difficulty	still	is	encountered	

when	employing	this	approach.	The	most	common	issue	practitioners	face	while	attempting	to	

utilize	an	EFA	is	which	factor	model	to	utilize—largely,	how	many	factors	to	incorporate.	

Determining	the	number	of	factors	to	include	(𝑚)	can	be	a	difficult	problem	as	a	subtle	change	

in	𝑚	can	vastly	impact	the	results	and	interpretations	of	the	analysis,	and	the	choice	of	𝑚	itself	

can	be	very	ambiguous.	Furthermore,	the	problem	of	selecting	𝑚	has	been	approached	from	a	

variety	of	angles,	none	of	which	has	earned	consensus	agreement	as	a	gold	standard	method.	

Part	of	this	thesis	includes	work	studying	existing	methods	for	choosing	the	number	of	factors	

(𝑚),	while	proposing	and	examining	a	new	method	which	incorporates	a	cross	validated	

approach	to	selecting	𝑚.	
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In	addition,	we	applied	the	principles	studied	to	an	analysis	of	chronic	rhinosinusitis	

(CRS)	symptom	data	collected	from	patients	identified	in	a	large,	integrated	health	system.	A	

total	of	3535	patients	responded	to	37	questions	pertaining	to	a	spectrum	of	CRS	symptoms	

three	times	(baseline,	6-month	and	16-month	follow-up	questionnaires).	The	CRS	study,	in	fact,	

motivated	the	statistical	work.	EFA	was	conducted	to	better	understand	relationships	among	

and	categorization	of	CRS	and	CRS	related	symptoms.	EFAs	were	conducted	for	each	of	the	

three	questionnaires	as	well	as	for	the	change	in	reported	symptom	frequency	(baseline	to	6	

months,	and	6	months	to	16	months).	We	were	able	to	identify	five	similar	factors	in	each	of	

these	analyses,	each	with	a	biologically	plausible	pathological	explanation,	suggesting	that	

there	may	be	real	phenomena	driving	these	observations.	At	the	same	time,	the	selection	of	

five	as	the	factor	number	was	better	evidenced	in	some	periods	than	others,	and	by	some	

methods	than	others,	illustrating	the	challenges	studied	in	our	first	paper.	

This	thesis	comprises	two	papers,	one	that	utilized	EFA	in	order	to	explore	the	

covariance	structure	of	self-reported	symptoms	related	to	CRS	and	common,	co-morbid	

conditions,	while	the	other	studied	the	various	methods	of	determining	the	number	of	factors	

in	EFA	settings	and	proposed	another	method	to	do	so.	It	begins	with	the	methodological	work	

and	then	proceeds	to	the	detailed	CRS	analysis.	These	papers	work	in	tandem	by	examining	the	

theory	and	challenges	from	an	analytic	and	philosophical	standpoint	of	selecting	the	“optimal”	

number	of	factors,	while	estimating	the	number	of	factors	and	putting	EFA	to	work	in	a	real-

world	setting	involving	a	common	disease.	A	concluding	chapter	provides	synthesis	and	

identifies	areas	for	future	work.	

	



	
3	

Chapter	2	-	A	Cross-Validated	Approach	to	Exploratory	
Factor	Analysis	Model	Selection	

	
Introduction	

	

Frequently	it	is	of	public	health	interest	to	characterize	attributes	of	data	that	cannot	be	

measured	directly.	Instead,	a	group	of	observable	variables	that	indirectly	characterize	the	

unobserved	are	collected.	In	such	settings,	it	is	often	of	importance	to	explore	the	underlying,	

“latent”	structure	of	data	in	addition	to	the	observed	manifest	variables.	Ideally,	in	doing	so	we	

can	study	unobserved,	latent	variables	which	may	be	more	interpretable	or	of	a	greater	

importance	than	their	measured	counterparts.	One	method	of	estimating	latent	structure	is	

through	factor	analysis	(FA).	This	method	is	common	in	diverse	fields	ranging	from	psychology	

and	economics	to	health	and	spirituality	(Fabrigar,	Wegener,	MacCallum,	&	Strahan,	1999;	

Hirose,	Kawano,	Konishi,	&	Ichikawa,	2011;	Underwood	&	Teresi,	2002).		

There	are	two	general	cases	of	factor	analysis,	exploratory	and	confirmatory.	

Exploratory	factor	analysis	(EFA)	aims	to	identify	the	underlying	structure	of	variables	with	little	

a	priori	knowledge	of	any	such	relationship,	while	confirmatory	factor	analysis	is	utilized	to	test	

whether	a	proposed	latent	structure	adequately	fits	the	observed	data.	While	both	are	useful	

and	powerful	techniques,	exploratory	factor	analysis	requires	the	additional	step	of	choosing	

𝑚,	the	estimated	number	of	factors	(𝑚)	characterizing	the	observed	data	distribution,	a	model	

selection	problem	which	will	be	considered	below.	This	model	selection	is	important	as	both	
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the	quantitative	and	qualitative	results	of	an	EFA	may	rely	heavily	on	this	selection,	such	that	

different	specifications	of	𝑚	may	potentially	lead	to	altered	interpretations	and	inferences.	

Current	methods	of	determining	𝑚	vary	with	respect	to	computation	as	well	as	theory,	some	

utilizing	likelihood	based	methods,	including	Akaike	Information	Criterion	(AIC)	and	Bayesian	

Information	Criterion	(BIC),	to	assess	the	hypothesis	that	the	data	is	generated	from	models	

with	specific	𝑚,	while	others	utilize	properties	of	correlation	matrices	(in	terms	of	eigenvalues),	

or	other	criteria	to	test	model	fit.	Some	methods	of	estimating	𝑚	are	useful,	but	most	have	

drawbacks	as	well.		

The	FA	approach	is	based	on	the	common	factor	model	by	which	observed	variables	are	

conceptualized	to	arise	from	3	components:	common	factors,	unique	variability,	and	

measurement	errors	/	noise	(Brown,	2014).	The	core	equation	of	the	common	factor	model	is	

as	follows	in	scalar	notation:	

𝑦#,% = 𝜆%,(𝜈#,(

*

(+,

	+	 𝜖#,% 	

where	𝑦#,% 	is	the	value	of	variable	𝑗	for	person	𝑖,	𝜈#,( 	is	the	𝑔th	factor	variable	for	person	𝑖,	𝜆%,(	is	

the	“loading”	of	the	𝑗th	variable	onto	the	𝑔th	factor,	and	𝜖#,% 	is	the	residual	term	for	person	𝑖	and	

variable	j	which	remains	unexplained	by	the	factor	model	specific	to	our	𝑗th	variable,	the	sum	

of	unique	natural	variation	and	measurement	error	(Brown,	2014).	Without	repeated	

observations,	the	noise	term	is	not	distinguishable	from	the	natural	variation	term,	and	in	the	

above	equation,	both	comprise	𝜖#,%.	The	factors	impact,	to	varying	degrees	as	reflected	by	their	

loadings,	many	observed	variables.		
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It	was	our	aim	to	introduce	a	cross	validated	approach	by	which	𝑚	was	chosen	to	be	the	

value	which	reduced	the	difference	between	distributions	implied	by	an	estimated	factor	model	

and	empirically	characterizing	independently	held	out	data.	

Factor	analysis	model	selection	is	difficult	and	commonly	relies	on	qualitative	or	biased	

methods.	There	is	a	need	to	explore	alternative	methods	of	identifying	𝑚	which	display	

desirable	properties,	such	as	close	proximity	to	an	underlying	data	distribution	or	

reproducibility.	We	also	perceive	need	to	evaluate	methods	in	settings	in	which	the	number	of	

observed	variables	is	large	relative	to	the	sample	size.	As	elaborated	shortly:	Current	methods	

can	be	inaccurate	across	some	or	all	testing	attributes	(e.g.	correlation	strength,	factor	

structure,	and	sample	size).	The	proposed	method	utilizes	a	cross-validated	approach	to	

determine	when	the	addition	of	a	factor	does	not	summarize	additional	common	variability	in	

the	EFA	model.	In	more	precise	terms,	the	proposed	method	continually	increases	the	number	

of	factors	(increasing	𝑚)	until	the	difference	between	the	observed	and	proposed	correlation	

matrix,	as	measured	by	a	discrepancy	function,	increases.	Cross-validation	helps	us	avoid	the	

following	pitfall:	As	the	number	of	factors	(𝑚)	increases	towards	the	number	of	variables,	𝑝,	in	

a	single	sample,	the	'difference'	between	the	observed	and	implied	correlation	matrix	will	

decrease	-	even	if	only	due	to	noise.	By	incorporating	a	cross	validated	approach,	we	expect	

that	the	addition	of	a	factor	that	only	characterizes	noise	in	one	partition	should	actually	

worsen	fit	in	another.	When	this	phenomenon	is	observed,	we	propose	that	the	previously	

utilized	number	of	factors	is	a	better	fit	for	the	data	at	hand.	
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This	study	was	motivated	by	a	project	investigating	chronic	rhinosinusitis	(CRS),	a	sinus	

inflammatory	disease	impacting	approximately	15%	of	the	United	States	adult	population	(Tan,	

Kern,	Schleimer,	&	Schwartz,	2013).	CRS	is	commonly	defined	by	the	presence	of	4	cardinal	

symptoms	associated	with	sinus	swelling	presiding	for	an	extended	period	of	time,	but	its	

diagnosis	typically	also	requires	objective	evidence	of	inflammation	such	as	by	computerized	

tomography	(CT)	scanning.	One	barrier	to	the	effective	diagnosis	and	treatment	of	the	disease	

is	that	the	connection	between	objective	inflammation	and	patient	symptoms	of	sinus	

opacification	is	not	well	understood	(Wj	et	al.,	2012).	Additionally,	obtaining	objective	evidence	

can	be	difficult	in	resource-limited	or	high-volume	settings,	making	an	improved	symptom-

based	method	of	diagnosis	desirable.	To	begin	addressing	these	barriers,	the	motivating	study	

assessed	a	large	sample	of	patients	from	a	large,	integrated	health	system	for	presence	and	

severity	of	a	large	number	of	sinus-related	symptoms.	EFA	was	proposed	as	a	method	to	

summarize	symptom	clustering	and	hence	facilitate	the	subsequent	study	of	symptom	

relationships	with	objective	evidence	of	CRS		(Cole,	Schwartz,	&	Bandeen-Roche,	2017).	

In	the	remainder	of	our	paper,	we	examine	existing	methods	for	estimating	the	number	

of	factors	in	EFA	settings	as	a	background	for	this	study,	discussing	some	previously	established	

strengths	and	weaknesses	of	each.	Then	we	introduce	the	proposed	method	and	provide	a	

simulation	study	comparing	efficacy	of	methods	across	potential	circumstances	including	

sample	sizes,	correlation	strengths	and	distributions,	as	well	as	number	of	variables.	Results	are	

compared	across	methods,	correlation	structures,	and	sample	sizes.	Finally,	we	apply	the	

various	methods	for	selecting	the	number	of	factors	to	the	CRS	study.	The	CRS	findings	

themselves	are	presented	in	the	next	thesis	paper.	
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Background	
	

Notation	and	Assumptions	
	

Exploratory	factor	analysis	aims	to	represent	a	multivariate	data	distribution	(commonly	

through	the	correlation	matrix,	𝑅)	according	to	the	common	factor	model.	This	model	is	

characterized	by	parameters	we	collectively	label	as	“𝜃”,	consisting	of	a	𝑝×𝑚	loading	matrix,	𝛬,	

𝑝×𝑝	inter-factor	correlation	matrix	𝛹,	and	𝑝×𝑝	unique	variance	(diagonal)	matrix,	𝛥:.	Because	

each	𝜃	“implies”	exactly	one	correlation	matrix,	𝑃 𝜃 ,	which	is	the	model’s	characterization	of	

the	matrix	of	correlations	among	the	observed	variables,	we	can	make	statements	about	an	

EFA's	implied	correlation	matrix	which	has	the	form	𝑃(𝜃) = 𝛬𝛹𝛬′ + 𝛥?.	

The	common	factor	model	represents	the	measured	variables	as	functions	of	latent	

(unobserved)	factors	as	well	as	model	parameters,	most	notably	factor	loadings.	In	matrix	

notation	(scalar	representation	has	been	previously	provided)		𝒚𝒊 = 𝛬𝜁 + 𝛿	where	𝒚𝒊	is	the	

(𝑝	×	1)	vector	of	observed	variables	for	person	𝑖,	𝛬	is,	again,	the	(𝑝×𝑚)	loading	matrix,	𝜁	is	the	

(𝑚	×	1)	latent	factor	vector,	and	𝛿	is	the	(𝑝	×	1)	vector	of	error	terms	for	each	individual.	Each	

element	𝛿	is	assumed	to	be	independent	from	each	other	and	independent	of	𝜁	as	well.	

Common	assumptions	of	this	model	are	that	the	error	terms	are	mutually	independent	

and	independent	of	the	factor	variables,	and	that	the	collection	of	the	factor	and	error	term	

variables	is	multivariate	normally	distributed.	The	variances	of	variable-specific	residual	terms,	

Var(𝜖%),	are	referred	to	as	"uniqueness"	terms	that	remain	unexplained	by	the	common	factors,	

leaving	Var(𝑌%)-Var(𝜖%)	as	the	“common”	or	shared	variance	(“commonality”)	in	a	given	

observed	variable	that	is	attributable	to	its	factor	contributions.		
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For	the	remainder	of	this	paper,	𝑁	will	denote	the	sample	size.		

EFA	and	PCA	

It	may	be	worth	making	a	quick	note	of	the	difference	between	EFA	and	principal	

components	analysis	(PCA),	two	related	and	commonly	confused,	yet	distinct,	techniques.	The	

aim	of	PCA	is	to	reduce	the	dimensionality	of	data	while	retaining	as	much	information	

(variability)	as	possible	through	the	conversion	of	correlated	variables	into	a	set	of	uncorrelated	

linear	combinations	of	(often	standardized)	observed	variables	called	principal	components.	

EFA	is	a	model-based	analysis	that	aims	to	identify	the	relationship	between	hypothesized	

latent,	but	potentially	related	factors,	and	the	observed	variables.	While	both	of	these	methods	

are	dimension	reduction	techniques,	each	is	used	to	answer	very	different	questions,	and	are	

not	interchangeable.		

Existing	EFA	Model	Selection	Strategies	

There	are	many	common	approaches	to	EFA	model	selection,	each	selecting	an	𝑚	based	

on	some	criteria	that	try	to	identify	an	'optimal'	number	of	factors,	𝑚.	If	an	appropriate	choice	

for	𝑚	exists,	choosing	𝑚 > 𝑚	is	called	overfactoring.	Overfactoring	may	result	in	a	

misunderstanding	of	real	latent	constructs	present	in	data	as	true	factors	may	be	superfluously	

split	into	several	factors	or	factors	which	have	'random'	low	loading	variables	may	appear	

(Norris	&	Lecavalier,	2010).	On	the	other	hand,	choosing	𝑚 < 𝑚	is	called	underfactoring.	

Underfactoring	is	considered	to	be	a	more	serious	concern,	as	observed	factors	will	load	
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erroneously	onto	factors	to	which	they	don't	belong,	providing	misleading	evidence	for	factor	

identity	(Norris	&	Lecavalier,	2010).	

Several	strategies	for	estimating	𝑚	rely	heavily	on	assessing	and	interpreting	the	

eigenvalues	of	a	covariance	or	correlation	matrix-either	of	the	observed	variables,	or	that	is	

estimated	to	arise	from	the	common	factor	portion	of	the	factor	model.	For	the	remainder	of	

this	paper	we	will	assume	that	analyses	are	based	on	correlation	matrices:	this	has	the	

advantage	of	standardizing	all	variances	to	equal	one	and	all	covariation	measures	to	lie	on	a	-1,	

1	range.	In	either	case,	the	eigenvalue	of	a	factor	is	representative	of	the	amount	of	variability	

the	factor	contributes	to	the	sum	of	variable	variances	in	most	factoring	methods	(Norris	&	

Lecavalier,	2010).	Computationally,	a	factor's	eigenvalue	with	respect	to	the	observed	variable	

correlation	matrix	(when	factors	are	orthogonal)	is	its	sum	of	squared	loadings	(Norris	&	

Lecavalier,	2010).	

