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Abstract

High performance computers (HPCs) are being used within a wide range of aca-

demic, commercial, and governmental applications. However, the resilience of these

systems is in question making them especially vulnerable to various forms of question-

able activity. Our work explores modeling these intentional actions as a first-order

stochastic fluid queue (SFQ) fed by an ON-OFF source. Here, the constant flow rates

depict failures, resulting from the intentional actions, and the source represents the

failure injections as a result of the users’ actions. By performing spectral analysis

techniques, the key contributions of this work are two-fold. First, closed-form solu-

tions are derived depicting the probabilistic actions. Second, the transient analysis

illustrates that the stability of the behavior depends on the combination of the flow

rates, the state transition rates, and the Fourier modes. Numerical examples are

provided which show that the proposed approach offers more granularity than prior

works in SFQs that employ transform techniques. The results of this work can be

leveraged to develop advanced frameworks for detection, analysis, and monitoring of

Distributed Denial of Service (DDoS) attacks within supercomputing environments.
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Chapter 1

Introduction

1.1 Motivation

High-performance computing systems (HPCs) use of supercomputers and parallel

processing techniques to solve complex computational problems [2]. As a result, HPCs

have accelerated technical developments in several areas such as modeling and simu-

lation of scientific phenomenon as well as defense-related applications [3]. Although

the development and deployment of these systems is steadily increasing, with the first

U.S. exascale supercomputer anticipated to arrive circa 2023 [4], their reliability is

expected to decrease [5]. This is because todays HPCs contain thousands of nodes

representing multiple processors, which will statistically fail at some point [6]. These

failures will not only impact operations, but will also be difficult to troubleshoot

because of their complex infrastructure. These same factors also make these sys-
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CHAPTER 1. INTRODUCTION

tems difficult to detect failures resulting from questionable activity. Hence, we need

sophisticated processes to ensure systems resiliency against such behavior.

Resilience is defined as the the ability of a system to continue operation despite

the presence of faults associated with it [7]. Thus, the primary goal is to ensure that

HPCs continue running within some performance threshold when one or more sys-

tem failures occur. Threat level behavior, which is in the realm of targeted failures,

alludes to cyber-activity affecting overall system performance [8]. Therefore, these

systems are also exposed to this type of activity. Furthermore, failures resulting from

intentional actions are not necessarily related to the system failure rate, which are

inversely proportional to the mean time between failures. The attacker can develop

algorithms that first introduce unnoticeable failures then later inject high failures to

cause serious harm. Conversely, malevolent algorithms can be created to inject steep

numbers of failures, which can switch their course of action to operate at impercepti-

ble rates while preparing subsequent moves. From the perspective of HPC managers,

the difficulties are two-fold. Resuming operations of HPCs could prove detrimental

because the attacker could continue to perform subsequent actions that cause addi-

tional harm. Additionally, we must give careful consideration prior to organizing a

system shutdown of a cluster due to extensive preparation and planning [9].

2



CHAPTER 1. INTRODUCTION

Figure 1.1: Example simulation of attack traffic (red) mixed with normal traffic
(green) arriving at the edge switch [1].

𝑡

𝐴𝑡𝑡𝑎𝑐𝑘
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‘Attack’ ‘Attack’‘Idle’

Figure 1.2: Pictorial representation of Figure 1.1. The CE attacks at a rate of am.
During the idle attack periods, the server processes the information at a rate of an
(not shown).
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CHAPTER 1. INTRODUCTION

1.2 Related Work

Investigating resilience in distributed systems has spanned over the past six decades

beginning with Von Neumann [10] who analyzed the effects of physical redundancy

usage for reliable system performance. However, Gray revolutionized this area by

revisiting Von Neumann’s work and incorporated modular construction. As a result,

his analysis significantly improved the redundancy factor as well as provided a sys-

tematic breakdown on failure causes [11]. He later revisited his work and discovered

that software was the primary cause of system failures [12]. Gray’s results stimulated

investigations to understand the causes of failures within several systems including

networks of workstations [13], enterprise-class server environments [14], network and

internet systems [15], and HPCs [16]. These investigations provided no universal ver-

dict as to how failures originate; however, conflicting viewpoints arose when studies

were held using similar systems. For example, analysis on workstation networks illus-

trated juxtaposing viewpoints between software [13] and operator-related [17] causes

of failures. These paradoxical perspectives were based on both the type of analyses

and the data collected within a particular time frame.

Understanding targeted behavior in distributed systems has mainly been done

from the perspective of malicious viruses in computer networks. Adopting mathemat-

ical epidemiological models, researchers have adopted equivalent models to describe

virus propagation in computer networks. Motivated by the works of Kermack and

McKendric (see [18–20]), Newmann et al. [21] developed analytical models to describe

4



CHAPTER 1. INTRODUCTION

viral behavior in email networks. Susceptible-infectious-susceptible (SIS) models were

also adopted to investigate malicious behavior in computer networks [22]. Addition-

ally, endemic models were used to analyze the effects of worm propagation. Using

susceptible-exposed-infectious-susceptible with vaccination (SEIS-V) models, Mishra

and Pandey performed stability analysis centering on the reproductive behavior of

infected nodes [23]. Similarly, Zhang et al [24] explored the impact of virus-free pe-

riodic solutions for worm propagation. Investigations in worm propagation has also

been explored in Facebook and email [25], mobile communication networks [26], and

peer-to-peer communications [27].

On the other hand, understanding targeted failures in large scale parallel systems

is a recent phenomenon. Inspired by game theoretic approaches [28], Faissol and Gal-

lagher [29] examined the impact of variegated threatening behavior via considering

the actions of malicious and selfish users. In this context, selfish users are those who

are only concerned about their own self-interest instead of directly causing harm to

the system [30]. Their approach showed potential in terms of characterizing detection

ability, cost of attacks and repairs, and system characteristics. Later, Clark theoret-

ically modeled the impact of targeted behavior to different risk levels [31]. In his

analysis, he explored various components of failures and their impact from a prob-

abilistic perspective where he also considered stopping considerations. Meanwhile,

Pritchett-Sheats employed the conditional maximum likelihood estimator (CMLE)

to perform automatic dynamic prediction of observed failure rates, which showed

5



CHAPTER 1. INTRODUCTION

promise for small configurations [32]. Motivated by this, Clark et al. [8] introduced a

framework for improved prediction of observed failure rates consisting of a concatena-

tion of data network extrapolation (DNE) and dynamic prediction processes. Their

process outperformed that of Pritchett-Sheats [32] in terms of early prediction and

accurate forecasting. Later, Clark and Absher [8] via adding a static characterization

schema to their process, where their results showed a success rate of 70% in terms of

failure spectrum characterization.

Transient analyses of stochastic fluid queues models have been explored by many

authors [33–36]. However, the solutions are either based on recurrence relations [36]

or expressed interms of Laplace transform and inverted numerically [33–35]. Exact

solutions could not be obtained due to the complexity of the problem. Such solutions

are useful in gaining insights and for comparing the relative merits of different nu-

merical techniques. For example, in Parthasarathy and Vijayashree’s work [37], the

authors use double Laplace transform to obtain the transient solution of a simple fluid

queue driven by an ON-OFF source with initial and boundary conditions in terms of

modified Bessel’s function of the first kind.