There	are	graphical	methods	that	employ	correlation	matrix	eigenvalues	as	well,	such	as	

Cattell’s	scree	test	(Cattell,	1966).	This	test	consists	of	examining	a	plot	of	eigenvalues	versus	

factor	index	(1,	2,	3,	…)	to	visually	select	the	number	of	factors	to	extract.	Ideally,	there	will	be	

an	initial	steep	drop	in	eigenvalues	followed	by	a	clear	leveling	out	in	the	trend	of	remaining	

decrease,	creating	a	classic	'elbow'	shape	(Cattell,	1966).	The	number	of	eigenvalues	before	the	

elbow	is	the	proposed	number	of	factors.	While	intuitive,	a	clear	problem	with	this	technique	is	

that	there	is	not	always	a	clear	‘elbow	shape’,	leaving	potential	for	varying	interpretation	by	

different	investigators.	
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One	of	the	most	popular	methods	for	estimating	the	number	of	factors	is	the	Kaiser	test	

(K1),	which	is	based	on	𝑒,, 𝑒J, . . . 𝑒L—the	eigenvalues	of	the	observed	variable	correlation	

matrix.	K1	chooses	the	number	of	factors	to	be	equal	to	the	number	of	eigenvalues	greater	

than	1,	𝑚 = 𝛴,L	𝐼(𝑒# > 1)	(Cattell,	1966;	Kaiser,	1960).	This	method	provides	an	intuitive	

understanding	of	factor	retention	methods	by	which	one	retains	the	factors	accounting	for	

more	than	a	single	standardized	variable	worth	of	variability	(Velicer,	Eaton,	&	Fava,	2000).	It	

tends	to	overestimate	the	number	of	components	in	PCA	settings,	however,	potentially	due	to	

random	noise	pushing	'borderline'	eigenvalues	over	the	'threshold'	of	1	(Velicer	et	al.,	2000;	

Zwick	&	Vejicer,	1984).		

A	popular	extension	of	the	K1	test	is	parallel	analysis,	by	which	observed	eigenvalues	are	

compared—typically,	plotted—against	a	measure	of	central	tendency	for	eigenvalues	as	

simulated	from	many	randomly	generated	independent	(noise)	correlation	structures	

(Humphreys	&	Jr,	1975;	Timmerman	&	Lorenzo-Seva,	2011).	The	measure	of	central	tendency	

may	be	mean,	median,	possibly	some	other	percentile,	or	even	a	single	realization	of	simulated	

eigenvalues	(Humphreys	&	Jr,	1975).	The	factors	selected	is	the	number	of	observed	

eigenvalues	that	are	greater	than	the	simulated	eigenvalues	(Horn,	1965).	Parallel	analysis	has	

been	considered	to	be	one	of	the	most	powerful	and	accurate	methods	of	determining	the	

number	of	factors	to	extract,	and	has	been	shown	to	display	better	performance	than	the	K1,	

scree,	and	other	methods	while	being	relatively	easy	to	understand	(Velicer	et	al.,	2000;	Zwick	

&	Vejicer,	1984).	Parallel	analysis	is	sensitive	to	sample	size	however,	with	increased	𝑁	

commonly	resulting	in	more	factors	being	retained,	potentially	over	an	optimal	amount	(Velicer	

et	al.,	2000).	
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Other	methods	do	not	explicitly	consider	eigenvalues	and	instead	take	a	more	

traditional	model	selection	approach.	Such	methods	include	evaluating	likelihoods	and	

functions	of	likelihoods	(Preacher,	Zhang,	Kim,	&	Mels,	2013).	The	likelihood	utilized	in	factor	

analysis,	once	logarithmically	transformed,	is	given	as		

𝑙𝑜𝑔(ℒ) = − ,
J
𝑁(𝑙𝑜𝑔(|𝑃 𝜃 |) + 𝑡𝑟(𝑃 𝜃 V,𝑅))	when	each	of	the	𝑁	observations	are	taken	to	

be	normally	distributed	and	independent	of	one	another	(Akaike,	1987).	Likelihood	ratio	tests	

can	be	created	which	assess	the	null	hypothesis	that	the	observed	data	are	generated	from	

factor	model	with	a	specific	𝑚	(Preacher	et	al.,	2013).	Typically,	one	continues	to	increase	𝑚	

until	the	factor	model	fits	the	data	(lowest	𝑚	for	which	the	null	is	not	rejected	by	the	likelihood	

ratio	test).	Unfortunately,	this	method	comes	with	several	drawbacks.	Large	sample	sizes	cause	

even	'small'	discrepancies	between	model	and	observed	data	to	cause	a	rejection	while	in	small	

sample	size	situations,	large	discrepancies	may	not	be	identified,	leaving	performance	to	be	

determined	largely	by	the	given	sample	size	(Norris	&	Lecavalier,	2010).	

In	addition	to	likelihood	ratios,	various	extensions	including	the	AIC	and	BIC	as	well	as	

BIC	derivatives	such	as	sample	size	adjusted	BIC	(SSBIC)	and	empirical	BIC	(EBIC)	have	been	

frequently	utilized	in	a	factor	analysis	model	selection	framework	(Hirose	et	al.,	2011;	Lopes	&	

West,	2004;	Press	&	Shigemasu,	1999).		

For	the	k	orthogonal-factor	model,	𝐴𝐼𝐶(𝑚) = −2×𝑙𝑜𝑔(ℒ(𝑚)) + [2𝑝(𝑚 + 1) − 𝑚(𝑚 −

1)]	(Akaike,	1987),	𝐵𝐼𝐶(𝑚) = −2×𝑙𝑜𝑔(ℒ(𝑚)) + log	(𝑛)[𝑝(𝑚 + 1) − 0.5𝑚(𝑚 − 1)]	(Lopes	&	

West,	2004),	and	𝑆𝑆𝐵𝐼𝐶 = −2×𝑙𝑜𝑔 ℒ 𝑚 + 	𝑚	×log	(𝑛 + 2 24)		(Sclove,	1987),	where	𝑚	is	

the	number	of	factors,	𝑝	is	the	number	of	observed	variables	and	𝑛	is	the	number	of	
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observations	utilized	(Akaike,	1973).	Although	closely	related,	these	methods	can	produce	very	

different	estimates	of	𝑚	(Hirose	et	al.,	2011).	This	is	not	surprising,	because	AIC	is	directed	

toward	optimizing	prediction,	whereas	BIC	was	designed	to	identify	“true”	model	complexity	

(Akaike,	1973;	Schwarz,	1978).	In	addition,	other	extensions	of	AIC	and	BIC	have	been	

produced,	and	applied	in	the	context	of	factor	analysis	including	methods	such	as	generalized	

BIC	(Hirose	et	al.,	2011).	

Bootstrapping	methods	have	been	proposed	to	provide	an	alternative	method	of	

determining	the	number	of	factors	while	producing	a	measure	of	uncertainty	(Thompson,	

1988).	Some	such	procedures	draw	bootstrap	samples	and	then	estimate	𝑚	for	each	sample	

using	a	common	approach	such	as	parallel	analysis:	by	doing	this,	one	could	obtain	a	bootstrap	

interval	for	𝑚,	which	could	inform	an	appropriate	range	of	values	for	𝑚.	In	similar	fashion	

bootstrap	intervals	for	commonality,	loadings	and	inter-factor	correlation	measures	also	could	

be	provided.	Other,	recent	methodological	work	has	shown	the	efficacy	of	cross	validated	

methodologies	as	well.	A	“bi-cross-validation”	technique	proposed	by	Owen	&	Wang	(2016)	

randomly	holds	out	submatrices	of	the	data	matrix,	against	which	factor	model	predictions	

developed	on	the	remaining	components	of	the	data	matrix	are	tested.	This	method	has	been	

shown	to	outperform	a	variety	of	other	methods,	even	parallel	analysis,	under	certain	

simulated	situations	(Owen	&	Wang,	2016).	This	method	evaluates	predictions	with	respect	to	a	

submatrix	of	the	observed	data	matrix,	in	contrast	to	the	method	we	shortly	propose,	which	

evaluates	predictions	with	respect	to	a	correlation	matrix	based	on	a	subset	of	the	sampled	

observations.	It	also	uses	a	distinct,	multi-step	procedure	to	develop	predictions	and	has	a	



	
13	

distinct	goal	of	recovering	the	underlying	factor	prediction,	rather	than	a	“true”	number	of	

factors,	m	(Owen	&	Wang,	2016).		

	

Novel	Method	for	Model	Selection	

	

In	the	ordinary	least	squares	method	for	estimating	the	factor	analysis	model,	the	

discrepancy	between	and	observed	and	factor-implied	correlation	matrices	can	be	measured	by	

the	following	discrepancy	function	(Lee,	Zhang,	&	Edwards,	2012):	

𝑓 =
1
2TRACE( 𝑅 − 𝑃 𝜃 )J ,	

where	the	trace	function	is	the	sum	of	diagonal	matrix	entries.		We	can	assess	factor	model	fit	

by	tracking	the	value	of	𝑓	at	varying	numbers	of	factors.	If	fitting	and	assessment	are	conducted	

within	one,	same	dataset,	we	expect	that	𝑓	will	improve	(decrease)	as	𝑚,	the	number	of	

factors,	increases.	When	cross-validation	is	applied,	however,	with	fitting	conducted	in	one	

subset	and	testing	applied	in	another,	we	expect	that	𝑓	will	improve	as	𝑚	increases	to	a	point,	

but	then	worsen	as	one	exceeds	the	dimension	needed	to	characterize	the	true	data	

distribution.	The	specific	procedure	we	propose	is	as	follows:	

Procedure:	

1. Randomly	split	data	into	a	training	and	testing	set	(ℎ = 	2)	

2. Calculate	correlation	matrix	for	training	and	testing	set	
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3. Fit	factor	models	(using	𝑚	from	2	to	𝑝)	using	the	training	matrix	

4. Compute	the	value	of	trace	function	comparing	the	implied	correlation	matrix	from	the	

training	data	to	observed	data	test	correlation	matrix.	

5. Find	where	𝑓	increases,	stop	there.	Our	choice	(𝑚)	is	the	last	'step'	before	𝑓	increases.	If	𝑓	

increases	indefinitely,	our	best	estimate	of		𝑚	will	be	𝑝,	indicating	that	a	factor	model	is	

not	a	parsimonious	fit	for	the	data	at	hand.	

	

Simulation	Study	

	

We	assessed	the	effectiveness	of	our	proposed	method	relative	to	common	existing	

model	selection	methods	in	a	simulation	study.	Random	samples	from	factor	models	with	

known	𝑚	were	generated	and	the	proportion	of	samples	for	which	𝑚 = 𝑚	was	estimated	for	a	

variety	of	correlation	structures	arising	from	different	factor	models.	Factor	models	were	fit	

using	the	ordinary	least	squares	(OLS)	method	as	implemented	by	the	psych	R	package	(Lee	et	

al.,	2012;	R	Core	Team,	2016;	Revelle,	2017).	It	was	our	aim	to	compare	findings	over	

correlation	structures	varying	in	several	different	aspects	including:	strengths	of	loadings,	

number	of	observed	variables,	and	distribution	of	loadings	among	factors.	The	procedure	

outlined	below	was	utilized	in	order	to	provide	loadings/correlation	matrices	with	both	

structure	and	elements	of	randomness	in	the	hopes	of	approximating	real-world	situations.	

Nine	factor	structures	were	utilized,	six	from	a	simulated	theoretical	framework	and	

three	incorporating	the	implied	correlation	matrices	from	the	CRS	EFA	which	motivated	this	
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study.	EFA	structures	for	five-factor	models	(representing	assessments	at	baseline,	6	month	

follow	up,	16	month	follow	up),	were	utilized	in	order	to	provide	structure	to	this	simulation	

study	which	approximated	a	complex	empirical	scenario,	while	being	determined	in	advance	

and	thus	feasibly	capable	of	model	selection	method	accuracy.	Out	of	the	six	theoretical	

matrices,	three	“blocked”	matrices	(named	weak,	moderate,	and	strong)	contained	25	variables	

and	5	factors,	with	each	factor	having	exactly	5	variables	loading	onto	it	weakly,	moderately,	or	

strongly	(mean	loadings	=	0.38,	0.56,	and	0.71	respectively)	and	remaining	loadings	only	

minimally	(mean	loadings	=	0.15,	0.11,	and	0.07	respectively).	A	“moderate,	low	dimensional”	

matrix	represented	a	model	including	5	factors	and	11	observed	variables,	with	3	variables	

loading	moderately	(mean	loadings	=	0.56)	onto	the	first	factor	while	the	remaining	factors	

contained	2	unique	variables	loading	moderately;	minimal	loadings	were	0.11	on	average.	A	

“moderate,	different	dimensional”	matrix	contained	5	factors	and	27	variables,	with	factors	

loading	on	10,	7,	5,	3,	and	2	variables	respectively	with	mean	loading	of	0.56	while	minimal	

loadings	were	0.11	on	average.	A	10-factor,	100	variable	matrix	was	also	utilized	with	10	

variables	loading	heavily	onto	each	factor	(mean	loadings	=	0.037)	and	90	variables	loading	

minimally	(mean	loadings	=	0.007).		

Theoretical	matrices	described	above	were	generated	as	follows.	By	treating	each	of	𝑝	

rows	of	the	loading	matrix	𝛬	as	an	𝑚	dimensional	Dirichlet	vector	with	parameters	𝛼#,,, . . . 𝛼#,*	

we	can	generate	a	valid	loading	matrix	for	which	the	sum	of	squares	for	each	row	is	less	than	or	

equal	to	1	(avoiding	a	Heywood	case),	and	each	factor	matrix	entry	is	between	-1	and	1.	We	can	

then	compute	the	commonalities	as	𝛥: = 𝐼 − 𝑑𝑖𝑎𝑔(𝛬𝛬′).	The	matrix:	𝛬𝛬′ + 𝛥: 	represents	our	

simulated	correlation	matrix	generated	from	a	known	factor	structure:	Figures	1	and	2	illustrate	
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the	result	for	the	strong	“blocked”	correlation	design,	and	others	are	illustrated	in	the	

appendix.	This	factor	structure	is	completely	determined	by	the	choice	of	𝑝,	𝑚,	and	all	Dirichlet	

parameter	values.	Although	this	approach	is	simple,	it	is	capable	of	generating	a	wide	range	of	

structures	(see	appendix).	

For	each	correlation	matrix,	simulation	runs	were	conducted	for	sample	sizes	of	N	=	100,	

300,	500,	700,	1000.	In	each	run,	samples	of	the	respective	size	(N)	were	drawn	from	a	

multivariate	normal	distribution	with	mean	zero	and	the	respective	correlation	matrix	as	its	

covariance	matrix.	Using	these	simulated	samples,	K1,	parallel	analysis,	BIC,	sample	size	

adjusted	BIC,	and	the	proposed	method	were	applied	to	determine	the	number	of	factors.	For	

each	run,	100	repetitions	were	conducted,	and	the	number	of	successful	estimates	

(alternatively,	the	percent	of	correct	estimations)	were	recorded.		

Results	

The	proposed	trace	function	method	performed	increasingly	well	with	increasing	

sample	sizes.	In	some	cases	(e.g.	'moderate'	blocked	structure)	accuracy	increased	from	

approximately	5%	at	𝑁 = 100	to	100%	at	𝑁 = 1000,	while	the	difference	in	accuracy	of	the	

other,	standard	methods	varied	less	across	𝑁	(Table	1).	Weaker	structures	were	more	difficult	

for	the	proposed	method	to	identify.	For	the	'moderate,	low	dim'	matrix,	accuracy	varied	from	

5	to	35%	as	one	increased	the	sample	size	from	100	to	1000	(Table	1).	

While	the	trace	function	improved	its	estimation	from	100	samples	to	1000	for	each	

proposed	correlation	matrix,	the	K1	method	as	well	as	the	SSBIC	method	did	not	once	improve	
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from	the	same	change	in	N	(Table	1).	Meanwhile	the	BIC	method	improved	only	once	in	the	9	

proposed	scenarios	while	the	parallel	analysis	improved	in	two	of	the	9	(Table	1).	Overall,	all	

tested	methods	performed	very	well	with	stronger	correlation	structures,	although	BIC	

performed	comparatively	worse	in	the	CRS	and	10-factor	settings	(Table	1).		

There	were	cases	where	standard	methods	performed	outstandingly	well.	In	the	strong	

correlation	simulations,	the	SSBIC,	K1,	and	parallel	analysis	approaches	performed	at	100%	

accuracy	across	N.	Simulations	involving	the	three	CRS	correlation	structures	and	the	ten	factor	

structure	saw	perfect	accuracy	across	N	with	SSBIC	and	K1	methods	while	the	trace	method	

achieved	at	least	97%	accuracy	at	N	of	1000	(Table	1).	In	the	moderate	low	dimensional	and	

moderate	different	dimensional	matrices	at	low	N,	all	methods	performed	poorly,	with	the	

trace	function	(N	=	100,	accuracy	=	5%),	and	K1	methods	achieving	the	best	results	(N	=	100,	

accuracy	=	16%)	in	each	respective	scenario	(Table	1).	