1.3 Approach

This work is extends that of Clark [31] via further analyzing the case of dynamic

switching threat level behavior in HPCs. Here, we make the supposition that the

6



CHAPTER 1. INTRODUCTION

cyber enemy (CE) performs switching attacks, at either lower or higher failure rates,

within each node of the supercomputing infrastructure. Hence, for any two consec-

utive threat levels we describe this behavior as a stochastic fluid queue fed by an

ON-OFF source where each threat level is governed by constant virulent activity.

Stochastic fluid queues have been studied extensively for many applications such as

performance measurement of network switches [38]; peer-to-peer file sharing [39]; and

analyzing battery life behavior [40]. However, the use of these models for understand-

ing cyber behavior within HPCs is a novel exploration.

The major contributions in this work are three-fold. First, for the one-dimensional

(1-D) case, we conducted transient analyses where we find closed-form solutions and

stability criterion. This criterion considers the stability of the solutions due to the

system failure rates, cyber attack rates, and Fourier modes. Next, our analyses is

extended to the two-dimensional (2-D) case. However, in addition to the aforemen-

tioned criteria, the stability criterion also includes the application rates. Finally, for

the 2-D case, we performed stationary analyses based on the relationship between the

application rates and attack rates.

7



Chapter 2

Analysis of the 1-D Stochastic

Fluid Queue (SFQ)

Our work explores the probabilistic impacts of virulent behavior within HPC

infrastructures, via theorizing the influences of threat-level activity. Here, we assume

that, for any node, the malicious behavior is governed via the piecewise differential

equation

dx

dt
=


am, if x ∈ Lm

an, if x ∈ Ln,
(2.1)

where am, an ∈ R+ are the constant cyber failure rates, x ∈ R+ is the total number

of failed jobs, and the failure rate is defined as

8
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𝜆"#

𝜆#"

𝑊" 𝑊#

𝑎"

“Idle”“Attack”

𝑎#

Figure 2.1: Illustration of the proposed Markovian process.

dx

dt
=

total number of failed jobs

time differential between failed jobs
. (2.2)

The threat levels Lm and Ln are subsets of R+ such that Lm ∩ Ln = ∅. Therefore,

we model the probabilistic effects as a stochastic fluid queue fed by an ON-OFF

source. Our goal of the theoretical development is to understand the probabilistic

cyber behavior within each threat level, we express threat level as following

Wm(x, t) = P{x(t) = x|x ∈ Lm}, (2.3)

where x is the total number of failed jobs resulting from the cyber-activity, Lm is the

9
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associated threat level, and x(t) is the dynamic cyber behavior governed by equation

(2.1). Hence, the stochastic behavior between two risk levels Lm and Ln is described

as [37]

Wm
t =− amWm

x + (λmnW
n − λnmWm)

W n
t =− anW n

x + (λnmW
m − λmnW n),

(2.4)

where am and an are the corresponding cyber attack rates while λmn and λnm are

the transition rates representing the system failure rate. Equation (2.4) describes the

likelihood of the virulent activity reaching Lm and Ln while the system failure rate is

also impacted. Additionally, by conducting intial detection of malicious activity, we

describe the intial conditions as

Wm(x, 0) = f(x) and W n(x, 0) = g(x). (2.5)

We can represent the solution to the equation (2.4) by the complex Fourier series

Wm(x, t) =
+∞∑
−∞

Amk e
jkx+ct (2.6)

and

W n(x, t) =
+∞∑
−∞

Anke
jkx+ct, (2.7)

10
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where j =
√
−1 and k is the Fourier mode number. Substituting into equation (2.4)

we get the eigenvalue relationship for each mode

MkAk = cAk, (2.8)

where Ak = [Amk , A
m
k ]T and

Mk =

 −(λnm + jkam) λmn

λnm −(λmn + jkan)

 . (2.9)

For nontrivial solutions to exist, we need

c1,2 = −1

2
[(λmn + λnm) + jk (am + an)]±1

2

√
4λmnλnm + [jk (an − am) + (λmn − λnm)]2.

(2.10)

To simplify the equation (2.10), we know that the radicand can be expressed as Reiθ,

where

R(k) =

√
[(λnm + λmn)2 − k2(an − am)2]2 + 4k2(an − am)2(λmn − λnm)2 (2.11)

and

11
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θ = tan−1
(

2k(an − am)(λmn − λnm)

(λnm + λmn)2 − k2(an − am)2

)
. (2.12)

Thus, equation(2.10) reduces to

c1,2 = −1

2
[(λmn + λnm) + jk(am + an)]± 1

2
(ϕk + j$k) (2.13)

where

ϕk + j$k =
√
Rejθ

=
√
Rej

θ
2

=
√
Rcosθ

2
+ j
√
Rsinθ

2

=
√
R
√

1 + cosθ

2
+ j
√
R
√

1− cosθ
2

=

√
R+Rcosθ

2
+ j

√
R−Rcosθ

2
,

(2.14)

Then we can express ϕk and $k respectively as

ϕk =

√
R+Rcosθ

2
=

√
R(k) + (λnm + λmn)2 − k2(an − am)2

2
(2.15)

and

$k =

√
R−Rcosθ

2
=

√
R(k)− (λnm + λmn)2 + k2(an − am)2

2
. (2.16)

Therefore, the general solutions are given by

12
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Wm(x, t) =
+∞∑
−∞

(
Bke

c1(k)t + Cke
c2(k)t

)
ejkx (2.17)

and

W n(x, t) =
+∞∑
−∞

(
Bkξke

c1(k)t + Ckχke
c2(k)t

)
ejkx, (2.18)

where ξk and χk are given by

ξk =

(
λnm − λmn + ϕk

2λmn

)
+ j

[
k(am − an) +$k

2λmn

]
(2.19)

and

χk =

(
λnm − λmn − ϕk

2λmn

)
+ j

[
k(am − an)−$k

2λmn

]
. (2.20)

We employ the initial conditions (2.5) to achieve the exact solution for Wm and W n,

by calculating the coefficients Bk and Ck defined by the relationships

Bk = αkG(k)− αkχkF (k) (2.21)

and

Ck = (1 + αkχk)F (k)− αkG(k)), (2.22)

13
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where F (k) and G(k) are given by

F (k) =
1

2π

∫ π

−π
f(ζ)e−jkζdζ and G(k) =

1

2π

∫ π

−π
g(ζ)e−jkζdζ (2.23)

and αk is described as

αk =
1

ξk − χk
=

λmn
ϕk + j$k

. (2.24)

It is important to note that cyber activity can still exist where the overall system

response, otherwise known as the system failure rate, can appear unaffected. Thus,

we need to consider Poisson transitions where λmn = λnm = λ. For this scenario,

the solution for Wm and W n is of the form expressed in equations (2.17) and (2.18),

where

ξk, χk =
jk(am − an)

2λ
±
√

1− k2

4λ2
(an − am)2. (2.25)

Similarly, we can abtain an exact solution from the initial conditions (2.5), by cal-

culating the coefficients Bk and Ck from (2.21), (2.22) and (2.23) where αk is given

by

αk =
λ√

4λ2 − k2(an − am)2
. (2.26)

14
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2.1 Transient Analysis

We perform transient analysis by way of understanding the stability of Wm and

W n, which means examining the eigenvalue spectrum c(k) = cr(k) + jcj(k). When

cr(k) > 0, we get unstable solutions; however, a refined instability estimate is provided

in the following theorem

Theorem 2.1.1. The solutions Wm and W n of the stochastic fluid queue (2.4) are

unstable whenever the complex eigenvalue c(k) = cr(k)+jcj(k) falls within the domain


(
cr(k) + λmn+λnm

2

)2
+
(
cj(k) + k am+an

2

)2 ≤ R
4
,

cr(k) > 0

(2.27)

where R is defined by (2.11).

Proof. Noting that the eigenvalue c(k) = cr(k) + jcj(k), the exponential terms are

expressed as

ejkx+c(k)t = ecr(k)t · ej(kx+cj(k)t), (2.28)

which shows that unstable solutions exist for cr(k) > 0. Equation (2.14) can be

written as

(
cr(k) +

λmn + λnm
2

)
+ j

(
cj(k) + k

am + an
2

)
= ±1

2
(ϕk +$k), (2.29)

15
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Figure 2.2: Pictorial representation of Theorem 2.1.1 in the complex plane with
the shaded unstable domain. The circular portion of the domain is given by equa-
tion(2.30) with center C0 = (−λmn+λnm

2
,−k am+an

2
)

with ϕk and $k given by equations (2.15) and (2.16). Taking the squared norm on

both sides of equation (2.29) yields

(
cr(k) +

λmn + λnm
2

)2

+

(
cj(k) + k

am + an
2

)2

=
R(k)

4
. (2.30)

Instability occurs when, in the complex plane, equation (2.30) intersects with cr > 0

producing the region (2.27).

As Figure 2.2 illustrates, Theorem 2.1.1 directly shows the relationship between

the cyber-attack rates, system failure rates, and Fourier modes. Once we know these

unstable modes, we can find stable solutions. If we know the attack and transition

rates, we can use Theorem 2.1.1 to estimate which modal solutions are unstable.

16
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From this, an argument similar to the work of Parthasarathy and Vijayashree [37]

can be applied such that the coefficient of each unstable Fourier mode Bk must equal

zero to ensure stable solutions.

When malevolent actions don’t change the system failure rates, λmn = λnm = λ

yielding the following result

Theorem 2.1.2. Let λmn = λnm = λ, The solutions Wm and W n of the stochastic

fluid queue (2.4) are stable for any combination of attack rates am and an, system

failure rate, and Fourier mode number k.

Proof. When λmn = λnm = λ, the eigenvalue spectrum becomes

c1,2(k) = −λ+ jk
am + an

2
±

√
λ2 − k2

(
an − am

2

)2

. (2.31)

The following inequality

Re

−λ+

√
λ2 − k2

(
an − am

2

)2

 ≤ 0, (2.32)

where Re denotes the real part, consistently holds producing stable solutions.

Theorem 2.1.2 implies that when the overall system failure rate is unaffected

by virulent activity, the solutions Wm and W n will always be stable. Hence, the

transient analysis for this case solely involves examining the probabilistic impacts of

cyber behavior over time while considering various estimates for am, an, and λ. Here,

17
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we can study the temporal behavior of Wm and W n by examining the decay rate

behavior as presented in the following corollary

Corollary 2.1.1. For λmn = λnm = λ, the decay rate cr(k) converges to −λ as

k → ± 2λ

an − am
(2.33)

for any combination of attack rates, am and an, and system failure rate λ.

Proof. This is done via examing the inequality

λ2 − k2(an − am
2

)2 ≤ 0, (2.34)

which holds for k ∈ (−∞,−kcr] ∪ [kcr,∞) where

kcr =
2λ

an − am
. (2.35)

Therefore, from (2.31) cr(k) = Re{c1,2(k)} = −λ

2.2 Stationary Analysis

Not all cyber attacks are immediately detected. Therefore, it is also imperative

to investigate the probabilistic effects of long-term malicious activity. Assuming sta-

tionary behavior, equation (2.4) reduces to the system

18
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am
∂Ψm

∂x
= (λmnΨn − λnmΨm)

an
∂Ψn

∂x
= (λnmΨm − λmnΨn),

(2.36)

where Ψm and Ψn are the stationary distributions corresponding to threat levels Sm

and Sn, respectively. Since this is a ODE system only corresponding to x. We can

solve the system by making the following assumption:

Ψm,n = βm,n(x)eγx, (2.37)

where γ represents the eigenvalues. For nontrivial solutions to exist, we require that

γ1 = 0 (2.38)

and

γ2 = −
(λnm
am

+
λmn
an

)
. (2.39)

Therefore, the general solution for Ψ(x) can be described as

Ψ(x) =

 Ψm(x)

Ψn(x)

 = β1(x)

 1

λnm
λmn

+ β2(x)

 1

−am
an

 eγx (2.40)

where
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Figure 2.3: Phase plane portrait of (2.40) with am = 2, an = 1, λmn = 1 and
λnm = 2. Notice the spectrum of solutions merging to the equilibrium line defined by
the eigenvector [1, 2]T .

γ = γ2 = −
(λnm
am

+
λmn
an

)
(2.41)

Figure 2.3 is the phase plane representation, which shows stable behavior of (2.40)

converging to the line defined by the eigenvector [1, λnm/λmn]T . This line is known as

the attractive line of equilibrium. This result shows that as the number of failed jobs

x increases the stationary distributions solely depend on the affected system failure

rates. Hence, it can be inferred that as the virulent behavior becomes more dominant

the effects of the attack rates become insignificant. Intuitively, this makes sense

because at this point the system will become severely infected. When λmn = λnm = λ,

similar behavior is observed where the attractive line of equilibrium is governed by

[1, 1]T .
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Chapter 3

Analysis of the 2-D Stochastic

Fluid Queue (SFQ)

Now, we are exploring the 2-D Stochastic Fluid Queue case. We assume that, for

any node, the malicious behavior is governed via the differential equations

dx

dt
=


am, if x ∈ Lm

an, if x ∈ Ln
and

dy

dt
=


rm, if y ∈ Lm

rn, if y ∈ Ln,
(3.1)

where am, an ∈ R+ are the constant cyber failure rates, rm, rn ∈ R+ are the constant

cyber infected rates, x ∈ R+ is the total number of failed jobs, y ∈ R+ is the number

of infected applications and the failure rate is defined as
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dx

dt
=

total number of failed jobs

time differential between failed jobs
(3.2)

and

dy

dt
=

total number of infected applications

time differential between infected applications
. (3.3)

The threat levels Lm and Ln are subsets of R+ such that Lm ∩ Ln = ∅. Therefore,

we model the probabilistic effects as a 2-D stochastic fluid queue fed by an ON-OFF

source. Our goal of the theoretical development is to understand the probabilistic

cyber behavior within each threat level, we express threat level as following

Wm(x, y, t) = P{x(t) = x, y(t) = y|x, y ∈ Lm}, (3.4)

where x is the total number of failed jobs resulting from the cyber-activity, y is the

total number of infected applications resulting from the cyber-activity, Lm is the

associated threat level, and x(t) and y(t) is the dynamic cyber behavior governed by

equation (3.1). Hence, the stochastic behavior between two risk levels Lm and Ln is

described as [41]

Wm
t =− amWm

x − rmWm
y + (λmnW

n − λnmWm)

W n
t =− anW n

x − rnW n
y + (λnmW

m − λmnW n),

(3.5)

where am and an are the corresponding cyber failure rates and rm and rn are the
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corresponding cyber infected rates while λmn and λnm are the transition rates repre-

senting the system failure rate. Equation (3.5) describes the likelihood of the virulent

activity reaching Lm and Ln as two stochastic fluid flows driven by the same Markow

chain. Here the intial conditions now become

Wm(x, y, 0) = f(x, y) and W n(x, y, 0) = g(x, y). (3.6)

Similar to Chapter 2, we can represent the solution to the equation (3.5) by the

complex Fourier series

Wm(x, y, t) =
+∞∑

k=−∞

+∞∑
l=−∞

Amk,le
j(kx+ly)+ct (3.7)

and

W n(x, y, t) =
+∞∑

k=−∞

+∞∑
l=−∞

Ank,le
j(kx+ly)+ct, (3.8)

where j =
√
−1 and k and l are the Fourier mode numbers in the x and y directions.