Application	to	the	CRS	Study	

Our	analysis	addresses	3535	Geisinger	Health	System	patients	who	were	followed	for	a	

duration	of	16	months,	each	of	whom	was	selected	using	a	stratified	sampling	method	designed	

to	oversample	racial	minorities	and	those	with	a	high	propensity	for	CRS	via	International	

Classification	of	Diseases	(ICD-9)	and	Current	Procedural	Terminology	defined	attributes	in	

electronic	health	record	data	(Hirsch	et	al.,	2017;	Tustin	et	al.,	2017).	Each	of	these	patients	

responded	to	three	questionnaires	containing	37	common	questions	at	baseline,	6	months,	and	

16	months.	Of	these	37	questions,	21	inquired	about	the	presence	and	severity	of	CRS	nasal	

and	sinus	while	the	remaining	questions	assessed	presence	of	asthma,	allergy,	ear	and	
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constitutional	symptoms.	All	of	the	questions	inquired	about	the	frequency	of	experiencing	a	

symptom,	or	the	frequency	of	being	bothered	by	a	symptom	in	a	given	timespan	and	each	

question	was	answered	on	the	same	Likert	scale	(1	=	never,	2	=	once	in	a	while,	3	=	some	of	the	

time,	4	=	most	of	the	time,	or	5	=	all	the	time).	These	questions	were	specifically	designed	to	

predict	sinus	opacification	location	and	severity	using	only	self-reported	symptoms.	Polychoric	

correlations	were	calculated	from	each	of	these	surveys,	and	each	of	the	methods	studied	in	

our	simulation	study	was	applied	to	determine	the	number	of	factors	to	extract.		

K1	and	parallel	analysis	indicated	6,	5,	7,	and	5,	5,	6	factors	for	baseline,	6	month	and	16	

month	questionnaires	respectively	while	BIC	(15,	16,	14),	SSBIC	(17,	17,	20),	and	trace	(13,	13,	

16)	suggested	substantially	higher	numbers	of	factors	for	the	same	three	questionnaires.	Scree	

plots	were	also	examined,	which	appeared	to	suggest	5	factors	in	each	survey.	The	trace	

function	(Figure	3)	may	indicate	some	ambiguity	in	factor	number	choice,	achieving	a	minimum	

at	13	factors,	but	only	modest	slope	below	and	above	this	number	–	much	less	than	in	other	

simulated	scenarios	(see	appendix).	We	examined	a	13-factor	solution	for	the	baseline	CRS	EFA,	

extracted	using	the	same	OLS	method	and	oblimin	rotation	as	in	the	5	factor	EFAs,	in	order	to	

examine	the	qualitative	differences	driven	by	the	differences	in	the	number	of	extracted	

factors:	Two	factors’	interpretations	were	invariant--the	facial	pain	and	pressure	symptom	and	

smell	loss	symptom	factors;	other	factors	however,	were	reduced	to	identifying	symptoms	

related	to	single	phenomena	or	organs	(nasal	congestion,	ear,	eye,	fatigue,	etc.)	and	addressing	

both	presence	and	severity	(when	present	in	the	surveys).		

The	substantive	CRS	factor	analysis	was	not	approached	from	a	dogmatic	factor	model	

vantage	point,	but	rather	aimed	to	identify	biologically	feasible	symptom	clusters	within	the	
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questionnaire	EFAs.	As	such,	scree	plots	and	parallel	analysis	were	prioritized,	and	in	addition	

was	viewed	as	being	parsimonious	compared	to	other	methods.	Although	parallel	analysis	did	

not	suggest	the	same	number	of	factors	for	each	of	the	questionnaires,	it	was	decided	to	do	so	

for	interpretability	and	comparison	reasons.	Further	elaboration	is	provided	in	the	CRS	EFA	

chapter.	

Discussion	

	

The	results	of	our	simulation	study	provide	some	insight	into	the	efficacy	of	the	

proposed	method	as	well	as	the	effectiveness	of	other,	commonly	utilized	methods	

incorporated	into	this	study	(K1,	parallel	analysis,	SSBIC,	BIC).	It	was	shown	that,	with	increasing	

sample	sizes,	the	trace	function	method	performed	progressively	better,	eclipsing	the	

performance	of	other	methods	in	many	tested	circumstances	(Table	1).	Interestingly,	the	other	

methods	did	not	appear	to	vary	in	performance	with	increased	𝑁	across	the	majority	of	tested	

circumstances	(Table	1).	

In	these	simulated	matrices,	the	trace	function	method	outperformed	the	three	

standard	methods	when	the	strength	of	the	underlying	factors	was	small	(Table	1).	The	𝑁	

required	to	attain	superior	performance	varied,	but	seemed	to	be	less	for	weaker	correlation	

structures	(Table	1).	For	stronger	correlation	structures,	each	of	the	standard	methods	tested	

produced	consistently	very	accurate	results	(Table	1).	In	all	three	CRS	implied	correlation	

matrices,	the	sample	size	adjusted	BIC	as	well	as	the	eigenvalue	greater	than	1	method	

achieved	perfect	accuracy	across	all	values	of	𝑁,	while	the	standard	BIC	measure	performed	
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very	poorly,	with	accuracies	constantly	below	10%.	Although	the	trace	function	did	not	attain	

100%	accuracy	across	all	N,	it	improved	from	61,	46	and	34%	accuracy	at	𝑁 = 100	to	100,	97,	

and	99%	accuracy	at	𝑁 = 1000	for	baseline,	6	month,	and	16	month	CRS	matrices	respectively	

(Table	1).	

There	have	been	many	methods	developed	to	select	the	number	of	factors	in	an	EFA	

setting,	all	with	slightly	different	interpretations,	strengths	and	weaknesses.	Frequently,	

practitioners	conducting	EFA	treat	the	factor	model	literally	and	strive	to	uncover	the	'true'	𝑚	

and	evaluate	their	respective	loadings	accordingly	(Preacher	et	al.,	2013).	We	believe	this	goal	

often	is	unclear,	and	potentially	unhelpful,	for	two	reasons.	First,	in	practice,	researchers	apply	

several	different	criteria	to	the	target	they	seek,	including	a	literal	number	of	factors	underlying	

the	observed	data,	the	most	interpretable	number	of	factors,	and	various	other	criteria.	

Second,	similarly	to	linear	regressions,	models	are	only	approximate	-	with	that	in	mind	we	will	

understand	that	we	will	never	observe	'truth',	only	estimations	and	approximations	(Preacher	

et	al.,	2013).	As	such,	a	factor,	once	identified,	is	not	necessarily	real	but	at	best	a	useful	

approximation	to	real	(biological	or	otherwise)	phenomenon.		

Searching	for	the	literal	number	of	factors	is	arguably	infeasible,	outside	of	extremely	

controlled	settings,	because	observed	variables	likely	are	affected	by	a	huge	number	of	

contributing	'factors'	(latent	or	otherwise).	Consider	the	number	of	factors	underlying	an	

individual’s	take	home	income.	There	are	likely	'strong'	factors	including:	age,	education,	work	

ethic	and	industry.	But	there	also	is	a	profusion	of	‘weak'	factors	such	as,	appearance,	sense	of	

style,	and	voice	quality	which	may	be	relatively	unmeasurable	but	could	drive	stark	differences	

in	income	amount.	Notwithstanding	that	factor	models	typically	must	greatly	simplify	data	
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interrelationships,	the	estimation	of	factor	presence	and	identity	can	be	an	extremely	powerful	

tool,	providing	insight	into	disease	pathologies	and	symptom	classifications.	In	the	motivating	

study,	EFA	was	used	to	better	understand	the	relationships	between	CRS	symptoms	and	latent	

factors.	It	was	hypothesized	that	these	factors	reflected	pathobiological	phenomena,	shedding	

light	onto	what	symptom	question	responses	are	truly	measuring	in	this	population.		

As	seen	in	this	study’s	application	to	the	CRS	data,	differing	methods	could	potentially	

estimate	a	wide	range	of	factors.	We	hypothesize	that	this	discrepancy	reflects	the	differing	

objective	functions	employed	by	the	various	methods.	The	K1	and	parallel	methods	are	

designed	to	estimate	the	dimensionality	needed	to	represent	shared	covariation	among	one’s	

items,	without	explicit	reference	to	a	factor	model.	BIC	and	the	trace	function	both	explicitly	

incorporate	the	factor	model	specification	in	determining	fit	to	the	empirical	covariance	

matrix—hence	address	FA	assumptions	in	addition	to	dimensionality.	It	may	not	then	be	

surprising	that	these	methods	require	a	higher	dimensionality	to	reproduce	the	empirical	data	

structure.	We	consider	the	sensitivity	of	the	dimensionality	choice	to	the	factor	model	

assumptions	to	be	instructive	in	the	present	case.	In	the	CRS	application,	simple	dimensionality	

was	of	interest,	rather	than	consistency	with	a	factor	model	per	se,	making	prioritization	of	

those	methods	tuned	to	this	as	well	as	a	biologically	meaningful	interpretation	appropriate.	

When	extracting	the	13	factors	consistent	with	the	trace	method	from	the	baseline	CRS	study,	

moreover,	the	majority	of	factors	extracted	appeared	as	‘single	symptom’	factors,	addressing	

single	phenomena	or	organs.	The	understanding	of	these	factors	is	not	particularly	interesting	

from	a	biological	or	medical	standpoint,	but	may	rather	suggest	‘latent’	constructs	associated	

with	patient	responses	(similar	symptom	questions	are	answered	similarly),	while	other	
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methods	such	as	parallel	analysis	provide	a	more	desirable	understanding	of	latent	constructs	

associated	with	actual	patient	symptoms.	

Since	the	'true'	number	of	factors	may	have	questionable	meaning	in	some	

circumstances,	some	have	argued	that	searching	for	the	'optimal'	number	of	factors	may	be	the	

best	course	of	action,	based	on	a	criterion	centered	around	achieving	a	specific	goal	such	as	

verisimilitude	or	appearance	of	reasonable	truth	(Preacher	et	al.,	2013).	Other	criteria	for	

“optimal”	numbers	of	factors	may	include	generalizability,	the	ability	to	attain	similar	results	on	

an	independent	data	collected	from	the	same	population	(Myung,	2000),	or	accurate	and	

precise	data	approximation	(Owen	&	Wang,	2016).	

The	method	presented	here	seeks	to	approximate	an	underlying	number	of	factors	

without	forgoing	generalizability.	A	frequent	problem	in	the	EFA	framework	is	that	EFAs	from	

one	sample	may	not	necessarily	match	another	EFA	carried	out	on	an	independent	sample	from	

the	same	population.	By	incorporating	and	embracing	the	idea	of	cross	validation	and	

generalizability	from	the	beginning,	there	is	a	possibility	that	cross	validated	approaches	may	

remove	variability	in	the	choice	of	𝑚	resulting	in	more	consistent	results	across	studies	

(Friedman,	Hastie,	&	Tibshirani,	2001).	These	conjectures	warrant	further	research	as	there	are	

many	cases	and	types	of	data	in	which	EFA	frameworks	would	be	utilized.	

An	interesting	observation	from	our	simulations	is	that	standard	methods	SSBIC,	BIC,	

and	K1,	seem	to	produce	the	same	error	rate	regardless	of	𝑁	(Table	1).	This	empirical	result	

suggests	that	these	methods	may	not	be	consistent	estimators	of	𝑚	in	these	tested	settings.	

The	trace	function	on	the	other	hand	nearly	monotonically	increased	in	accuracy	with	
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increasing	𝑁	(Table	1).	In	addition,	by	utilizing	a	h-fold	cross	validated	procedure,	accuracy	may	

increase	more	steeply	as	a	function	of	N	as	ℎ > 2	has	been	shown	to	improve	estimation	

accuracy	and	convergence	(Friedman	et	al.,	2001).	Several	studies	have	sought	to	show	

consistency	in	the	EFA	framework,	as	traditional	methods	such	as	BIC	may	not	be	consistent	for	

𝑚	in	all	settings	(Bai	&	Ng,	2002).	Utilizing	a	greater	range	of	𝑁	here	may	enable	us	to	show	

some	empirical	consistency	with	some	of	the	methods	used,	although	only	the	trace	function	

method	appeared	to	approach	this	across	a	variety	of	sample	and	correlation	structure	settings.	

Future	work	

Our	simulation	study	provides	some	insight	into	the	performance	of	our	cross	validated	

discrepancy	approach	to	EFA	model	selection.	However,	only	a	small	sampling	of	possible	

correlation	structures	were	utilized,	all	with	similar	true	𝑚	(𝑚 = 5	or	𝑚 = 10).	Although	we	

hypothesize	that	the	sign	of	any	loading	will	not	change	the	accuracy	of	any	of	the	methods	

utilized,	it	is	important	to	note	all	of	the	simulated	matrices	contained	only	positive	factor	

loadings.	

Expanding	the	proposed	method	to	implement	h-fold	cross	validation	is	a	logical	next	

step.	Currently,	the	data	is	split	into	two	and	m	is	chosen	to	be	the	number	of	factors	which	

minimizes	the	discrepancy	between	fit	model	and	held	out	data.	Typically,	allowing	for	an	

increased	number	of	data	partitions	leads	to	more	accurate	estimates	of	the	error	rate,	and	in	

this	case,	may	produce	more	stable	estimates	of	𝑚	potentially	at	lower	values	of	𝑁	as	well	

(Friedman	et	al.,	2001).	
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Additionally,	it	is	important	to	assess	the	estimation	bias	in	all	methods	discussed.	

Currently,	accuracy	was	assessed	only	as	whether	or	not	the	correct	number	of	factors	was	

identified.	Considering	the	importance	of	understanding	a	method’s	tendency	to	over	or	under	

factor,	we	plan	also	to	assess	the	magnitude	and	direction	of	each	method’s	misses.	If	over	

factoring	is,	generally,	better	than	under	factoring	for	instance,	we	may	wish	to	penalize	

overestimation	of	𝑚	less	than	any	underestimation.	In	addition,	missing	the	number	of	factors	

by	1	is	likely	less	deleterious	than	by	4,	for	example,	so	the	magnitude	by	which	any	given	

method	mis-estimated	should	be	considered	in	future	work.	
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Tables	and	Figures	
	
Table	1.	Number	of	correct	factor	number	assessments	by	sample	size	adjusted	BIC	(SSBIC),	
standard	BIC	(BIC),	Kaiser	eigenvalues	greater	than	1	rule	(K1),	parallel	analysis	(PA),	and	the	
proposed	method	(trace)	out	of	100	simulation	replicates.	

Simulated	
samples	

Correlation	
Structure	

SSBIC	 BIC	 K1	 PA	 Trace	

100	 Strong	 100	 98	 100	 100	 79	

300	 Strong	 100	 99	 100	 100	 97	

500	 Strong	 100	 99	 100	 100	 99	

700	 Strong	 100	 98	 100	 100	 97	

1000	 Strong	 100	 98	 100	 100	 99	

100	 Moderate	 25	 0	 92	 99	 5	

300	 Moderate	 20	 0	 83	 100	 69	

500	 Moderate	 23	 0	 81	 100	 98	

700	 Moderate	 16	 0	 90	 99	 98	

1000	 Moderate	 24	 0	 86	 100	 100	

100	 Weak	 2	 0	 38	 75	 0	

300	 Weak	 0	 0	 34	 89	 30	

500	 Weak	 0	 0	 44	 79	 72	

700	 Weak	 1	 0	 40	 82	 89	

1000	 Weak	 0	 0	 33	 82	 97	

100	 Moderate,	low	dim	 0	 0	 0	 0	 5	

300	 Moderate,	low	dim	 0	 0	 0	 0	 8	

500	 Moderate,	low	dim	 0	 0	 0	 0	 19	

700	 Moderate,	low	dim	 0	 0	 0	 0	 13	

1000	 Moderate,	low	dim	 0	 0	 0	 0	 35	

100	 Moderate,	dif	dim	 0	 0	 16	 0	 2	

300	 Moderate,	dif	dim	 0	 0	 14	 0	 11	

500	 Moderate,	dif	dim	 0	 0	 11	 0	 41	

700	 Moderate,	dif	dim	 0	 0	 14	 0	 54	

1000	 Moderate,	dif	dim	 0	 0	 14	 0	 75	

100	 CRS	ibl	 100	 7	 100	 100	 61	

300	 CRS	ibl	 100	 5	 100	 100	 100	

500	 CRS	ibl	 100	 7	 100	 99	 100	
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700	 CRS	ibl	 100	 3	 100	 100	 100	

1000	 CRS	ibl	 100	 9	 100	 99	 100	

100	 CRS	i6m	 100	 0	 100	 99	 46	

300	 CRS	i6m	 100	 0	 100	 100	 94	

500	 CRS	i6m	 100	 0	 100	 98	 98	

700	 CRS	i6m	 100	 0	 100	 97	 95	

1000	 CRS	i6m	 100	 0	 100	 99	 97	

100	 CRS	i16m	 100	 0	 100	 95	 34	

300	 CRS	i16m	 100	 0	 100	 95	 96	

500	 CRS	i16m	 100	 0	 100	 91	 98	

700	 CRS	i16m	 100	 0	 100	 87	 96	

1000	 CRS	i16m	 100	 0	 100	 91	 99	

100	 10	factor	 100	 0	 100	 95	 34	

300	 10	factor	 100	 0	 100	 95	 96	

500	 10	factor	 100	 0	 100	 91	 98	

700	 10	factor	 100	 0	 100	 87	 96	

1000	 10	factor	 100	 0	 100	 91	 99	
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Table	2	Estimated	number	of	factors	for	each	of	the	3	questionnaires	(baseline,	6	month,	and	
16	month	follow	ups)	from	commonly	utilized	methods	including	Kaiser	eigenvalues	greater	
than	1	rule	(K1),	parallel	analysis	(PA),	standard	BIC	(BIC),	empirical	BIC	(EBIC),	sample	size	
adjusted	BIC	(SSBIC),	and	the	proposed	method	(TRACE).		