Substituting (3.7) and (3.8) into equations (3.5) we get the eigenvalue relationship

for each mode

Mk,lAk,l = cAk,l, (3.9)
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where Ak,l = [Amk,l, A
n
k,l]

T and

Mk,l =

 −[λnm + j(kam + lrm)] λmn

λnm −[λmn + j(kan + lrn)]

 . (3.10)

For nontrivial solutions to exist, we need

c1,2 = −1

2
[(λmn + λnm) + jk(am + an) + jl(rm + rn)]

± 1

2

√
4λmnλnm + [jk(an − am) + jl(rn − rm) + (λmn − λnm)]2.

(3.11)

Similar to equation(2.10), equation(3.11) reduces to

c1,2 = −1

2
[(λmn + λnm) + jk(am + an) + jl(rm + rn)]± 1

2
(ϕk,l + j$k,l) (3.12)

where ϕk,l and $k,l are given as

ϕk,l =

√
R(k, l) + (λnm + λmn)2 − k2(an − am)2 − l2(rn − rm)2

2
(3.13)

and
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$k,l =

√
R(k, l)− (λnm + λmn)2 + k2(an − am)2 + l2(rn − rm)2

2
(3.14)

and R(k, l) is defined as

R(k, l) =
{ [
−k2(an − am)2 − l2(rn − rm)2 + (λmn + λnm)2

]2
+ 4 [k(an − am)(λmn − λnm) + l(rn − rm)(λmn − λnm)]2

} 1
2

(3.15)

Therefore, the general solutions are given by

Wm(x, y, t) =
+∞∑

k=−∞

+∞∑
l=−∞

(
Bk,le

c1(k,l)t + Ck,le
c2(k,l)t

)
ej(kx+ly) (3.16)

and

W n(x, y, t) =
+∞∑

k=−∞

+∞∑
l=−∞

(
Bk,lξk,le

c1(k,l)t + Ck,lχk,le
c2(k,l)t

)
ej(kx+ly), (3.17)

where ξk,l and χk,l are given by

ξk,l =

(
λnm − λmn + ϕk,l

2λmn

)
+ j

[
k(am − an) + l(rm − rn) +$k,l

2λmn

]
(3.18)
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and

χk,l =

(
λnm − λmn − ϕk,l

2λmn

)
+ j

[
k(am − an) + l(rm − rn)−$k,l

2λmn

]
. (3.19)

We employ the initial conditions (3.6) to achieve the exact solution for Wm and W n,

by calculating the coefficients Bk,l and Ck,l defined by the relationships

Bk,l = αk,lG(k, l)− αk,lχk,lF (k, l) (3.20)

and

Ck,l = (1 + αk,lχk,l)F (k, l)− αk,lG(k, l)), (3.21)

where F (k, l) and G(k, l) are given by

F (k, l) =
1

(2π)2

∫ π

−π

∫ π

−π
f(ζ, η)e−j(kζ+lη)dζdη (3.22)

and

G(k, l) =
1

(2π)2

∫ π

−π

∫ π

−π
g(ζ, η)e−j(kζ+lη)dζdη (3.23)

and αk,l is described as
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αk,l =
1

ξk,l − χk,l
=

λmn
ϕk,l + j$k,l

. (3.24)

If the cyber activity does not affect overall system, we need to consider Poisson

transitions where λmn = λnm = λ. Thus, the solution for Wm and W n is of the form

expressed in equation (3.16) and (3.17) where

ξk,l, χk,l =
j [k(am − an) + l(rm − rn)]

2λ
±
√

1− k2

4λ2
[(an − am)2 + (rn − rm)2] (3.25)

Similarly, we can abtain an exact solution from the initial conditions (3.6), by calcu-

lating the coefficients Bk,l and Ck,l from (3.20), (3.21), (3.22) and (3.23) where αk,l is

given by

αk,l =
λ√

4λ2 − k2(an − am)2 − l2(rn − rm)2
(3.26)

3.1 Transient Analysis

Transient analysis is done by way of understanding the stability of Wm and W n,

which means examining the eigenvalue spectrum c(k, l) = cr(k, l) + jcj(k, l). When

cr(k, l) > 0, we get unstable solutions; however, an analog to Theorem 2.1.1 is found,

where a refined instability estimate is provided in the following theorem
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Theorem 3.1.1. The solutions Wm and W n of the stochastic fluid queue (3.5) are

unstable whenever the complex eigenvalue c(k, l) = cr(k, l) + jcj(k, l) falls within the

domain


(
cr(k, l) + λmn+λnm

2

)2
+
(
cj(k, l) + k am+an

2
+ l rm+rn

2

)2 ≤ R
4
,

cr(k, l) > 0

(3.27)

where R is defined by (3.15).

Proof. Noting that the eigenvalue c(k, l) = cr(k, l) + jcj(k, l), the exponential terms

are expressed as

ej(kx+ly)+c(k,l)t = ecr(k,l)t · ej(kx+ly+cj(k,l)t), (3.28)

which shows that unstable solutions exist for cr(k, l) > 0. Equation (3.12) can be

written as

(
cr(k, l) +

λmn + λnm
2

)
+ j

(
cj(k, l) + k

am + an
2

+ l
rm + rn

2

)
= ±1

2
(ϕk,l +$k,l),

(3.29)

with ϕk,l and $k,l given by equations (3.13) and (3.14). Taking the squared norm on

both sides of equation (3.29) yields
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𝑐"(𝑘, 𝑙)

𝑐((𝑘, 𝑙)
Left	Half-Plane

(stable)
Right	Half-Plane

(unstable)

𝐶*

Figure 3.1: Pictorial representation of Theorem 3.1.1 in the complex plane with
the shaded unstable domain. The circular portion of the domain is given by equa-
tion(3.30) with center C0 = (−λmn+λnm

2
,−k am+an

2
− l rm+rn

2
)

(
cr(k, l) +

λmn + λnm
2

)2

+

(
cj(k, l) + k

am + an
2

+ l
rm + rn

2

)2

=
R(k, l)

4
. (3.30)

Instability occurs when, in the complex plane, equation (3.30) intersects with cr > 0

producing the region (3.27).

Similar to Theorem 2.1.1, Theorem 3.1.1 shows the relationship between the cyber-

attack rates, system failure rates, and Fourier modes, as Figure 3.1 illustrates. Once

we know these unstable modes, we can find stable solutions. If we know the attack

and transition rates, we can use Theorem 3.1.1 to estimate which modal solutions are

unstable. From this, an argument similar to [37] can be applied such that the coeffi-
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cient of each unstable Fourier mode Bk,l must equal zero to ensure stable solutions.

When malevolent actions don’t change the system failure rates, λmn = λnm = λ

yielding the following result

Theorem 3.1.2. Let λmn = λnm = λ, The solutions Wm and Wn of the stochastic

fluid queue (3.5) are stable for any combination of attack rates am and an, system

failure rate λ, and Fourier mode numbers k and l.

Proof. When λmn = λnm = λ, the eigenvalue spectrum becomes

c1,2(k, l) = −λ+j

(
k
am + an

2
+ l

rm + rn
2

)
±

√
λ2 −

[
k

(
an − am

2

)
+ l

(
rn − rm

2

)]2
.

(3.31)

The following inequality

Re

−λ+

√
λ2 −

[
k

(
an − am

2

)
+ l

(
rn − rm

2

)]2 ≤ 0, (3.32)

where Re denotes the real part, consistently holds producing stable solutions.

Theorem 3.1.2 implies that when the overall system failure rate is unaffected by

virulent activity, the solutions Wm and W n will always be stable. Hence, the transient

analysis solely involves examining the probabilistic impacts of cyber behavior over

time while considering various estimates for am, an, rm, rn and λ. In this case, we

can study the temporal behavior of Wm and W n by examining the decay rate behavior
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as presented in the following corollary

Corollary 3.1.1. For λmn = λnm = λ, the decay rate cr(k, l) converges to −λ as

[k(an − am) + l(rn − rm)]→ ±2λ (3.33)

for any combination of attack rates, am and an, infected application rates rm and rn,

and system failure rate λ.

Proof. This is done via examing the inequality

λ2 −
[
k

(
an − am

2

)
+ l

(
rn − rm

2

)]2
≤ 0, (3.34)

then we have [k(an − am) + l(rn − rm)] ∈ (−∞,−2λ] ∪ [2λ,+∞). Therefore, from

(3.31) cr(k, l) = Re{c1,2(k, l)} = −λ.

3.2 Stationary Analysis

To understand the behavior of long-term questionable activity, we assume station-

ary behavior, where equation (3.5) reduces to the system

am
∂Ψm

∂x
+ rm

∂Ψm

∂y
= (λmnΨn − λnmΨm) (3.35)

an
∂Ψn

∂x
+ rn

∂Ψn

∂y
= (λnmΨm − λmnΨn), (3.36)
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where Ψm and Ψn are the stationary distributions corresponding to threat levels Sm

and Sn, respectively. Unlike the 1-D case, this is a first order PDE system corre-

sponding to x and y. From equation (3.35), we get Ψn in terms of Ψm as following

Ψn =
am
λmn

Ψm
x +

rm
λmn

Ψm
y +

λnm
λmn

Ψm, (3.37)

then substitute Ψn into equation(3.36), we obtain second order PDE of Ψm corre-

sponding to x and y:

amanΨm
xx+(amrn+anrm)Ψm

xy+rmrnΨm
yy+(λmnam+λnman)Ψm

x +(λmnrm+λnmrn)Ψm
y = 0

(3.38)

Therefore, we achieve the following results,

Theorem 3.2.1. When amrn − anrm 6= 0, the resulting equation(3.38) is Hyperbolic

with stationary solutions Ψm and Ψn given by

Ψm(x, y) = Keγ1x−γ2y (3.39)

and

Ψn(x, y) =

(
am
λmn

γ1 −
rm
λmn

γ2 +
λnm
λmn

)
Keγ1x−γ2y (3.40)

where
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γ1 = ω

[
λnmrn

1− ω(amrn − anrm)
+ λmnrm

]
(3.41)

and

γ2 = ω

[
λmnan

1− ω(amrn − anrm)
+ λnmam

]
(3.42)

and K and ω are constants depending on the boundary conditions.

Proof. To solve the equation (3.38), we use canonical form. Let Ψm(x, y) = U(ζ(x, y), η(x, y)),

the canonical variables ζ and η for a hyperbolic pde satisfy the equations

Aζx + (B +
√
B2 − AC)ζy = 0

Aηx + (B −
√
B2 − AC)ηy = 0,

(3.43)

where A = aman, B = 1
2
(amrn + anrm) and C = rmrn. Then equation (3.43) reduced

to

ζx +
rn
an
ζy = 0

ηx +
rm
am

ηy = 0.

(3.44)

Solving these equations by the method of characteristics, and for simplicity we take

ζ =
rn
an
x− y

η =
rm
am

x− y
(3.45)
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Thus equation (3.38) reduces to

(amrn − anrm)Uζη − λmnamUζ + λnmanUη = 0. (3.46)

Then we use separation of variables to solve equation (3.46), let U(ζ, η) = X(ζ)T (η),

equation (3.46) becomes

(amrn − anrm)X ′T ′ − λmnamX ′T + λnmanXT
′ = 0. (3.47)

Then there is a constant ω such that

X ′

(amrn − anrm)X ′ + λnmX
=

T ′

λmnamT
= ω. (3.48)

Solve equation (3.48) for X(ζ) and T (η) respectively

X(ζ) = c1e
ωλnman

1−ω(amrn−anrm)
ζ (3.49)

and

T (η) = c2e
ωλmnamη. (3.50)

where c1 and c2 are constants. Thus

U(ζ, η) = X(ζ)T (η) = Ke
ωλnman

1−ω(amrn−anrm)
ζ+ωλmnamη (3.51)
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where K is a constant. Then we substitute euqation (3.45) into equation (3.51), we

get the general solution

Ψm(x, y) = Keγ1x−γ2y, (3.52)

and

Ψn(x, y) =

(
am
λmn

γ1 −
rm
λmn

γ2 +
λnm
λmn

)
Keγ1x−γ2y (3.53)

where

γ1 = ω

[
λnmrn

1− ω(amrn − anrm)
+ λmnrm

]
(3.54)

and

γ2 = ω

[
λmnan

1− ω(amrn − anrm)
+ λnmam

]
(3.55)

and C and ω are constants depending on the boundary conditions.

Theorem 3.2.2. When amrn−anrm = 0, the resulting equations(3.38) are Parabolic

with stationary solutions Ψm and Ψn given by

Ψm(x, y) = f

(
rm
am

x− y
)
e−(λmnan

+λnm
am

)x + g

(
rm
am

x− y
)

(3.56)
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and

Ψn(x, y) = −am
an
f

(
rm
am

x− y
)
e−(λmnan

+λnm
am

)x +
λnm
λmn

g

(
rm
am

x− y
)

(3.57)

where f and g are smooth function depending on boundary conditions.

Proof. If amrn − anrm = 0, then equation (3.38) reduces to

amanΨmxx+2amrnΨmxy+rmrnΨm
yy+(λmnam+λnman)Ψm

x +(λmnrm+λnmrn)Ψm
y = 0.