	

Method	 Baseline	 6-month	follow	up	 16-month	follow	up	
K1	 6	 5	 7	
PA	 5	 5	 6	
BIC	 15	 16	 14	
EBIC	 8	 8	 8	
SSBIC	 17	 17	 20	
TRACE	 13	 13	 16	
	

	

	 	



	
28	

	

	

Figure	1.	Strong	“blocked”	factor	loadings	utilized	to	create	the	correlation	matrix	in	the	
simulation	study.	
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Figure	2.	Correlation	matrix	generated	from	the	strong	“blocked”	factor	loadings	matrix.	
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Figure	3	Trace	function’s	discrepancy	values	on	the	baseline	CRS	data.	Vertical	line	denotes	the	
minimum	achieved	at	13	factors.	
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Appendix	
	

Additional	Figures:	

	

	
Figure	A1.	The	utilized	strong	loading	matrix,	created	using	the	Dirichlet	simulation	process,	
consisting	of	5	factors	and	25	variables.		
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Figure	A2.	The	utilized	strong	correlation	matrix,	created	from	the	corresponding	strong	loading	
matrix	
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Figure	A3.	The	utilized	moderate	loading	matrix,	created	using	the	Dirichlet	simulation	process,	
consisting	of	5	factors	and	25	variables.	
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Figure	A4.	The	utilized	moderate	correlation	matrix,	created	from	the	corresponding	moderate	
loading	matrix	
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Figure	A5.	The	utilized	weak	loading	matrix,	created	using	the	Dirichlet	simulation	process,	
corresponding	from	5	factors	and	25	variables.	
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Figure	A6.	The	utilized	weak	correlation	matrix,	created	from	the	corresponding	weak	loading	
matrix	
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Figure	A7.	The	utilized	moderate/low	dimensional	loading	matrix,	created	using	the	Dirichlet	
simulation	process,	consisting	of	5	factors	and	11	variables.		
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Figure	A8.	The	utilized	moderate/low	dimensional	correlation	matrix,	created	from	the	
corresponding	moderate/low	dimensional	loading	matrix	
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Figure	A9.	The	utilized	moderate/different	dimension	loading	matrix,	created	using	the	Dirichlet	
simulation	process,	consisting	of	5	factors	and	27	variables.	
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Figure	A10.	The	utilized	moderate/different	dimensional	correlation	matrix,	created	from	the	
corresponding	moderate/different	dimensional	loading	matrix	
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Figure	A11.	The	utilized	ten	factor	loading	matrix,	created	using	the	Dirichlet	simulation	
process,	consisting	of	10	factors	and	100	variables.	
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Figure	A12.	The	utilized	ten	factor	correlation	matrix,	created	from	the	corresponding	ten	
factor	loading	matrix	
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Figure	A13.	Trace	function’s	discrepancy	values	on	the	strong	“blocked”	factor	loading	matrix.	
Vertical	line	denotes	the	minimum	achieved	at	5	factors.	
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Simulating	Factor	Model	Correlation	Matrices	

Motivation	

In	simulations	of	factor	analyses,	it	is	important	to	be	able	to	randomly	generate	valid	

correlation	matrices	which	stem	from	some	known	factor	model	in	order	to	assess	model	

selection	methods	and	other	attributes	of	factor	analysis	procedures.	

Computation	

A	core	idea	of	factor	analysis	is	that	we	can	explain	variability	in	our	observed	data	by	

means	of	a	smaller	number	of	underlying,	latent	factors,	which	are	associated	with	observed	

variables.	Mathematically	speaking,	our	correlation	matrix,	𝜌,	can	be	broken	down	as	such:	

𝜌 = 𝛬𝛹𝛬′ + 𝛥?	

where	𝛬	is	the	𝑝×𝑚	matrix	of	factor	loadings,	𝛹	is	the	(𝑚×𝑚)	factor	correlation	matrix,	and	

𝛥?	is	the	matrix	of	unique	variances	(𝑝×𝑝	diagonal	matrix).	

This	can	be	further	written	as	𝜌 = 𝛬𝛹𝛬′ + (𝐼 − diag(𝛬𝛹𝛬′))	

If	we	are	interested	in	generating	a	random,	structured	loadings	matrix,	the	following	

procedure	is	proposed.	We	can	treat	each	row	𝑖	of	𝛬	as	a	Dirichlet(𝛼#,,, . . . , 𝛼#,*)	×	Beta(𝑥#, 𝑦#)	

where	each	𝛼#,% 	is	some	proposed	weight	as	to	how	strong	we	would	like	(on	average)	variable	𝑖	

to	load	on	each	factor.	

These	constraints	ensure	that	𝛬	will	be	a	valid	loadings	matrix	as:	
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• All	loadings	are	between	-1	and	1	

• The	sum	of	squared	loadings	(for	a	variable)	is	less	than	1	(avoiding	a	Haywood	case)	

Now,	we	will	let	𝜓	be	the	𝑚	dimensional	identity	matrix	(all	factors	are	orthogonal).	

𝜌 = 𝛬𝛹𝛬′ + (𝐼 − diag(𝛬𝛹𝛬′))	

= 𝛬𝛬′ + (𝐼 − diag(𝛬𝛬′))	

We	know	𝛬𝛬′	is	positive	semi-definite	as	each	element	of	𝛬	is	a	real	number.	

We	also	know,	a	positive	semi-definite	matrix	plus	a	matrix	of	the	same	dimension	with	

all	non-negative	entries	is	also	positive	semi-definite.	It	follows	that	𝜌	is	positive	semi-definite.	

In	addition,	because	each	entry	of	𝛬	is	in	[0,1],	we	know	each	element	of	𝛬𝛬′	will	be	between	

[0,1]	while	the	+(𝐼 − diag(𝛬𝛬′))	term	ensures	that	the	diagonal	of	𝜌	are	all	1.	Thus,	𝜌	is	a	valid	

correlation	matrix,	uniquely	determined	by	𝛬.	

Use	

This	idea	of	being	able	to	construct	random	correlation	matrices	is	important	to	certain	

simulation	studies	where	one	must	generate	random	yet	valid	correlation	matrices	in	which	the	

true	number	of	factors	is	known	and	fixed.	Because	any	correlation	matrix	stemming	from	this	

method	would	inherently	be	able	to	perfectly	decompose	into	the	true	number	of	factors,	

sampling	noise	should	be	added.	This	can	be	accomplished	by	sampling	from	a	multivariate	

distribution	(in	this	case	multivariate	normal)	with	the	specified	correlation	matrix,	them	

computing	a	'simulated	empirical'	correlation	matrix	from	the	simulated	multivariate	data.	
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Further	work	

The	above	method	can	produce	many	types	of	random	correlation	matrices;	however,	

all	loadings	must	be	positive,	which	is	not	required	of	factor	analysis	loadings.	We	may	be	able	

to	incorporate	negative	loadings	by	utilizing	a	Bernoulli	process	by	which	each	cell	of	𝛬	has	

some	probability	of	being	multiplied	by	-1	or	1.	This	would	allow	for	negative	loadings	(and	

correlations)	while	ensuring	𝜌	remains	a	valid	correlation	matrix.	
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Chapter	3	-	Exploratory	Factor	Analysis	of	CRS	Symptoms		

Introduction	

Chronic	rhinosinusitis	(CRS)	is	an	inflammatory	condition	characterized	by	nasal	and	

sinus	symptoms,	affecting	15%	of	the	United	States	population	(Wj	et	al.,	2012).	There	are	

considered	to	be	four	cardinal	symptoms	of	the	disease	which	include	nasal	drainage	(anterior	

or	posterior),	nasal	blockage	(congestion),	smell	loss,	and	facial	pain	or	pressure	lasting	for	12	

or	more	weeks	(Browne,	Hopkins,	Slack,	&	Cano,	2007;	Tan,	Kern,	Schleimer,	&	Schwartz,	2013).	

The	European	Position	Paper	on	Rhinosinusitis	and	Nasal	Polyps	(EPOS)	diagnosis	methodology	

for	CRS	is	based	upon	the	presence	of	nasal	obstruction	or	discharge	and	at	least	one	other	

symptom	as	well	as	objective	evidence	of	inflammation	on	sinus	computerized	tomography	(CT)	

scan	or	sinus	endoscopy,	which	may	include	sinus	or	osteomeatal	complex	mucosal	changes,	

presence	of	nasal	polyps,	or	mucopurulent	discharge	from	the	middle	meatus	(Wj	et	al.,	2012).	

Because	of	the	difficulty	of	obtaining	sinus	CT	or	endoscopy	in	large-scale	population	studies,	

EPOS	also	has	an	epidemiologic	definition	of	CRS	based	on	symptoms	and	duration	only.	

However,	EPOS	does	not	specify	how	to	measure	symptoms	in	terms	of	severity	(e.g.,	some	

blockage	or	complete	blockage;	partial	smell	loss	or	complete	smell	loss;	the	quantity	of	

discharge;	the	severity	of	pain)	or	frequency	(e.g.,	some	of	the	time,	most	of	the	time,	or	all	of	

the	time).		

Nasal	and	sinus	symptoms	lasting	three	months	are	quite	common,	and	many	studies	

have	reported	that	there	is	not	a	strong	correlation	between	such	symptoms	and	objective	
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opacification	on	sinus	CT	scans	(Browne	et	al.,	2007;	Ferguson,	Narita,	Yu,	Wagener,	&	

Gwaltney,	2012;	Wj	et	al.,	2012).	Up	to	40%	of	those	with	symptoms	meeting	EPOS	criteria	for	

CRS	do	not	have	significant	sinus	opacification	on	CT	(Ferguson	et	al.,	2012).	The	lack	of	

correlation	of	symptoms	meeting	EPOS	criteria	for	CRS	and	findings	on	sinus	CT	could	be	due	to	

imprecision	in	the	ways	that	nasal	and	sinus	symptoms	have	been	measured	in	terms	of	

severity,	frequency,	and	duration	(Hamilos,	2011;	Wj	et	al.,	2012).	In	addition,	there	are	few	

studies	that	examine	how	nasal,	sinus,	and	other	relevant	symptoms	relate	to	one	another	

within	patients	cross-sectionally	or	longitudinally.	Understanding	these	relationships	among	

symptoms	may	guide	more	precise	symptom	measurement	in	ways	that	increase	the	likelihood	

that	patients	with	certain	nasal	and	sinus	symptoms	also	have	objective	evidence	of	

opacification.		

We	used	exploratory	factor	analysis	(EFA)	to	assess	the	latent	structure	of	nasal,	sinus	

and	other	common,	relevant	symptoms	at	cross-section	for	three	separate	time	points,	as	well	

as	the	change	in	these	symptoms	over	time.	By	latent	structure	of	symptoms,	we	mean	the	

otherwise	unseen	patient	attributes	driving	the	manifestation	of	symptoms.	While	prior	studies	

have	used	EFA	applied	to	CRS	symptoms	at	one	point	in	time,	they	have	utilized	the	Sino-nasal	

Outcome	Test	(SNOT)	family	of	questionnaires,	designed	to	assess	treatment	effectiveness	

among	patients	known	to	have	CRS	(Browne	et	al.,	2007;	Claire	Hopkins,	Browne,	Slack,	Lund,	&	

Brown,	2007).	SNOT	assesses	symptom	severity	in	a	two-week	recall	window,	so	cannot	be	

used	to	evaluate	compliance	with	EPOS	duration	criteria,	and	does	not	evaluate	symptom	

frequency	(Claire	Hopkins	et	al.,	2007;	Wj	et	al.,	2012).	The	questionnaire	utilized	in	this	study	

incorporated	questions	assessing	frequency	of	EPOS	defined	symptoms,	as	well	as	frequency	of	
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severe	and	related	symptoms,	in	order	to	assess	a	broad	range	of	potentially	CRS-associated	

manifestations.	Understanding	how	symptoms	may	group	at	one	point	in	time	and	change	over	

time	could	allow	development	of	more	precise	approaches	to	symptom	measurement;	and	also	

allow	development	of	different	biologic	rationales	for	how	these	symptoms	may	group	the	way	

they	do.		

Methods	

Study	population	and	design	

A	total	of	200,769	Geisinger	Clinic	primary	care	patients	over	the	age	of	18	years	with	

both	electronic	health	record	(EHR)	and	race/ethnicity	data	were	eligible	for	participation	in	

this	study.	From	these	patients	23,700	were	chosen	to	be	recipients	of	a	series	of	

questionnaires	utilizing	a	sampling	scheme	that	has	been	previously	descried	(Hirsch	et	al.,	

2017;	Tustin	et	al.,	2017).	In	brief,	using	a	stratified	random	sampling	method	to	over-sample	

both	racial/ethnic	minorities	as	well	as	those	with	higher	likelihoods	of	CRS	using	International	

Classification	of	Diseases	(ICD-9)	and	Current	Procedural	Terminology	codes	in	EHR	data,	

patients	were	selected	to	receive	self-administered	questionnaires	through	the	mail	(Hirsch	et	

al.,	2017;	Tustin	et	al.,	2017).	

Participants	who	returned	the	baseline	questionnaire	(n	=	7847)	were	followed	for	16	

months,	from	April	2014	to	August	2015,	and	received	two	additional	questionnaires	at	six	

months	and	16	months.	Non-responders	were	sent	questionnaires	one	or	two	additional	times.	

The	questionnaires	were	diverse	in	terms	of	information	requested,	providing	information	
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about	a	spectrum	of	symptoms	including	presence,	frequency,	severity,	and	bother	of	a	range	

of	symptoms	associated	with	CRS	and	co-morbid	conditions	like	headache	disorders	and	

asthma	(Table	1,	Hirsch	et	al.,	2017;	Tustin	et	al.,	2017).	Each	questionnaire	included	37	

common	questions,	each	with	the	same	response	options	(how	often	the	symptom	occurred	in	

the	past	three	months	as	1	=	never,	2	=	once	in	a	while,	3	=	some	of	the	time,	4	=	most	of	the	

time,	or	5	=	all	the	time;	Table	2).	A	total	of	21	questions	were	about	the	presence,	severity,	

and	degree	of	bother	of	CRS	nasal	and	sinus	symptoms	were	incorporated	while	the	remaining	

questions	assessed	presence	of	four	asthma	symptoms;	four	allergy	symptoms;	three	ear	

symptoms;	and	five	constitutional	and	other	related	symptoms	(Table	2).		

Data	collection	

The	baseline	questionnaire	was	mailed	in	April	2014,	the	6-month	follow-up	in	October	

2014,	and	the	16-month	follow-up	in	August	2015.	These	consisted	of	94,	87,	and	79	questions	

respectively,	but	the	current	analysis	focused	on	the	37	questions	that	were	common	to	all	

three	(Table	2).	After	questionnaires	were	received,	each	was	scanned	and	then	data	was	

double-checked	and	verified.	A	total	of	7834	persons	returned	the	baseline	questionnaire	

(responding	to	at	least	one	of	the	37	questions	of	interest),	4945	returned	the	6-month	follow-

up	questionnaire,	and	4584	returned	the	16-month	follow-up	questionnaire.	

Skip	patterns	were	present	in	the	questionnaires,	by	which	patients	would	be	asked	to	

skip	blocks	of	questions	if	the	responses	to	these	questions	could	be	completely	determined	by	

previous	responses.	This	occurred	only	when	patients	indicated	that	they	had	not	experienced	

the	symptom(s)	of	interest,	making	further	questions	pertaining	to	that	symptom	irrelevant.	
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These	skip	patterns	were	accounted	for	by	filling	in	implied	responses	when	skip-pattern	

missingness	was	present.			

Analytic	variables	

The	European	Position	Paper	on	Rhinosinusitis	and	Nasal	Polyps	subjective	(EPOSs)	

criteria	were	used	to	classify	patients	as	current,	previous,	or	never	CRS	based	on	patient	

reported	symptoms	from	only	the	baseline	questionnaire.	EPOSs	criteria	require	three	months	

of	obstruction	or	anterior	or	posterior	discharge	with	one	other	of	the	cardinal	symptoms	of	

smell	loss,	facial	pain,	or	facial	pressure,	lasting	three	or	more	months.	Patients	were	classified	

using	questionnaire	responses,	specifically	lifetime	and	previous	3	months	of	symptoms,	being	

labeled	as	current	CRS,	if	they	met	EPOSs	CRS	criteria	in	the	three	months	before	the	baseline	

questionnaire;	as	past	CRS	if	they	met	these	criteria	in	their	lifetime	but	not	in	the	three	

months	before	the	baseline	questionnaire;	and	never	CRS	if	they	never	met	these	criteria	in	

their	lifetime.	The	questionnaire	has	been	previously	described,	from	the	Chronic	Rhinosinusitis	

Integrative	Studies	Program	(Hirsch	et	al.,	2017;	Wj	et	al.,	2012),	and	included	income	and	

education	information	at	baseline.	Other	demographic	characteristics	including	age,	sex,	and	

race/ethnicity,	as	well	as	health	information	such	as	body	mass	index	(BMI,	measured	in	

kg/m2),	were	collected	via	electronic	health	record	data.		