(3.58)

Similar to the proof of Theorem (3.2.1), we use canonical form. Let u(x, y) =

U(ζ(x, y), η(x, y)), the canonical variables ζ and η for a parabolic pde satisfy the

equation

Aζx +Bζy = 0 (3.59)

where A = aman, B = 1
2
(amrn + anrm) Then equation (3.59) reduced to

ζx +
rm
am

ζy = 0 (3.60)

Solving equation (3.60) by the method of characteristics, and for simplicity we take
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ζ =
rm
am

x− y (3.61)

η = x. (3.62)

Thus, equation (3.58) reduces to

amanUηη + (λmnam + λnman)Uη = 0. (3.63)

Equation (3.63) is just an second order ode corresponding to η, solve it, we get

U(ζ, η) = f(ζ)e−(λmnan
+λnm

am
)η + g(ζ), (3.64)

where f and g are smooth function depending on boundary conditions. Then substi-

tute equation (3.62) into equation (3.64), we have the general solutions

Ψm(x, y) = f

(
rm
am

x− y
)
e−(λmnan

+λnm
am

)x + g

(
rm
am

x− y
)

(3.65)

and

Ψn(x, y) = −am
an
f

(
rm
am

x− y
)
e−(λmnan

+λnm
am

)x +
λnm
λmn

g

(
rm
am

x− y
)
. (3.66)
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When the system failure rates is not changed by malevolent actions, λmn =λnm=λ

yielding the following results

Corollary 3.2.1. Let λmn = λnm = λ in Theorem 3.2.1, then we get the Hyperbolic

equations with stationary solutions Ψm and Ψn given by

Ψm(x, y) = Ceγ1x−γ2y (3.67)

and

Ψn(x, y) =

(
am
λmn

γ1 −
rm
λmn

γ2 + 1

)
Keγ1x−γ2y (3.68)

where

γ1 = ωλ

[
rn

1− ω(amrn − anrm)
+ rm

]
, (3.69)

γ2 = ωλ

[
an

1− ω(amrn − anrm)
+ am

]
, (3.70)

and C and ω are constants depending on the boundary conditions.

Proof. Just substitute λmn = λnm = λ into the solutions in Theorem 3.2.1

Corollary 3.2.2. Let λmn = λnm = λ in Theorem 3.2.2, then we get the Parabolic

equations with stationary solutions Ψm and Ψn given by
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Ψm(x, y) = f

(
rm
am

x− y
)
e−λ(

1
an

+ 1
am

)x + g

(
rm
am

x− y
)

(3.71)

and

Ψn(x, y) = −am
an
f

(
rm
am

x− y
)
e−(λmnan

+λnm
am

)x + g

(
rm
am

x− y
)

(3.72)

where f and g are smooth function depending on boundary conditions.

Proof. Similiar as Corollary 3.2.1
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Chapter 4

Numerical Experiments and

Results

In this chapter, we want to verify the results in Chapter 2 and Chapter 3 by

numerical computation. Depending on the numerical results, on the one hand, we

can verify the computation and theorems, on the other hand, we can have a better

understanding of how to use these theorems and corollaries. Next, we present an

example, similar to the work of Parthasarathy and Vijayashree [37], to illustrate our

proposed technique.
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4.1 Eigenvalue Spectrum for 1-D SFQs

In this section, a process is devised that incorporates the transient analysis of

Chapter 2 for determining definitive solutions Wm and W n. This method consists of

the following three components:

1) Compute Eigenvalues This module calculates the eigenvalues while considering

both Markovian and Poisson transitions. Here, Theorem 2.1.1 is employed to

identify the unstable eigenvalues as well as their corresponding Fourier modes.

2) Compute Coefficients Once the appropriate eigenvalues have been determined,

the coefficients, Bk and Ck, are determined via (17) and (18). To ensure stable

solutions, Bk is set to zero at each unstable corresponding mode.

3) Compute Series Solution Next, the results of Steps 1 and 2 are compiled to

produce closed-form solutions.

Table 4.1: Eigenvalue Spectrum Per Fourier Mode.

Fourier Mode k Eigenvalue c1(k) Eigenvalue c2(k)

0 0 -7.250

1 -0.017-j2.50 -7.233-j2.50

2 -0.105-j5.00 -7.145-j5.00

3 -0.268-j7.50 -6.982-j7.50

4 -0.518-j10.00 -6.732-j10.00
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Table 4.1 . . . continued

A B C

5 -0.878-j12.50 -6.372-j12.50

6 -1.398-j15.00 -5.852-j15.00

7 -2.168-j17.50 -5.082-j17.50

8 -1.618-j20.00 -5.632-j20.00

9 -0.740-j22.50 -6.510-j22.50

10 0.005-j25.00 -7.255-j25.00

11 0.681-j27.50 -7.931-j27.50

12 1.316-j30.00 -8.566-j30.00

Table 4.2: Eigenvalue Spectrum Per Fourier Mode.

Fourier Mode k Eigenvalue c1(k) Eigenvalue c2(k)

0 0 -7.250

-1 -0.017+j2.50 -7.233+j2.50

-2 -0.105+j5.00 -7.145+j5.00

-3 -0.268+j7.50 -6.982+j7.50

-4 -0.518+j10.00 -6.732+j10.00

-5 -0.878+j12.50 -6.372+j12.50

-6 -1.398+j15.00 -5.852+j15.00

-7 -2.168+j17.50 -5.082+j17.50
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Table 4.2 . . . continued

A B C

-8 -1.618+j20.00 -5.632+j20.00

-9 -0.740+j22.50 -6.510+j22.50

-10 0.005+j25.00 -7.255+j25.00

-11 0.681+j27.50 -7.931+j27.50

-12 1.316+j30.00 -8.566+j30.00

Tables 4.1 and 4.2 present the eigenvalue spectrum for λmn = 3.75, λnm = 3.5,

am = 2 and an = 3. It is important to note the occurrence of unstable eigenvalues

c1 when k ∈ [10, 12]. This illustrates the importance of Theorem 2.1.1 because the

instability of Wm and W n depends on the behavior of c1,2(k) which are based on the

attack and system failure rates. Although instability can be determined with cr(k) >

0, Theorem 2.1.1 shows that these unstable modes are based on the combination of

am, an, λmn and λnm. This result is more robust because it connects the instability

behavior to the combination of the system and attack rates.

When λmn = λnm = λ all of the eigenvalues, c1 and c2 are stable. This is consistent

with Theorem 2.1.2 where Tables 4.3 and 4.4 show the eigenvalue spectrum for the

case where am = 2, an = 3,and λmn = λnm = 3.5. For each mode, the real part

of each eigenvalue is either less than or equal to zero. This behavior is consistent

regardless of the unchanging system failure rate λ and the cyber attack rates. It is
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Figure 4.1: Growth rate spectrum for λ = 3.5, am = 2 and an = 3 for k ∈ [−12, 12]

also important to notice the behavior of the decay rate given by Re(c1,2(k)) shown

in Figure 4.1. As k approaches 7, the decay rate converges to 3.5, which supports

Corollary 2.1.1.

Table 4.3: Eigenvalue Spectrum Per Fourier Mode.

Fourier Mode k Eigenvalue c1(k) Eigenvalue c2(k)

0 0 -7

1 -0.036+j2.50 -6.964+j2.50

2 -0.146+j5.00 -6.854+j5.00

3 -0.338+j7.50 -6.662+j7.50

4 -0.628+j10.00 -6.372+j10.00

5 -1.051+j12.50 -5.950+j12.50

6 -1.697+j15.00 -5.303+j15.00
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Table 4.3 . . . continued

A B C

7 -3.500+j17.50 -3.500+j17.50

8 -3.500+j21.94 -3.500+j18.06

9 -3.500+j25.33 -3.500+j19.67

10 -3.500+j28.57 -3.500+j21.43

11 -3.500+j31.74 -3.500+j23.28

12 -3.500+j34.87 -3.500+j25.13

Table 4.4: Eigenvalue Spectrum Per Fourier Mode.

Fourier Mode k Eigenvalue c1(k) Eigenvalue c2(k)

0 0 -7

-1 -0.036-j2.50 -6.964-j2.50

-2 -0.146-j5.00 -6.854-j5.00

-3 -0.338-j7.50 -6.662-j7.50

-4 -0.628-j10.00 -6.372-j10.00

-5 -1.051-j12.50 -5.950-j12.50

-6 -1.697-j15.00 -5.303-j15.00

-7 -3.500-j17.50 -3.500-j17.50

-8 -3.500-j18.06 -3.500-j21.94

-9 -3.500-j19.67 -3.500-j25.33
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Table 4.4 . . . continued

A B C

-10 -3.500-j21.43 -3.500-j28.57

-11 -3.500-j23.28 -3.500-j31.74

-12 -3.500-j25.13 -3.500-j34.87

4.2 Eigenvalue Spectrum for 2-D SFQs

Similarly, for λmn = 3.75, λnm = 3.5, am = 2, an = 3, rm = 2 and rn = 1, Tables

4.5 through 4.8 present the real and imaginary part of eigenvalue spectrum of c1,

Tables 4.9 through 4.12 present the real and imaginary part of eigenvalue spectrum of

c2. It is important to note the occurrence of unstable eigenvalues c1, when the couple

k, l takes different values. This illustrates the importance of Theorem 3.1.1 because

the instability of Wm and W n depends on the behavior of c1,2(k, l) which are based

on the attack, infected application, and system failure rates. Although instability can

be determined with cr(k, l) > 0, Theorem 3.1.1 shows that these unstable modes are

based on the combination of am, an, rm, rn, λmn and λnm. This result is more robust

because it connects the instability behavior to the combination of the system, attack

and infected application rates.

For λmn = λnm = λ = 3.5, am = 2, an = 3, rm = 2 and rn = 1. Table 4.13

through 4.16 present the real and imaginary part of eigenvalue spectrum of c1, Table
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Table 4.5: Real Part of Eigenvalue Spectrum of c1 Per Fourier Mode for k, l ∈ [0, 12],
when λmn 6= λnm.

k
l

0 1 2 3 4 5 6 7 8 9 10 11 12

0 3.378 3.311 3.107 2.753 2.221 1.458 0.343 -1.427 -0.249 1.563 3.049 4.381 5.623
1 3.311 3.244 3.037 2.679 2.140 1.365 0.223 -1.591 -0.127 1.649 3.117 4.438 5.673
2 3.106 3.037 2.824 2.452 1.892 1.076 -0.155 -1.815 0.233 1.903 3.320 4.609 5.821
3 2.750 2.677 2.451 2.055 1.451 0.552 -0.881 -1.183 0.781 2.306 3.646 4.886 6.064
4 2.216 2.135 1.887 1.448 0.762 -0.313 -2.027 -0.163 1.458 2.829 4.080 5.260 6.395
5 1.447 1.353 1.064 0.539 -0.327 -1.881 -0.757 0.870 2.220 3.447 4.605 5.719 6.804
6 0.308 0.186 -0.201 -0.961 -2.461 -0.785 0.650 1.888 3.037 4.136 5.205 6.252 7.285
7 -1.771 -2.069 -2.972 -1.364 -0.211 0.855 1.883 2.892 3.890 4.880 5.866 6.847 7.826
8 -0.351 -0.217 0170 0.743 1.437 2.209 3.031 3.888 4.768 5.666 6.576 7.495 8.421
9 1.528 1.616 1.876 2.285 2.815 3.437 4.131 4.877 5.664 6.483 7.325 8.186 9.062
10 3.029 3.098 3.303 3.632 4.069 4.597 5.199 5.862 6.574 7.324 8.106 8.913 9.742
11 4.367 4.424 4.596 4.875 5.251 5.712 6.247 6.844 7.492 8.184 8.913 9.672 0.456
12 5.612 5.662 5.811 6.055 6.387 6.798 7.280 7.823 8.419 9.060 9.741 10.455 11.198

Table 4.6: Imaginary Part of Eigenvalue Spectrum of c1 Per Fourier Mode for
k, l ∈ [0, 12], when λmn 6= λnm.

k
l

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 -1.500 -3.000 -4.500 -6.000 -7.500 -9.000 -10.500 -12.000 -13.500 -15.000 -16.500 -18.000
1 -2.500 -4.000 -5.500 -7.000 -8.500 -10.000 -11.500 -13.000 -14.500 -16.000 -17.500 -19.000 -20.500
2 -5.000 -6.500 -8.000 -9.500 -11.000 -12.500 -14.000 -15.500 -17.000 -18.500 -20.000 -21.500 -23.000
3 -7.500 -9.000 -10.500 -12.000 -13.500 -15.000 -16.500 -18.000 -19.500 -21.000 -22.500 -24.000 -25.500
4 -10.000 -11.500 -13.000 -14.500 -16.000 -17.500 -19.000 -20.500 -22.000 -23.500 -25.000 -26.500 -28.000
5 -12.500 -14.000 -15.500 -17.000 -18.500 -20.000 -21.500 -23.000 -24.500 -26.000 -27.500 -29.000 -30.500
6 -15.000 -16.500 -18.000 -19.500 -21.000 -22.500 -24.000 -25.500 -27.000 -28.500 -30.000 -31.500 -33.000
7 -17.500 -19.000 -20.500 -22.000 -23.500 -25.000 -26.500 -28.000 -29.500 -31.000 -32.500 -34.000 -35.500
8 -20.000 -21.500 -23.000 -24.500 -26.000 -27.500 -29.000 -30.500 -32.000 -33.500 -35.000 -36.500 -38.000
9 -22.500 -24.000 -25.500 -27.000 -28.500 -30.000 -31.500 -33.000 -34.500 -36.000 -37.500 -39.000 -40.500
10 -25.000 -26.500 -28.000 -29.500 -31.000 -32.500 -34.000 -35.500 -37.000 -38.500 -40.000 -41.500 -43.000
11 -27.500 -29.000 -30.500 -32.000 -33.500 -35.000 -36.500 -38.000 -39.500 -41.000 -42.500 -44.000 -45.500
12 -30.000 -31.500 -33.000 -34.500 -36.000 -37.500 -39.000 -40.500 -42.000 -43.500 -45.000 -46.500 -48.000

4.17 through 4.20 present the real and imaginary part of eigenvalue spectrum of c2.

This is consistent with Theorem 3.1.2
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Table 4.7: Real Part of Eigenvalue Spectrum of c1 Per Fourier Mode for k, l ∈
[−12, 0], when λmn 6= λnm.

k
l

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

0 3.378 3.311 3.107 2.753 2.221 1.458 0.343 -1.427 -0.249 1.563 3.049 4.381 5.623
-1 3.311 3.244 3.037 2.679 2.140 1.365 0.223 -1.591 -0.127 1.649 3.117 4.438 5.673
-2 3.106 3.037 2.824 2.452 1.892 1.076 -0.155 -1.815 0.233 1.903 3.320 4.609 5.821
-3 2.750 2.677 2.451 2.055 1.451 0.552 -0.881 -1.183 0.781 2.306 3.646 4.886 6.064
-4 2.216 2.135 1.887 1.448 0.762 -0.313 -2.027 -0.163 1.458 2.829 4.080 5.260 6.395
-5 1.447 1.353 1.064 0.539 -0.327 -1.881 -0.757 0.870 2.220 3.447 4.605 5.719 6.804
-6 0.308 0.186 -0.201 -0.961 -2.461 -0.785 0.650 1.888 3.037 4.136 5.205 6.252 7.285
-7 -1.771 -2.069 -2.972 -1.364 -0.211 0.855 1.883 2.892 3.890 4.880 5.866 6.847 7.826
-8 -0.351 -0.217 0170 0.743 1.437 2.209 3.031 3.888 4.768 5.666 6.576 7.495 8.421
-9 1.528 1.616 1.876 2.285 2.815 3.437 4.131 4.877 5.664 6.483 7.325 8.186 9.062
-10 3.029 3.098 3.303 3.632 4.069 4.597 5.199 5.862 6.574 7.324 8.106 8.913 9.742
-11 4.367 4.424 4.596 4.875 5.251 5.712 6.247 6.844 7.492 8.184 8.913 9.672 0.456
-12 5.612 5.662 5.811 6.055 6.387 6.798 7.280 7.823 8.419 9.060 9.741 10.455 11.198