Statistical	Analysis	

The	goals	of	the	analysis	were	to	identify	the	underlying	structure,	if	present,	among	the	

37	survey	questions	at	each	questionnaire	time	point,	and	then	among	the	change	in	these	
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symptoms	over	time,	from	baseline	to	6-month	follow-up	and	from	6-month	follow-up	to	16-

month	follow-up	questionnaires.	Of	the	7847	patients	who	returned	the	baseline	

questionnaire,	the	analysis	included	the	3535	patients	who	returned	all	three	questionnaires	

with	no	more	than	5	missing	values	for	the	37	questions	for	any	single	questionnaire.	We	did	

not	want	to	impute	values	for	subjects	with	many	missing	questions	since	the	primary	goal	of	

the	analysis	was	to	evaluate	the	underlying	latent	structure	of	the	patterns	of	symptom	

reporting,	and	a	large	portion	of	patients	were	only	missing	a	small	number	of	responses.	For	

missingness	for	subjects	with	five	or	fewer	missing	values,	which	we	assumed	to	be	at	random,	

multivariate	imputation	by	chained	equations	was	conducted	to	impute	missing	values	for	

patient	questionnaires	that	were	included	in	this	study	(3.5%),	utilizing	only	information	within	

each	survey.	This	imputation	was	carried	out	via	the	mice	R	package	using	the	predictive	mean	

matching	method	(Buuren	&	Groothuis-Oudshoorn,	2011).	Once	data	were	finalized	for	each	

patient	questionnaire,	two	change	scores	were	calculated	as	the	difference	between	each	

person’s	adjacent	questionnaires	(baseline	to	6-month	and	6-month	to	16-month).	

Due	to	the	exclusion	criteria	utilized	in	this	study,	not	all	patients	were	included	in	the	

final	analysis.	Summary	statistics	of	demographic,	health,	and	socioeconomic	information	was	

computed	and	compared	between	the	included	individuals	in	this	analysis	and	those	who	were	

excluded.	In	addition,	lasagna	plots	were	examined	in	order	to	visually	assess	the	transitions	

between	individual	question	responses	over	the	3	questionnaire	duration	of	the	study	period	

(Figure	1,	Swihart	et	al.,	2010).	

Exploratory	factor	analysis	was	utilized	as	there	were	multiple	hypotheses	and	little	a	

priori	knowledge	of	the	underlying	structure	of	symptom	reporting.	Recognizing	the	ordinal	
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scaling	of	the	data,	implied	Pearson	(polychoric)	correlations	were	estimated	among	the	37	

questions	for	the	three	cross-sectional	questionnaires,	using	the	quick	two	step	procedure	as	

implemented	by	the	psych	R	package	(Revelle,	2017).	These	correlations	were	then	utilized	in	

exploratory	factor	analyses	with	ordinal	variables.	Meanwhile,	Pearson	correlation	matrices	

were	calculated	for	each	of	the	two	change	scores	as	the	difference	score	distribution	appeared	

symmetric	and	contained	more	levels	than	practical	for	polychoric	correlations.		

For	each	of	the	five	EFAs	(three	cross-sectional	and	two	differences),	a	factor	analysis	

was	conducted	fitting	loadings	estimates	and	communalities	applying	the	ordinary	

(unweighted)	least	squares	(OLS/ULS)	procedure	to	correlations	estimated	as	just	described.	An	

oblimin	rotation	for	each	factor	analysis	was	utilized	in	order	to	allow	for	correlations	among	

factors	(Revelle,	2017).	In	EFA	settings,	determining	the	number	of	factors	is	a	key	step	in	

identifying	factor	structure.	Commonly,	many	methods	are	utilized	in	order	to	assess	which	

selection	is	most	appropriate,	each	with	different	optimality	criteria	driving	different	

interpretations	of	results.	In	this	study,	biological	interpretability	and	parsimony	were	stressed,	

in	accordance	with	analyses	and	considerations	provided	in	the	previous	chapter,	the	

qualitative	method	of	examining	scree	plots	and	the	quantitative	parallel	analysis	method	were	

taken	together	to	determining	the	optimal	number	of	factors	to	extract.	The	scree	plot	displays	

eigenvalues	of	the	correlation	matrix	in	rank	order	by	size	from	largest	to	smallest	(x-axis	=	size	

rank,	y-axis	=	eigenvalues)	to	assess	the	location	of	a	clear	“elbow”	shape	where	the	slope	of	

the	curve	changed	from	rapid	decline	in	eigenvalues	with	increasing	rank	to	a	flattening	of	the	

curve,	as	per	Cattell’s	Scree	test	(Cattell,	1966).	Meanwhile,	parallel	analysis	compares	

eigenvalues	from	random	data	matrices	with	uncorrelated	item	responses	with	observed	
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eigenvalues:	the	number	of	ranked	observed	eigenvalues	greater	than	the	randomly	generated	

ones	is	the	number	of	factors	retained	(Humphreys	&	Jr,	1975).	Once	factor	loadings	were	

extracted,	factor	scores	were	estimated	for	each	identified	factor	for	each	patient	using	item	

response	theory	(IRT)	based	scores	for	polytomous	items	for	each	of	the	three	surveys	(Kamata	

&	Bauer,	2008).	These	estimated	factor	scores	were	computed	as	a	measure	of	the	strength	of	

each	latent	factor	for	each	patient.	These	estimated	factor	scores	were	compared	across	EPOSs	

CRS	status	groups	(current,	previous,	never).	A	multivariate	analysis	of	variance	(MANOVA)	was	

fit	in	order	to	compare	the	mean	multivariate	factor	score	(vector	of	the	estimated	factor	

scores)	between	EPOSs	CRS	status	groups	for	factor	scores	which	appeared	to	follow	an	

approximately	normal	distribution.	One	factor	score	had	a	mixed-scale	distribution,	with	a	

considerable	proportion	of	individuals	having	a	low	(at	the	IRT-lower	bound)	value	and	the	

remaining	individuals	distributed	relatively	continuously	among	higher	values.			To	relate	this	

score	to	EPOS	status,	a	logistic	regression	was	computed	to	estimate	the	odds	of	having	a	low	

factor	score	as	a	function	of	EPOSs	CRS	group,	and	a	linear	regression	was	used	to	estimate	the	

mean	factor	scores	by	EPOSs	CRS	group	for	those	patients	who	did	not	have	the	lower	bound	

factor	score.		

We	also	sought	to	assess	whether	or	not	the	baseline	–	6	month	difference	captured	

more	variability	than	the	6	month	–	16	month	difference.	To	this	end,	each	difference	EFA	

communality	was	extracted	and	then	compared	by	time	period	(baseline-6	month	versus	6	

month-16	month),	using	a	Wilcoxon	signed	rank	test.	We	hypothesized	higher	mean	

communality	values	in	the	baseline	–	6	month	period	EFA	than	the	6	month	–	16	month	period,	

corresponding	to	higher	stability	over	a	shorter	period	for	change.	
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Sensitivity	Analysis	and	Diagnostics	

	

Diagnostics	

Kaiser-Meyer-Olkin	(KMO)	factor	adequacy	was	evaluated	for	each	computed	

correlation	matrix	to	further	assess	the	appropriateness	of	factor	analysis.	KMO	mean	square	

error	(MSA)	statistics	of	0.96,	0.96,	0.95	were	observed	for	baseline,	6-month	follow-up,	and	

16-month	follow-up	questionnaires,	respectively.	The	two	change	score	difference	correlation	

matrices	yielded	KMO	MSAs	of	0.91	and	0.90	for	the	first	and	second	differences,	respectively.	

These	KMO	statistics,	all	of	which	were	greater	than	0.9,	indicated	a	very	high	degree	of	

common	variance,	and	supported	a	conclusion	that	our	covariance	matrices	were	very	well	

suited	to	be	subjected	to	factor	analysis.	

Sensitivity	to	factoring	method	

Each	factor	analysis	was	refit	using	weighted	least	squares,	principal	factors,	maximum	

likelihood,	and	generalized	least	squares	to	ensure	the	qualitative	interpretation	of	the	loadings	

was	not	conditional	on	the	factoring	method.	We	selected	ordinary	least	squares	as	the	final	

factoring	method	as	OLS	produces	unbiased	rotated	factor	loadings,	and	has	desirable	

characterizes	at	large	sample	sizes	(Lee,	Zhang,	&	Edwards,	2012).	Loading	matrices,	

communalities,	and	inter-factor	correlation	matrices	were	examined.	Loadings	matrices,	which	

may	contain	entries	ranging	from	-1	to	1,	provide	a	measure	of	the	strength	of	the	relationship	

between	each	question	and	each	of	the	extracted	factors,	while	the	commonalities	for	each	
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question,	which	range	from	0	to	1,	are	interpreted	as	the	fraction	of	how	much	each	question’s	

variability	is	explained	by	the	utilized	factor	model.	Finally,	inter-factor	correlation	matrices	

examined	each	factor’s	relations	with	the	other	factors	that	were	derived	from	the	final	EFA.		

Imputation	

To	evaluate	the	sensitivity	of	results	to	missing	data	and	imputation,	a	total	of	100	

imputed	datasets	were	generated	from	the	original	dataset	with	missingness	using	the	same	

multiple	imputation	methodology	(mice)	as	previously	stated.	Latent	continuous	(polychoric)	

correlations	were	calculated	and	compared	across	imputed	datasets	for	each	questionnaire	

item.	Each	of	these	666	(all	of	the	bivariate	correlations	among	the	responses	to	the	37	

questions)	pairwise	correlations’	standard	deviations	were	computed	using	the	100	imputed	

datasets,	and	were	examined.	Across	these	pairwise	correlations,	99.5%	of	standard	deviations	

were	below	0.0064,	0.0089,	and	0.0036	for	the	baseline,	6-month	follow-up,	and	16-month	

follow-up	questionnaires,	respectively,	suggesting	that	the	impact	of	random	imputation	on	

correlation	matrices	and	subsequent	factor	analyses	was	minimal.		

Results	

Description	of	study	subjects	

The	3535	patients	included	in	the	analysis	were	first	compared	to	the	4312	respondents	

of	the	baseline	questionnaire	who	were	not	included	(Table	1).	The	two	groups	were	similar	on	

sex	distribution	(37.8%	vs.	36.9%	male,	respectively)	and	mean	body	mass	index	(BMI,	30.0	vs.	

30.3	kg/m2,	respectively).	However,	included	and	excluded	patients	differed	on	a	number	of	
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other	study	variables,	including	age	(57.5	vs.	53.2	years	on	average,	respectively),	race/ethnicity	

(94.0%	vs.	87.5%	white,	respectively),	and	socioeconomic	status	(32.9%	vs.	25.1%	earned	over	

$50,000	annually,	respectively).		

It	was	observed	that	across	time,	individuals	experienced	varying	degrees	of	changing	

symptoms,	as	exemplified	by	responses	to	the	question	(number	3)	about	the	frequency	of	post	

nasal	drip	across	visits	(Figure	1).	Although	symptoms	at	baseline	generally	predicted	symptoms	

over	time,	it	was	common	for	symptoms	to	change	by	one	frequency	category,	and	some	

patients	changed	by	two	or	more.	Those	who	answered	“never”	having	post	nasal	drip	in	the	

previous	3	months	at	baseline	typically	responded	having	low	frequency	(never	or	once	in	a	

while)	of	the	symptom	at	6	months	and	16	months	(Figure	1).	Similarly,	those	who	responded	

experiencing	the	symptom	“all	of	the	time”	at	baseline,	were	more	likely	to	experience	the	

symptom	often	at	6	months	and	16	months.	This	pattern	was	evident	in	other	questions	as	well	

(results	not	shown);	data	are	displayed	for	question	3	because	it	had	a	relatively	uniform	

distribution	of	responses	at	baseline	(the	other	questions	had	larger	proportions	of	subjects	

who	reported	never	experiencing	the	symptom).	

Cross-sectional	EFAs	

For	each	of	the	three	cross-sectional	EFAs,	scree	plot	results	supported	the	extraction	of	

five	factors	(see	appendix).	Parallel	analysis	suggested	the	retention	of	five	factors	for	baseline	

and	6	month	questionnaires,	and	six	factors	for	the	16-month	follow	up.	For	comparability,	5	

factors	were	extracted	from	each	of	these	questionnaires.	Each	of	the	structures	in	these	three	

EFAs	was	similar,	and	the	content	of	the	five	factors	was	the	same	for	each,	with	one	factor	
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each	for	congestion	and	discharge	symptoms,	pain	and	pressure	symptoms	(including	

headache),	asthma	and	constitutional	symptoms,	ear	and	eye	symptoms,	and	smell	loss	(Table	

3	for	baseline	EFA,	other	two	cross-sectional	EFAs,	see	appendix).	Factor	loadings,	or	the	degree	

to	which	any	specific	question	was	related	to	a	specific	latent	factor,	were	consistent	across	all	

three	questionnaires	(similar	to	results	in	Table	3	for	baseline,	other	cross-sectional	EFA	results	

not	shown).	Most	observed	communalities	were	high,	indicating	that	the	factor	models	well-

represented	these	questions	which	were	included	in	the	analysis	(Table	3).	A	few	low	

communalities	were	observed	for	bad	breath	(0.26),	fever	(0.34),	cold/flu	symptoms	(0.37)	and	

fatigue	(0.39),	suggesting	that	our	five-factor	model	did	not	account	for	much	of	the	variability	

in	these	symptoms,	and	thus	they	did	not	load	heavily	on	any	single	factor.	After	using	the	

baseline	model	to	estimate	factors	within	individuals	at	baseline,	the	inter-factor	correlations	

resulting	from	oblimin	rotation	ranged	from	0.30	to	0.64	(Figure	2).			

Longitudinal	difference	EFAs	

Analysis	results	also	supported	five-factor	models	for	each	of	the	two	longitudinal	

difference	EFAs.	Symptoms	identified	to	load	on	single	factors	in	the	difference	analyses	

indicates	that	these	symptoms	change	together	and	in	the	same	direction	over	time.	Notably,	

the	two	difference	EFAs	(both	for	6	and	10	month	durations)	yielded	nearly	identical	factors	

(Table	4	for	change	from	6-month	to	16-month	questionnaires,	see	appendix)	which	displayed	a	

fairly	similar	structure	to	the	factors	identified	in	each	of	the	cross-sectional	EFAs	(Table	3).	In	

order	to	compare	model	fit	between	the	two	difference	EFAs,	a	Wilcoxon	signed	rank	test	was	

utilized	to	test	the	hypothesis	that	the	baseline	to	6-month	difference	EFA	explained	more	
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variability	than	the	6	to	16-month	difference	EFA	by	examining	the	difference	in	individual	

variable	commonalities	between	the	two	EFAs.	The	baseline	to	6	month	difference	EFA	had	a	

significantly	greater	average	communalities	than	the	6	month	to	16	month	difference	EFA	(p-

value	=	0.002;	see	appendix).		

Factor	Scores	

Utilizing	the	factors	from	the	baseline	questionnaire	EFA,	factor	scores	were	estimated	

and	compared	between	EPOSs	CRS	groups	(current,	previous,	and	never	at	baseline;	Figure	4	

for	factor	1,	results	for	other	factors	not	shown).	A	MANOVA	was	fit,	comparing	the	four	factor	

scores	in	the	three	CRS	status	groups	simultaneously	(omitting	the	4th	factor,	smell	loss,	as	it	

appeared	to	be	non-normally	distributed),	and	this	indicated	a	significant	difference	between	

mean	factor	scores	between	groups	(p-value	<	0.001;	Figure	3).	We	observed	factor	scores	

were	higher,	in	descending	order,	for	current,	past,	then	never.	We	also	observed	that	CRS	

Factor	scores	showed	a	weaker,	but	similar	structure	as	individual	questionnaire	responses,	

with	low	factor	score	values	correlating	more	strongly	with	low	scores	or	response	in	the	

following	survey	and	vice	versa	(Figure	2,	4).	Utilizing	the	factor	scores	from	the	4th	factor	(smell	

loss),	two	regressions	were	conducted,	a	logistic	regression	estimating	the	odds	of	having	a	

lower	bounded	factor	score	(-4)	as	a	function	of	EPOSs	CRS	status,	and	a	linear	regression	

comparing	average	factor	scores	for	those	with	factor	scores	above	-4	as	a	function	of	EPOSs	

CRS	status.	Those	with	EPOSs	CRS	current	at	baseline	had	an	odds	ratio	of	experiencing	lower	

bound	factor	scores	of	0.05	(95%	CI:	0.04,	0.06)	compared	with	EPOSs	never,	and	EPOSs	

previous	had	an	odds	ratio	of	experiencing	lower	bounded	factor	4	factor	scores	of	0.15	(95%	
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CI:	0.12,	0.18)	compared	with	the	EPOSs	never	group.	For	those	above	the	lower	bounded	

factor	score,	a	linear	regression	was	conducted.	Those	at	EPOSs	CRS	current	had	a	factor	4	

score	0.48	higher	than	those	at	EPOSs	CRS	never	at	baseline	(95%	CI:	0.35,	0.60)	while	those	at	

EPOSs	CRS	previous	had	a	factor	4	factor	score	of	0.22	higher	than	those	at	EPOSs	CRS	never	at	

baseline	(95%	CI:	0.1,	0.34).	

Discussion	

Exploratory	factor	analysis	was	conducted	as	a	measurement	exercise	to	better	

understand	the	relationship	and	categorization	of	nasal	and	sinus,	asthma,	headache,	

constitutional,	allergy,	and	ear	symptoms	utilizing	both	cross	sectional	symptom	questionnaire	

responses	and	changes	in	symptom	responses	over	time.	All	five	EFAs	presented	consistent	

findings	of	five	underlying	factors	that	were	identifiable	as	congestion	and	discharge,	pain	and	

pressure,	asthma	and	constitutional,	ear	and	eye,	and	smell	loss	factors.	The	baseline	EFA	was	

used	to	estimate	five	factor	scores	within	subjects,	and	all	five	were	higher	in	subjects	who	met	

EPOSs	current	CRS	criteria	and	lowest	in	those	who	met	EPOSs	never	CRS	criteria.	The	37	

questions	utilized	in	this	analysis	were	developed	to	capture	a	wide	range	of	overlapping	

symptoms	that	occur	in	several	co-morbid	conditions;	and	to	evaluate	both	the	frequency	and	

severity	of	symptoms.	Understanding	how	symptoms	cluster	within	visit	and	across	visits	can	

provide	useful	information	that	can	aid	clinical	practice,	inform	symptom	measurement	in	CRS	

patients,	and	lead	to	hypotheses	about	the	pathobiology	underlying	these	symptoms.			

We	hypothesized	several	patterns	of	results	in	the	EFAs.	One	the	one	hand,	if	there	is	an	

underlying	construct	of	CRS	that	can	be	measured	with	six	cardinal	symptoms	that	are	mainly	
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interchangeable,	as	the	EPOS	criteria	suggest,	then	these	cardinal	CRS	symptoms	could	be	

expected	to	load	on	a	single	factor.	On	the	other	hand,	there	are	specific	sinuses	in	which	

inflammation	has	been	associated	with	specific	symptoms,	such	as	maxillary	sinus	inflammation	

associated	with	facial	pain	and	pressure	and	ethmoid	sinus	inflammation	associated	with	smell	

loss.		This	pathobiologic	consideration	would	suggest	that	at	least	three	factors	would	be	

identified	with	the	cardinal	CRS	symptoms.		We	found	that	the	37	symptoms	identified	five	

factors,	and	the	six	cardinal	CRS	symptoms	loaded	on	three	factors,	both	in	cross-sectional	and	

longitudinal	EFA	models.	This	stability,	and	coherence	to	real	biological	processes	may	provide	

some	evidence	that	these	five	factors	may	have	an	underlying	common	pathobiology.		

Three	of	the	five	factors	were	composed	of	questions	that	are	components	of	the	EPOSs	

criteria	for	CRS,	specifically	the	nasal	congestion	and	discharge,	facial	pain	and	pressure,	and	

smell	loss	factors,	each	of	which	is	one	of	the	cardinal	EPOSs	CRS	symptoms	(Wj	et	al.,	2012).	As	

these	symptoms	loaded	on	different	factors,	it	is	possible	that	the	underlying	pathobiology	may	

be	different	from	one	another.	While	there	was	clear	evidence	that	there	was	some	

longitudinal	change	in	symptom	reporting,	large	transitions	(two	or	more	steps	on	the	Likert	

scale)	were	not	very	common.	This	suggests	that	most	patients	have	long	duration	symptoms	

and	perhaps	a	chronic	pathobiologic	process.	We	have	previously	reported	that	using	the	

cardinal	symptoms	to	define	EPOSs	CRS	categories	(current,	past,	and	never)	resulted	in	large	

transitions	in	patients	meeting	criteria	for	these	categories	over	time;	for	example,	among	the	

subjects	who	met	EPOSs	current	CRS	at	baseline,	almost	half	did	not	meet	criteria	for	current	

CRS	six	months	later	(Sundaresan,	2017,	in	Press).	 	 	 	
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In	CRS,	the	sinuses	are	inflamed	and	swollen,	and	as	such	we	can	consider	these	factors	

in	the	context	of	paranasal	sinus	opacification.	The	maxillary	and	ethmoid	sinuses,	when	

congested	or	inflamed,	can	present	symptoms	of	facial	swelling	and	pain,	which	were	present	in	

the	facial	pain	and	pressure	factor	(Wald	et	al.,	1981).	Sphenoid	opacification,	although	

comparatively	rare,	can	be	associated	with	sometimes	severe	headaches	(Sieskiewicz	et	al.,	

2011).	Frontal	and	ethmoid	sinusitis	can	be	associated	with	smell	loss	and	nasal	discharge,	

consistent	with	the	smell	loss	factor	which	was	observed	(Chang,	Lee,	Mo,	Lee,	&	Kim,	2009).	

The	sinus	symptoms	that	tended	to	cluster	in	our	five	factors	have	generally	strong	sinus	

opacification	correlates	(Chang	et	al.,	2009;	Sieskiewicz	et	al.,	2011;	Wald	et	al.,	1981).	It	is	

possible	that	the	factors	that	were	identified	by	the	EFA	procedure	may	be	associated	with	

sinus	opacification,	an	analysis	that	is	currently	underway.	While	the	factor	analysis	was	

performed	in	over	3500	subjects,	sinus	CT	scans	were	obtained	from	646	of	these	subjects.	

Furthermore,	the	ear	and	eye	symptoms	seen	to	predominate	in	factor	5	may	be	measuring	

allergy	presence	and	severity.			

Because	of	the	factor	rotation	method	chosen,	non-orthogonality	between	factors	was	

allowed	as	a	means	to	separate	symptoms	into	distinct	factors	insofar	as	possible.	Thus,	

examining	the	correlation	between	factors	may	provide	some	insight	into	the	symptom	

relationships.	The	congestion	and	discharge	factor	was	moderately	correlated	with	both	the	

pain	and	pressure	factor	(𝜌 =	0.67)	as	well	as	the	ear	and	eye	symptom	factor	(𝜌 =	0.63,	Figure	

1).	These	correlations	are	not	entirely	unexpected	as	there	are	several	pathobiologies	that	

could	drive	these	patterns;	other	drivers	connecting	reporting	of	different	symptoms	could	also	

be	at	work.		
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Most	questionnaire	responses	were	well	represented	by	the	observed	factor	model	as	

measured	by	the	communalities,	which	give	a	quantitative	measure	of	the	variability	of	each	

question	explained	by	our	final	five-factor	model.	In	the	EFA	of	the	baseline	questionnaire,	

most	of	the	EPOSs	core	questions	had	commonality	values	above	0.6,	indicating	that	the	model	

accounted	for	a	majority	of	the	variance	in	the	reporting	of	these	symptoms.	In	contrast,	

several	symptoms	did	not	load	heavily	onto	any	factors	in	the	baseline	EFA,	and	as	such	also	

had	the	lowest	commonalities	of	0.26	(bad	breath),	0.37	(cold	symptoms),	and	0.39	(fatigue),	

suggesting	that	the	model	failed	to	capture	much	of	the	variability	in	those	questions.	In	an	EFA	

setting,	we	do	not	necessarily	expect	all	communalities	to	be	high.	Instead,	these	low	

communality	values	reveal	that	either	the	drivers	of	these	variables	were	different	than	the	five	

observed	factors	(high	unique	variance)	or	that	these	symptoms	were	subject	to	higher	

measurement	error	than	others.	

It	is	common,	in	social	and	medical	sciences,	for	factor	analyses	to	include	data	from	a	

single	point	in	time	or	in	a	context	where	time	is	unimportant	(Browne	et	al.,	2007).	In	this	

study,	we	were	able	to	incorporate	repeated	observations,	providing	us	with	not	only	three	

responses	for	each	symptom	question,	but	also	explicit	measures	of	how	symptoms	changed	

over	time.	EFA	theory	hypothesizes	that	there	are	real	underlying	mechanisms,	including	

common	pathobiology,	reporting	phenomena,	or	other	reasons	which	manifested	itself	in	the	

clustering	of	symptoms	into	the	observed	factors.	If	this	hypothesis	was	correct,	we	would	

expect	factor	composition	(loadings)	to	be	invariant	to	time	(i.e.	no	seasonality);	and	if	there	

was	sufficient	variation	in	symptom	reporting	over	time,	we	would	expect	to	not	only	see	

factors	present	themselves	across	time,	but	we	would	expect	the	changes	in	symptoms	to	do	so	
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according	to	these	same	factors.	Without	sufficient	symptom	changing,	we	would	likely	not	

have	strong	enough	differences	to	identify	these	same	factors.	In	this	study,	we	did	observe	the	

same	factors	in	EFAs	of	cross-sectional	responses	as	well	as	in	the	differences	in	reporting	over	

time,	a	finding	consistent	with	the	idea	that	these	are	real	constructs	driving	the	observed	

symptoms.	In	the	difference	EFAs,	there	were	almost	always	lower	commonalities	compared	

with	the	cross	sectional	EFAs.	Because	responses	to	questionnaire	items	over	time	did	not	

evidence	large	changes	(i.e.,	most	change	scores	fell	between	-1	and	+1,	and	many	at	0),	we	

would	expect	the	commonalities	in	differences	to	be	smaller	than	for	their	cross-sectional	

counterparts.	These	differences	in	communalities	also	could	be	due	to	the	different	correlations	

utilized,	polychoric	(implied	Pearson	correlations)	versus	Pearson	correlations.	In	addition,	

measurement	and	reporting	error	were	likely	larger	in	the	difference	measures	as	we	were	

combining	together	potentially	two	(not	necessarily	independent)	error	terms.		

The	communalities	in	the	difference	scores	were	considerably	lower	than	those	in	the	

cross	sectional	EFAs	ranging	from	0.09	(fever)	to	0.75	(smell	loss)	in	the	change	from	6-month	

to	16-month	EFA	and	from	0.26	(bad	breath)	to	0.95	(smell	loss)	in	the	baseline	EFA.	These	

commonalities	show	that	smell	loss	was	a	very	persistent	symptom.	The	time	duration	in	the	

two	change	EFAs	were	not	the	same;	the	first	change	measure	was	over	six	months	and	the	

second	was	over	10	months.	We	would	expect	commonalities	to	be	lower	for	the	longer	

duration	EFA,	and	we	found	this	to	be	the	case.	The	mean	communality	of	the	first	change	

measure	(0.392)	was	significantly	larger	than	for	the	second	(0.356,	p-value	=	0.001),	which	was	

in	line	with	expectations,	suggesting	that	the	difference	from	baseline	to	6	months	(6	month	
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duration)	captured	variability	better	than	the	difference	from	6	month	to	16	month	

questionnaires	(10	month	duration).			

The	multidimensional	mean	factor	scores	were	compared	between	the	three	EPOSs	CRS	

groups	(current,	past,	never)	using	MANOVA,	logistic	regression,	and	linear	regression:	a	

significant	difference	was	found,	indicating	a	difference	in	factor	score	distributions	between	

the	EPOSs	CRS	groups	(P-value	<	0.001).	For	all	five	factors,	the	mean	estimated	factor	scores	

tended	to	be	highest	among	current	CRS	subjects,	next	highest	for	past	CRS,	and	lowest	for	

never	CRS.	This	result	is	not	in	itself	surprising	as	the	CRS	groups	here	were	determined	by	the	

EPOSs	definition	of	the	disease,	which	itself	is	based	on	many	of	the	symptoms	in	the	factors.	

However,	the	EFA	included	many	questions	beyond	those	used	to	define	EPOSs	CRS	status.	The	

higher	factor	scores	comprised	of	eye,	ear,	asthma,	constitutional,	and	headache	symptoms	

may	represent	the	common	co-occurrence	of	allergy,	asthma,	and	headache	disorders,	for	

example,	among	CRS	patients.		

While	there	has	been	some	prior	work	on	CRS	factors	at	a	single	point	in	time	with	the	

SNOT-20	and	SNOT-22	questionnaires,	there	has	been	no	prior	work	on	CRS	factors	using	

longitudinal	information	on	symptoms	(Browne	et	al.,	2007).	Previous	studies	have	examined	

the	decomposition	of	CRS	and	related	symptoms	using	the	Sino-nasal	Outcome	Test	(SNOT)-20	

and	(SNOT)-22	questionnaire	which	measures	“symptoms	and	social/emotional	consequences	

of	rhinosinusitis”	through	a	range	of	symptom	and	health-related	quality	of	life	questions	in	20	

or	22	Likert-scale	questions	(DeConde,	Bodner,	Mace,	&	Smith,	2014;	C.	Hopkins	et	al.,	2006).	

These	questions	ask	the	participants	to	consider	physical,	functional,	and	emotional	symptoms	

they	have	experienced	in	the	previous	2-week	period	(DeConde	et	al.,	2014;	C.	Hopkins	et	al.,	
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2006).	SNOT	was	designed	to	provide	a	single	measure	of	patient	quality	of	life	and	CRS-related	

symptom	severity,	implicitly	suggesting	that	each	question	provides	information	regarding	a	

single	CRS	construct	or	factor	(Browne	et	al.,	2007).	One	study	found	questions	from	the	SNOT-

22	decomposed	into	five	clear	rhinologic	symptoms,	extranasal	rhinologic	symptoms,	ear	&	

facial	symptoms,	psychological	dysfunction,	and	sleep	dysfunction	factors,	not	a	single	factor	as	

the	mission	of	the	SNOT	surveys	may	suggest	(DeConde	et	al.,	2014).	Similarly,	an	analysis	of	

SNOT-20	revealed	four	underlying	latent	factors,	rhinological	symptoms,	ear	and	facial	

symptoms,	sleep	function,	and	psychological	function	(Browne	et	al.,	2007).	Taken	together,	

both	of	these	studies	suggested	that	question	sets	typically	thought	of	measuring	only	CRS	

symptom	severity	or	CRS-related	quality	of	life,	were	actually	measuring	a	variety	of	

unobserved	dimensions.	Although	the	set	of	37	questions	utilized	in	our	study	is	much	different	

in	scope	and	aim	than	the	SNOT	questionnaires,	the	results	were	consistent	in	revealing	several	

factors.		

Limitations	and	Further	Work:	

We	observed	both	similarities	and	differences	between	patient	characteristics	in	the	

subject	who	completed	the	baseline	questionnaire	who	were	included	and	excluded	in	the	

EFAs.	Subjects	in	the	EFA	analysis,	who	returned	all	three	questionnaires	without	excessive	

missing	data,	were	more	likely	to	be	white,	more	highly	educated,	and	with	higher	incomes.	

This	may	have	resulted	in	selection	bias	that	could	have	influenced	the	results.	This	project	

relied	extensively	on	questionnaire	question	responses.	While	direct	and	easy	to	interpret	or	

compare,	survey	methodologies	similar	to	this	encourage	respondents	to	only	report	questions	
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that	were	asked	about,	potentially	missing	symptom	associations	and	relationships	with	latent	

factors.	In	addition,	the	is	the	potential	of	same	source	bias	impacting	results	by	which	some	

individuals	report	in	a	systemic	manner	not	necessarily	associated	with	symptoms,	such	as	

some	individuals	always	or	never	reporting	experiencing	symptoms.	Finally,	while	we	found	

strong	evidence	of	clustering	among	37	symptoms	within	visits	and	over	time,	the	ultimate	

utility	of	the	findings	will	be	in	comparison	to	sinus	opacification,	which	awaits	further	analysis	

in	a	subsect	of	the	included	subjects.		

	 This	EFA	generated	several	hypotheses,	mainly	that	the	underlying	factors	identified	by	

the	procedure	are	measuring	real	biological	phenomena,	including	distinct	sinus	opacification,	

allergies,	and	asthma	severity.	While	interesting,	studies	examining	objective	measures	of	the	

presence	of	these	conditions	along	with	these	symptom	questions	are	needed	to	provide	

substantive	evidence	of	this	relationship.	

Conclusion	

In	an	analysis	of	37	nasal	and	sinus,	allergy,	ear,	asthma,	headache,	and	constitutional	

symptoms,	we	identified	five	underlying	factors	–	congestion	and	discharge,	pain	and	pressure,	

asthma	and	constitutional,	ear	and	eye,	and	smell	loss	–	that	were	consistent	in	three	cross-

sectional	and	two	longitudinal	change	EFAs.	Questions	assessed	presence,	severity,	bother,	and	

frequency	of	all	37	symptoms.	The	models	generally	explained	a	large	proportion	of	the	

variation	in	these	symptoms	within	visits,	and	symptoms	like	smell	loss	showed	much	

persistence	across	visits.		The	findings	have	implications	for	how	to	identify	patients	with	CRS	

using	questionnaires	and	may	suggest	significant	misclassification	in	EPOS	approaches	to	CRS	
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identification.	They	may	explain	why	patients	who	meet	EPOS	criteria	for	CRS	often	do	not	have	

evidence	of	sinus	opacification.	More	direct	evidence	awaits	analysis	of	the	sinus	CT	data	in	a	

subset	of	these	subjects.	
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Tables	&	Figures	
	

Table	1.	Demographic	information	of	the	3535	patients	included	in	the	current	analysis	and	the	
4312	patients	who	returned	the	baseline	questionnaire	but	were	not	included	in	the	current	
analysis.	

	
	 Excluded	 Included	
Male,	n	(%)	 1591	(36.9)	 1335	(37.8)	

Age,	years,	mean	(SD)	 53.2	(16.8)	 57.5	(14.8)	

Smoking	status	
			Never,	n	(%)	
			Former,	n	(%)	
			Current,	n	(%)	
	

	
2253	(52.2)	
1299	(30.1)	
760	(17.6)	

	
2053	(58.1)	
1100	(31.1)	
382	(10.8)	

Income:	
			<	$25,000,	n	(%)	
			$25,000-$50,000,	n	(%)	
			>	$50,000,	n	(%)	
	

	
1599	(37.1)	
1098	(25.5)	
1083	(25.1)	

	

	
1021	(28.9)	
970	(27.4)	
1163	(32.9)	

Body	mass	index,	kg/m2,	
mean	(SD)	

30.3	(7.05)	 30.0	(6.93)	

Education	level	
			High	school,	n	(%)	
			Some	college,	n	(%)		
			College	graduate,	n	(%)	
	

	
1608	(37.3)	
1364	(31.6)	
977	(22.7)	

	
1209	(34.2)	
979	(27.7)	
1171	(33.1)	

Race/ethnicity	
			White,	n	(%)	
			Black,	n	(%)	
			Hispanic,	n	(%)	

	
3372	(87.5)	
264	(6.1)	
276	(6.4)	

	
3323	(94)	
78	(2.2)	
134	(3.8)	
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Table	2.	Questions	for	the	three	cross-sectional	questionnaires.	Question	responses	were	on	a	
5-item	Likert	scale*	

Item	#	 Question	text	

On	average,	how	often	in	the	past	*	months	have	you	had	…	

1	 …	blockage	of	your	nasal	passages	(nasal	congestion)?	

2	 …	nasal	discharge	that	was	yellow	or	green	in	color?	

3	 …	post-nasal	drip?	

4	 …	loss	of	sense	of	smell?	

5	 …	facial	pain?	

6	 …	facial	pressure?	

Check	the	box	that	describes	how	often	each	problem	has	happened	in	the	past	†	months,	on	average	

7	 …	both	of	my	nasal	passages	have	blockage	

8	 …	at	least	one	of	my	nasal	passages	is	completely	blocked	

9	 …	I	have	been	very	bothered	by,	my	blocked	nasal	passage(s)	

10	 …	I	have	a	lot	of	nasal	discharge	

11	 …	I	have	to	blow	my	nose	more	than	10	times	a	day	because	of	my	nasal	discharge	

12	 …	I	have	been	very	bothered	by	my	nasal	discharge	

13	 …	I	have	been	coughing	after	I	eat	or	lie	down	

14	 …	I	have	had	mucus	in	my	throat	that	felt	like	a	lump	or	blockage	

15	 …	I	have	been	very	bothered	by	my	post-nasal	drip	

16	 …	I	have	not	been	able	to	smell	anything	

17	 …	I	have	been	very	bothered	by	my	loss	of	sense	of	smell	

18	 …	On	a	scale	of	0	to	10,	my	facial	pain	has	been	at	least	a	5	(0	=	no	pain,	10	=	worst	pain)	

19	 …	I	have	been	very	bothered	by	my	facial	pain	

20	 …	My	facial	pressure	has	been	severe	

21	 …	I	have	been	very	bothered	by	my	facial	pressure	

Check	the	box	that	describes	how	often,	on	average,	you	had	the	following	in	the	past	†	months	…	

22	 …	headaches	

23	 …	fevers	

24	 …	coughing	

25	 …	bad	breath	

26	 …	fatigue	

27	 …	nasal	itching	

28	 …	sneezing	

29	 …	eye	itching	

30	 …	eye	tearing	

31	 …	ear	fullness	

32	 …	ear	pain	

33	 …	ear	pressure	

34	 …	wheezing	(breathing	with	whistling	sound	in	chest)	

35	 …	chest	tightness	

36	 …	shortness	of	breath	
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37	 …	cold/flu	symptoms	

*	1	=	Never,	2	=	Once	in	a	while,	3	=	Some	of	the	time,	4	=	Most	of	the	time	and	5	=	All	the	time.	
†	For	the	baseline	and	16-month	follow-up	=	3	months,	for	the	6-month	follow-up	=	6	months.	 	
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Table	3.	Factor	loadings	and	symptom	commonalties	from	the	exploratory	factor	analysis	(EFA)	
of	the	37	presence,	severity,	and	secondary	CRS	symptom	at	baseline.	The	EFA	was	fit	using	
ordinary	least	squares	and	an	oblimin	rotation	(number	of	patients	=	3535).	Loadings	less	than	
0.3	were	omitted	for	readability.	Communalities	represent	the	fraction	of	each	symptom’s	
variability	that	was	captured	by	the	utilized	five	factor	model.		

#	 Item	Label	 Factor	1	 Factor	2	 Factor	3	 Factor	4	 Factor	5	 Communalities	
1	 Blockage	 0.65	 	 	 	 	 0.80	
2	 Discharge	discolored	 0.49	 	 	 	 	 0.61	
3	 PND	 0.84	 	 	 	 	 0.78	
4	 Smell	loss	 	 	 	 0.95	 	 0.89	
5	 Facial	pain	 	 0.83	 	 	 	 0.85	
6	 Facial	pressure	 	 0.76	 	 	 	 0.87	
7	 Blockage	both	sides	 0.58	 	 	 	 	 0.72	
8	 Blockage	complete	 0.55	 	 	 	 	 0.73	
9	 Blockage	bothered	 0.61	 	 	 	 	 0.81	
10	 Discharge	a	lot	 0.86	 	 	 	 	 0.84	
11	 Blow	nose	10x	daily	 0.82	 	 	 	 	 0.76	
12	 Discharge	bothered	 0.84	 	 	 	 	 0.84	
13	 Cough	lie	down	 0.72	 	 	 	 	 0.73	
14	 Lump	in	throat	 0.69	 	 	 	 	 0.73	
15	 PND	bothered	 0.84	 	 	 	 	 0.85	
16	 Smell	loss	complete	 	 	 	 0.97	 	 0.95	
17	 Smell	loss	bothered	 	 	 	 0.92	 	 0.91	
18	 Facial	pain	5+	 	 0.83	 	 	 	 0.90	
19	 Facial	pain	bothered	 	 0.84	 	 	 	 0.91	
20	 Facial	pressure	severe	 	 0.77	 	 	 	 0.86	
21	 Facial	pressure	

bothered	
	 0.78	 	 	 	 0.90	

22	 Headaches	 	 0.67	 	 	 	 0.48	
23	 Fever	 	 	 0.43	 	 	 0.34	
24	 Coughing	 0.46	 	 0.5	 	 	 0.53	
25	 Bad	breath	 	 	 	 	 	 0.26	
26	 Fatigue	 	 	 	 	 	 0.39	
27	 Nasal	itching	 	 	 	 	 0.56	 0.53	
28	 Sneezing	 0.31	 	 	 	 0.54	 0.51	
29	 Eye	itching	 	 	 	 	 0.72	 0.62	
30	 Eye	tearing	 	 	 	 	 0.6	 0.49	
31	 Ear	fullness	 	 0.35	 	 	 0.54	 0.62	
32	 Ear	pain	 	 0.51	 	 	 0.49	 0.65	
33	 Ear	pressure	 	 0.47	 	 	 0.46	 0.63	
34	 Wheezing	 	 	 0.8	 	 	 0.66	
35	 Chest	tightness	 	 	 0.85	 	 	 0.78	
36	 Shortness	of	breath	 	 	 0.82	 	 	 0.68	
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37	 Cold/flu	symptoms	 	 	 0.44	 	 	 0.37	
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Table	4.	Factor	loadings	and	symptom	commonalties	from	the	exploratory	factor	analysis	(EFA)	
of	the	37	presence,	severity,	and	secondary	CRS	symptom	changes	from	6	to	16	months.	EFA	
was	fit	using	ordinary	least	squares	and	an	oblimin	rotation	(number	of	patients	=	3535).	
Loadings	less	than	0.3	were	omitted	for	readability.	Communalities	represent	the	fraction	of	
each	symptom’s	variability	that	was	captured	by	the	utilized	five	factor	model.		

#	 Item	Label	 Factor	1	 Factor	2	 Factor	3	 Factor	4	 Factor	5	 Communalities	
1	 Blockage	 0.46	 	 	 	 	 0.3	
2	 Discharge	discolored	 0.32	 	 	 	 	 0.19	
3	 PND	 0.49	 	 	 	 	 0.28	
4	 Smell	loss	 	 	 	 	 0.68	 0.47	
5	 Facial	pain	 	 0.66	 	 	 	 0.47	
6	 Facial	pressure	 	 0.59	 	 	 	 0.41	
7	 Blockage	both	sides	 0.43	 	 	 	 	 0.28	
8	 Blockage	complete	 0.34	 	 	 	 	 0.23	
9	 Blockage	bothered	 0.52	 	 	 	 	 0.4	
10	 Discharge	a	lot	 0.72	 	 	 	 	 0.5	
11	 Blow	nose	10x	daily	 0.66	 	 	 	 	 0.43	
12	 Discharge	bothered	 0.75	 	 	 	 	 0.54	
13	 Cough	lie	down	 0.34	 	 	 0.33	 	 0.29	
14	 Lump	in	throat	 0.36	 	 	 	 	 0.27	
15	 PND	bothered	 0.57	 	 	 	 	 0.4	
16	 Smell	loss	complete	 	 	 	 	 0.84	 0.69	
17	 Smell	loss	bothered	 	 	 	 	 0.68	 0.48	
18	 Facial	pain	5+	 	 0.78	 	 	 	 0.6	
19	 Facial	pain	bothered	 	 0.79	 	 	 	 0.63	
20	 Facial	pressure	severe	 	 0.65	 	 	 	 0.44	
21	 Facial	pressure	

bothered	
	 0.72	 	 	 	 0.54	

22	 Headaches	 	 	 	 	 	 0.14	
23	 Fever	 	 	 	 	 	 0.1	
24	 Coughing	 	 	 	 0.42	 	 0.29	
25	 Bad	breath	 	 	 	 	 	 0.12	
26	 Fatigue	 	 	 	 	 	 0.14	
27	 Nasal	itching	 	 	 0.35	 	 	 0.19	
28	 Sneezing	 	 	 0.38	 	 	 0.25	
29	 Eye	itching	 	 	 0.5	 	 	 0.29	
30	 Eye	tearing	 	 	 0.51	 	 	 0.3	
31	 Ear	fullness	 	 	 0.64	 	 	 0.41	
32	 Ear	pain	 	 	 0.53	 	 	 0.33	
33	 Ear	pressure	 	 	 0.63	 	 	 0.39	
34	 Wheezing	 	 	 	 0.58	 	 0.33	
35	 Chest	tightness	 	 	 	 0.64	 	 0.4	
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36	 Shortness	of	breath	 	 	 	 0.6	 	 0.37	
37	 Cold/flu	symptoms	 	 	 	 0.35	 	 0.24	
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Figure	1.	Lasagna	plot	displaying	the	proportion	of	individuals	with	each	given	response	to	the	
question	“On	average,	how	often	in	the	past	3	months	have	you	had	post-nasal	drip?”	at	
baseline	and	6	months	and	16	months	later	(1	=	Never,	2	=	Once	in	a	while,	3	=	Some	of	the	
time,	4	=	Most	of	the	time,	5	=	All	the	time).	Y-axis	values	indicate	the	number	of	patients	with	
each	particular	response	at	baseline.		
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Figure	2.	Inter-factor	correlations	at	baseline	from	the	baseline	questionnaire	exploratory	factor	
analysis	fit	via	ordinary	least	squares	and	an	oblimin	rotation.	
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Figure	3.	Factor	1	(congestion	and	discharge)	scores	by	CRS	EPOS	groups	at	baseline.	Factor	
scores	across	factors	and	CRS	EPOSs	groups	(current	CRS,	previous	CRS,	never	CRS)	for	the	
congestion	and	discharge	factor	at	baseline	with	number	of	individuals	(N)	in	each	group.	Factor	
scores	were	estimated	by	the	Item	Response	Theory	(IRT)	based	scores	method.	X-axis	was	
jittered	to	improve	readability.	
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Figure	4.	Continuous	factor	scores	categorized	to	show	longitudinal	change	across	
questionnaires	for	factor	1	(congestion	and	discharge).	Factor	scores	were	categorized	as:	
factor	score	<	-1	were	assigned	values	of	-2;	between	-0.5	and	-1,	assigned	-1;	between	-0.5	and	
0.5,	assigned	0;	between	0.5	and	1,	assigned	1;	and	>	1,	assigned	2.	Y-axis	labels	indicate	the	
number	of	patients	at	baseline	in	each	adjusted	factor	score	group.	Factor	scores	were	
estimated	by	the	IRT	method.	
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Appendix	
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Figure	A1.	Scree	plot	for	the	baseline	questionnaire	displaying	eigenvalues	on	the	y-axis	and	
their	corresponding	factor	number	on	the	x-axis.			
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Figure	A2.	Scree	plot	for	the	6	month	follow	up	questionnaire	displaying	eigenvalues	on	the	y-
axis	and	their	corresponding	factor	number	on	the	x-axis.			
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Figure	A3.	Scree	plot	for	the	16	month	follow	up	questionnaire	displaying	eigenvalues	on	the	y-
axis	and	their	corresponding	factor	number	on	the	x-axis.			
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Figure	A4.	Scree	plot	for	the	first	difference	(baseline	to	6	month	questionnaires)	displaying	
eigenvalues	on	the	y-axis	and	their	corresponding	factor	number	on	the	x-axis.			
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Figure	A5.	Scree	plot	for	the	second	difference	(6	to	16	month	questionnaires)	displaying	
eigenvalues	on	the	y-axis	and	their	corresponding	factor	number	on	the	x-axis.			
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Table	A1.	Factor	loadings	and	symptom	commonalties	from	the	exploratory	factor	analysis	
(EFA)	of	the	37	presence,	severity,	and	secondary	CRS	symptom	at	6	month	follow	up.	The	EFA	
was	fit	using	ordinary	least	squares	and	an	oblimin	rotation	(number	of	patients	=	3535).	
Loadings	less	than	0.3	were	omitted	for	readability.	Communalities	represent	the	fraction	of	
each	symptom’s	variability	that	was	captured	by	the	utilized	five	factor	model.		

	
#	 Item	Label	 Factor	1	 Factor	2	 Factor	3	 Factor	4	 Factor	5	 Communalities	
1	 Blockage	 0.51	 	   0.65 0.65	
2	 Discharge	discolored	 0.33	 	   0.46 0.46	
3	 PND	 0.76	 	   0.65 0.65	
4	 Smell	loss	 	   0.98	 0.9	 0.9	
5	 Facial	pain	 	 0.89	 	  0.84 0.84	
6	 Facial	pressure	 	 0.86	 	  0.85 0.85	
7	 Blockage	both	sides	 0.5	 	   0.61 0.61	
8	 Blockage	complete	 0.39	 	   0.53 0.53	
9	 Blockage	bothered	 0.6	 	   0.78 0.78	
10	 Discharge	a	lot	 0.87	 	   0.81 0.81	
11	 Blow	nose	10x	daily	 0.82	 	   0.7 0.7	
12	 Discharge	bothered	 0.85	 	    0.82	
13	 Cough	lie	down	 0.53	 	 0.34	 	  0.64	
14	 Lump	in	throat	 0.55	 	    0.64	
15	 PND	bothered	 0.79	 	    0.78	
16	 Smell	loss	complete	 	   0.97	 	 0.94	
17	 Smell	loss	bothered	 	   0.92	 	 0.89	
18	 Facial	pain	5+	 	 0.87	 	   0.88	
19	 Facial	pain	bothered	 	 0.89	 	   0.91	
20	 Facial	pressure	

severe	
	 0.83	 	   0.84	

21	 Facial	pressure	
bothered	

	 0.85	 	   0.88	

22	 Headaches	 	 0.61	 	   0.49	
23	 Fever	 	  0.39	 	  0.38	
24	 Coughing	 0.4	 	 0.5	 	  0.57	
25	 Bad	breath	 	     0.33	
26	 Fatigue	 	     0.43	
27	 Nasal	itching	 	    0.48	 0.51	
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28	 Sneezing	 0.37	 	   0.47	 0.53	
29	 Eye	itching	 	    0.68	 0.61	
30	 Eye	tearing	 	    0.6	 0.5	
31	 Ear	fullness	 	    0.71	 0.69	
32	 Ear	pain	 	 0.31	 	  0.64	 0.68	
33	 Ear	pressure	 	    0.66	 0.69	
34	 Wheezing	 	  0.81	 	  0.68	
35	 Chest	tightness	 	  0.87	 	  0.81	
36	 Shortness	of	breath	 	  0.87	 	  0.73	
37	 Cold/flu	symptoms	 	  0.45	 	  0.46	
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Table	A2.	Factor	loadings	and	symptom	commonalties	from	the	exploratory	factor	analysis	
(EFA)	of	the	37	presence,	severity,	and	secondary	CRS	symptom	at	16	month	follow	up.	The	EFA	
was	fit	using	ordinary	least	squares	and	an	oblimin	rotation	(number	of	patients	=	3535).	
Loadings	less	than	0.3	were	omitted	for	readability.	Communalities	represent	the	fraction	of	
each	symptom’s	variability	that	was	captured	by	the	utilized	five	factor	model.	

#	 Item	Label	 Factor	1	 Factor	2	 Factor	3	 Factor	4	 Factor	5	 Communalities	
1	 Blockage	 0.34	 0.42	 	   0.63	
2	 Discharge	discolored	 	 0.3	 	   0.48	
3	 PND	 	 0.68	 	   0.64	
4	 Smell	loss	 	   0.98	 	 0.9	
5	 Facial	pain	 0.88	 	    0.86	
6	 Facial	pressure	 0.88	 	    0.86	
7	 Blockage	both	sides	 0.33	 0.34	 	   0.57	
8	 Blockage	complete	 0.34	 0.38	 	   0.57	
9	 Blockage	bothered	 0.4	 0.43	 	   0.72	
10	 Discharge	a	lot	 	 0.84	 	   0.78	
11	 Blow	nose	10x	daily	 	 0.81	 	   0.67	
12	 Discharge	bothered	 	 0.85	 	   0.8	
13	 Cough	lie	down	 	 0.38	 0.42	 	  0.57	
14	 Lump	in	throat	 	 0.38	 	   0.57	
15	 PND	bothered	 	 0.68	 	   0.72	
16	 Smell	loss	complete	 	   0.99	 	 0.94	
17	 Smell	loss	bothered	 	   0.93	 	 0.9	
18	 Facial	pain	5+	 0.92	 	    0.89	
19	 Facial	pain	bothered	 0.92	 	    0.89	
20	 Facial	pressure	

severe	
0.87	 	    0.81	

21	 Facial	pressure	
bothered	

0.89	 	    0.86	

22	 Headaches	 0.58	 	    0.49	
23	 Fever	 	  0.35	 	  0.35	
24	 Coughing	 	 0.34	 0.52	 	  0.6	
25	 Bad	breath	 	     0.35	
26	 Fatigue	 	  0.3	 	  0.45	
27	 Nasal	itching	 	    0.46	 0.56	
28	 Sneezing	 	 0.42	 	  0.44	 0.56	
29	 Eye	itching	 	    0.63	 0.61	
30	 Eye	tearing	 	    0.55	 0.52	
31	 Ear	fullness	 	    0.59	 0.68	
32	 Ear	pain	 0.41	 	   0.5	 0.68	
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33	 Ear	pressure	 0.34	 	   0.54	 0.68	
34	 Wheezing	 	  0.85	 	  0.69	
35	 Chest	tightness	 	  0.85	 	  0.75	
36	 Shortness	of	breath	 	  0.89	 	  0.72	
37	 Cold/flu	symptoms	 	  0.46	 	  0.49	
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Table	A3.	Factor	loadings	and	symptom	commonalties	from	the	exploratory	factor	analysis	
(EFA)	of	the	37	presence,	severity,	and	secondary	CRS	symptom	changes	from	baseline	to	6	
months.	EFA	was	fit	using	ordinary	least	squares	and	an	oblimin	rotation	(number	of	patients	=	
3535).	Loadings	less	than	0.3	were	omitted	for	readability.	Communalities	represent	the	
fraction	of	each	symptom’s	variability	that	was	captured	by	the	utilized	five	factor	model.		

	
#	 Item	Label	 Factor	1	 Factor	2	 Factor	3	 Factor	4	 Factor	5	 Communalities	
1	 Blockage	 0.68	 	    0.49	
2	 Discharge	discolored	 0.43	 	    0.24	
3	 PND	 0.7	 	    0.45	
4	 Smell	loss	 	   0.63	 	 0.42	
5	 Facial	pain	 	 0.67	 	   0.51	
6	 Facial	pressure	 	 0.61	 	   0.51	
7	 Blockage	both	sides	 0.58	 	    0.39	
8	 Blockage	complete	 0.49	 	    0.34	
9	 Blockage	bothered	 0.58	 	    0.46	
10	 Discharge	a	lot	 0.79	 	    0.57	
11	 Blow	nose	10x	daily	 0.73	 	    0.52	
12	 Discharge	bothered	 0.75	 	    0.57	
13	 Cough	lie	down	 0.49	 	    0.34	
14	 Lump	in	throat	 0.52	 	    0.37	
15	 PND	bothered	 0.71	 	    0.55	
16	 Smell	loss	complete	 	   0.87	 	 0.75	
17	 Smell	loss	bothered	 	   0.71	 	 0.52	
18	 Facial	pain	5+	 	 0.79	 	   0.62	
19	 Facial	pain	bothered	 	 0.83	 	   0.68	
20	 Facial	pressure	

severe	
	 0.71	 	   0.49	

21	 Facial	pressure	
bothered	

	 0.79	 	   0.62	

22	 Headaches	 	     0.12	
23	 Fever	 	     0.09	
24	 Coughing	 	  0.48	 	  0.3	
25	 Bad	breath	 	     0.13	
26	 Fatigue	 	     0.14	
27	 Nasal	itching	 	     0.15	
28	 Sneezing	 	  0.31	 	  0.22	
29	 Eye	itching	 	     0.22	
30	 Eye	tearing	 	     0.21	
31	 Ear	fullness	 	    0.64	 0.43	
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32	 Ear	pain	 	    0.63	 0.41	
33	 Ear	pressure	 	    0.74	 0.53	
34	 Wheezing	 	  0.54	 	  0.3	
35	 Chest	tightness	 	  0.59	 	  0.34	
36	 Shortness	of	breath	 	  0.57	 	  0.33	
37	 Cold/flu	symptoms	 	  0.39	 	  0.2	
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Table	A4.	Symptom	commonalties	from	the	exploratory	factor	analysis	(EFA)	of	the	37	
presence,	severity,	and	secondary	CRS	symptom	changes	from	baseline	to	6	months	and	6	
months	to	16	months.	EFA	was	fit	using	ordinary	least	squares	and	an	oblimin	rotation	(number	
of	patients	=	3535).		

	
#	 Item	Label	 Baseline	–	6	month	follow	up	 6	-	16	month	follow	up	
1	 Blockage	 0.49	 0.3	
2	 Discharge	discolored	 0.24	 0.19	
3	 PND	 0.45	 0.28	
4	 Smell	loss	 0.42	 0.47	
5	 Facial	pain	 0.51	 0.47	
6	 Facial	pressure	 0.51	 0.41	
7	 Blockage	both	sides	 0.39	 0.28	
8	 Blockage	complete	 0.34	 0.23	
9	 Blockage	bothered	 0.46	 0.4	
10	 Discharge	a	lot	 0.57	 0.5	
11	 Blow	nose	10x	daily	 0.52	 0.43	
12	 Discharge	bothered	 0.57	 0.54	
13	 Cough	lie	down	 0.34	 0.29	
14	 Lump	in	throat	 0.37	 0.27	
15	 PND	bothered	 0.55	 0.4	
16	 Smell	loss	complete	 0.75	 0.69	
17	 Smell	loss	bothered	 0.52	 0.48	
18	 Facial	pain	5+	 0.62	 0.6	
19	 Facial	pain	bothered	 0.68	 0.63	
20	 Facial	pressure	severe	 0.49	 0.44	
21	 Facial	pressure	

bothered	
0.62	

0.54	
22	 Headaches	 0.12	 0.14	
23	 Fever	 0.09	 0.1	
24	 Coughing	 0.3	 0.29	
25	 Bad	breath	 0.13	 0.12	
26	 Fatigue	 0.14	 0.14	
27	 Nasal	itching	 0.15	 0.19	
28	 Sneezing	 0.22	 0.25	
29	 Eye	itching	 0.22	 0.29	
30	 Eye	tearing	 0.21	 0.3	
31	 Ear	fullness	 0.43	 0.41	
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32	 Ear	pain	 0.41	 0.33	
33	 Ear	pressure	 0.53	 0.39	
34	 Wheezing	 0.3	 0.33	
35	 Chest	tightness	 0.34	 0.4	
36	 Shortness	of	breath	 0.33	 0.37	
37	 Cold/flu	symptoms	 0.2	 0.24	
	
	
	
	
	 	



	
94	

Chapter	4	-	Conclusion	

	
There	are	many	uses	for,	and	methods	of,	conducting	EFA.	In	this	thesis,	I	have	

proposed	a	new	method	to	identify	the	number	of	factors	to	extract,	studied	its	performance	in	

application	to	certain	data	structures,	and	applied	EFA	model	selection	and	factor	extraction	

methods	to	estimate	latent	structure	in	symptoms	common	in	CRS	and	its	related	co-morbid	

conditions.		

The	proposed	method	for	determining	the	number	of	factors	to	extract	during	an	EFA	

adds	to	the	vast	literature	addressing	the	problem	of	estimating	𝑚	and	how	to	navigate	this	

situation.	This	new	𝑚-estimation	procedure	performed	well	under	a	variety	of	simulated	

testing	conditions	which	varied	with	regard	to	sample	size	(𝑁),	data	dimensionality	(𝑃),	and	

strength	of	correlation	structure.	Thus,	this	method	may	be	a	viable	and	versatile	option	of	

estimating	the	underlying	factor	model	when	sample	size	is	sufficiently	large.	

The	CRS	symptom	EFA	shed	light	on	the	studied	symptoms,	which	decomposed	into	five	

interpretable	factors,	generating	several	hypothesized	biological	factor	underpinnings.	We	

were	able	to	identify	congestion	and	discharge,	smell	loss,	ear	and	eye,	asthma	and	

constitutional,	and	facial	pain	and	pressure	symptom	factors.	These	factors	are	consistent	with	

understanding	of	biology	and	pathological	processes	in	individual	sinuses.	

Our	CRS	study	utilized	Cattell’s	scree	test	(5,	5,	and	5	factors)	and	parallel	analysis	(5,	5,	

and	6	factors)	in	order	to	determine	the	number	of	factors	to	extract	for	the	baseline,	6-month	

follow-up,	and	16-month	follow-up	questionnaires.	Interestingly,	these	methods	estimated	

modestly	different	𝑚	compared	with	the	Kaiser	eigenvalue	greater	than	1	rule	(K1;	6,	5,	and	7	

factors)	and	quite	different	m	compared	with	other	commonly	utilized	methods	including	the	

Bayesian	information	criterion	(BIC;	15,	16,	and	14	factors)	and	sample	size	adjusted	BIC	(SSBIC;	

17,	17,	and	20	factors),	for	baseline,	6-month,	and	16-month	follow-up	questionnaires,	

respectively.	Our	newly	proposed	trace	method	also	produced	an	optimal	factor	cardinality	far	

removed	from	those	presented	in	the	CRS	paper	(13,	13,	and	16	for	baseline,	6-month,	and	16-

month	questionnaires,	respectively).	In	Chapter	2	we	hypothesized	that	these	differences	may	

be	explained	by	differing	standards	of	fit	implicated	by	the	different	levels	of	specificity	
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(dimensionality	versus	distributional	form)	addressed	by	the	methods’	objective	criteria.	

Further	research	is	needed	to	elucidate	this	conjecture.			

Determining	which	method	to	utilize	for	𝑚-estimation	is	difficult	for	several	reasons.	

Firstly,	there	are	a	large	number	of	potential	options	for	estimating	the	number	of	factors	with	

potentially	different	theoretical	foundations	including	likelihood-based	methods,	eigenvalue-

based	methods,	graphical	methods,	and	cross-validated	or	bootstrap	methods.	Investigators	

must	first	consider	the	purpose	of	their	analysis	when	deciding	which	method	to	utilize.	If	

interpretability	or	conciseness	is	of	paramount	importance,	one	may	consider	methods	aligned	

with	this	ideal.	Otherwise,	for	example,	if	one	is	placing	emphasis	on	identifying	the	number	of	

factors	in	a	FA	model	hypothesized	to	literally	underlie	the	data,	methods	attuned	to	that	goal	

such	as	BIC	or	TRACE	should	be	considered.	This	target	determination	is	important,	as	it	will	

drive	the	results	and	inference	downstream	in	the	analysis.	This	thesis	has	shown	that	the	

choice	of	𝑚	can	substantively	impact	qualitative	and	quantitative	changes	in	loading	and	factor	

interpretations.	As	such,	this	choice	directly	influences	whether	the	researcher’s	desired	goal	is	

attained	with	respect	to	unbiased	estimation,	verisimilitude,	generalizability,	or	interpretability.	

The	results	are	thus	of	high	importance	to	researchers	conducting	EFAs.	

We	recommend	that	future	work	focus	on	the	decision	of	which	method(s)	to	use	when	

attempting	to	find	𝑚	in	EFA	settings.	The	best	process	of	choosing	which	method	of	estimating	

𝑚	may	very	well	be,	firstly	identifying	what	interpretation	of	𝑚	is	relevant	for	the	current	

study,	narrowing	the	field	of	potential	methods.	Following	this,	a	practitioner	will	likely	still	be	

faced	with	choosing	between	several	methods	which	may	perform	differently	in	application	to	

the	observed	data.	It	is	clear	from	the	simulation	study	that	under	certain,	possibly	identifiable	

conditions,	methods	may	outperform	or	underperform	compared	to	their	average	efficacy	

across	conditions.	Because	the	strength	of	correlations	and	sample	size	of	observed	data	were	

strong	drivers	of	the	efficacy	of	comparative	methods,	these	attributes	along	with	others	

should	shed	light	on	which	method	is	most	appropriate.	Thus,	it	might	be	that	observed	

correlation	matrix	attributes	could	be	utilized	within	a	single	analysis	to	determine	which	

methods	would	perform	best	and	future	work	in	this	area	also	would	be	valuable.	A	practitioner	

could	then	choose	between	methods	with	an	understanding	and	anticipation	of	which	methods	
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may	be	most	appropriate	for	their	specific	data	at	hand.	Finally,	agreement	between	methods	

may	prove	to	be	evidence	that	the	agreed	upon	𝑚	is	desirable	compared	to	other	possibilities.	

Simulation	studies	such	as	the	one	described	in	the	methods	portion	of	the	thesis	can	address	

these	questions	for	us,	by	testing	hypothesized	methods	against	a	known	truth	we	generate.		

This	thesis	was	able	to	identify	similar	latent	structure	and	factor	identity	in	three	CRS	

symptom	questionnaire	administrations,	as	well	as	the	changes	in	symptom	response	scores	

between	administrations.	These	EFAs	were	consistent	with	the	hypothesis	that	hypothesized	

biopathological	phenomena	underlay	the	observed	symptom	responses.	However,	objective	

sinus	inflammation	data	must	be	incorporated	in	order	to	adequately	assess	this	hypothesis.		

The	trace	method	showed	promise	as	a	viable	additional	method	for	EFA	model	

selection,	outperforming	many	commonly	utilized	methods	across	several	simulation	

conditions.	However,	in	the	diverse	range	of	fields	where	EFA	is	utilized,	the	simulated	

scenarios	were	small	in	scope,	as	the	number	of	factors	assessed	was	always	between	5	and	10,	

the	number	of	variables	utilized	was	between	11	and	100,	and	the	number	of	simulated	

samples	was	between	100	and	1000.	This	thesis	brings	to	light	alternative	approaches	to	EFA	

and	EFA	model	selection	that	we	hope	will	prove	useful	as	they	are	further	refined.		
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