Table 4.8: Imaginary Part of Eigenvalue Spectrum of c1 Per Fourier Mode for
k, l ∈ [−12, 0], when λmn 6= λnm.

k
l

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

0 0 1.500 3.000 4.500 6.000 7.500 9.000 10.500 12.000 13.500 15.000 16.500 18.000
-1 2.500 4.000 5.500 7.000 8.500 10.000 11.500 13.000 14.500 16.000 17.500 19.000 20.500
-2 5.000 6.500 8.000 9.500 11.000 12.500 14.000 15.500 17.000 18.500 20.000 21.500 23.000
-3 7.500 9.000 10.500 12.000 13.500 15.000 16.500 18.000 19.500 21.000 22.500 24.000 25.500
-4 10.000 11.500 13.000 14.500 16.000 17.500 19.000 20.500 22.000 23.500 25.000 26.500 28.000
-5 12.500 14.000 15.500 17.000 18.500 20.000 21.500 23.000 24.500 26.000 27.500 29.000 30.500
-6 15.000 16.500 18.000 19.500 21.000 22.500 24.000 25.500 27.000 28.500 30.000 31.500 33.000
-7 17.500 19.000 20.500 22.000 23.500 25.000 26.500 28.000 29.500 31.000 32.500 34.000 35.500
-8 20.000 21.500 23.000 24.500 26.000 27.500 29.000 30.500 32.000 33.500 35.000 36.500 38.000
-9 22.500 24.000 25.500 27.000 28.500 30.000 31.500 33.000 34.500 36.000 37.500 39.000 40.500
-10 25.000 26.500 28.000 29.500 31.000 32.500 34.000 35.500 37.000 38.500 40.000 41.500 43.000
-11 27.500 29.000 30.500 32.000 33.500 35.000 36.500 38.000 39.500 41.000 42.500 44.000 45.500
-12 30.000 31.500 33.000 34.500 36.000 37.500 39.000 40.500 42.000 43.500 45.000 46.500 48.000

Table 4.9: Real Part of Eigenvalue Spectrum of c2 Per Fourier Mode for k, l ∈ [0, 12],
when λmn 6= λnm.

k
l

0 1 2 3 4 5 6 7 8 9 10 11 12

0 -10.628 -10.561 -10.357 -10.003 -9.471 -8.708 -7.593 -5.823 -7.001 -8.813 -10.299 -11.631 -12.873
1 -10.561 -10.495 -10.287 -9.929 -9.390 -8.615 -7.473 -5.659 -7.123 -8.899 -10.367 -11.688 -12.923
2 -10.356 -10.287 -10.074 -9.702 -9.142 -8.326 -7.095 -5.435 -7.483 -9.153 -10.570 -11.859 -13.071
3 -10.000 -9.927 -9.701 -9.305 -8.701 -7.802 -6.369 -6.067 -8.031 -9.556 -10.896 -12.136 -13.314
4 -9.466 -9.385 -9.137 -8.698 -8.012 -6.938 -5.223 -7.087 -8.708 -10.079 -11.330 -12.510 -13.645
5 -8.697 -8.603 -8.314 -7.789 -6.923 -5.369 -6.493 -8.120 -9.470 -10.697 -11.855 -12.969 -14.054
6 -7.558 -7.436 -7.049 -6.289 -4.790 -6.465 -7.900 -9.138 -10.287 -11.386 -12.455 -13.502 -14.535
7 -5.479 -5.181 -4.278 -5.886 -7.040 -8.105 -9.133 -10.142 -11.140 -12.130 -13.116 -14.097 -15.076
8 -6.899 -7.033 -7.420 -7.993 -8.687 -9.459 -10.281 -11.138 -12.018 -12.916 -13.826 -14.745 -15.671
9 -8.778 -8.866 -9.126 -9.535 -10.065 -10.687 -11.381 -12.127 -12.914 -13.733 -14.575 -15.436 -16.312
10 -10.279 -10.348 -10.553 -10.882 -11.319 -11.847 -12.449 -13.112 -13.824 -14.573 -15.356 16.163 -16.992
11 -11.617 -11.674 -11.846 -12.125 -12.501 -12.962 -13.497 -14.094 -14.742 -15.434 -16.163 -16.922 -17.706
12 -12.862 -12.912 -13.061 -13.305 -13.637 -14.048 -14.530 -15.073 -15.669 -16.310 -16.991 -17.705 -18.448
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Table 4.10: Imaginary Part of Eigenvalue Spectrum of c2 Per Fourier Mode for
k, l ∈ [0, 12], when λmn 6= λnm.

k
l

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 -1.500 -3.000 -4.500 -6.000 -7.500 -9.000 -10.500 -12.000 -13.500 -15.000 -16.500 -18.000
1 -2.500 -4.000 -5.500 -7.000 -8.500 -10.000 -11.500 -13.000 -14.500 -16.000 -17.500 -19.000 -20.500
2 -5.000 -6.500 -8.000 -9.500 -11.000 -12.500 -14.000 -15.500 -17.000 -18.500 -20.000 -21.500 -23.000
3 -7.500 -9.000 -10.500 -12.000 -13.500 -15.000 -16.500 -18.000 -19.500 -21.000 -22.500 -24.000 -25.500
4 -10.000 -11.500 -13.000 -14.500 -16.000 -17.500 -19.000 -20.500 -22.000 -23.500 -25.000 -26.500 -28.000
5 -12.500 -14.000 -15.500 -17.000 -18.500 -20.000 -21.500 -23.000 -24.500 -26.000 -27.500 -29.000 -30.500
6 -15.000 -16.500 -18.000 -19.500 -21.000 -22.500 -24.000 -25.500 -27.000 -28.500 -30.000 -31.500 -33.000
7 -17.500 -19.000 -20.500 -22.000 -23.500 -25.000 -26.500 -28.000 -29.500 -31.000 -32.500 -34.000 -35.500
8 -20.000 -21.500 -23.000 -24.500 -26.000 -27.500 -29.000 -30.500 -32.000 -33.500 -35.000 -36.500 -38.000
9 -22.500 -24.000 -25.500 -27.000 -28.500 -30.000 -31.500 -33.000 -34.500 -36.000 -37.500 -39.000 -40.500
10 -25.000 -26.500 -28.000 -29.500 -31.000 -32.500 -34.000 -35.500 -37.000 -38.500 -40.000 -41.500 -43.000
11 -27.500 -29.000 -30.500 -32.000 -33.500 -35.000 -36.500 -38.000 -39.500 -41.000 -42.500 -44.000 -45.500
12 -30.000 -31.500 -33.000 -34.500 -36.000 -37.500 -39.000 -40.500 -42.000 -43.500 -45.000 -46.500 -48.000

Table 4.11: Real Part of Eigenvalue Spectrum of c2 Per Fourier Mode for k, l ∈
[−12, 0], when λmn 6= λnm.

k
l

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

0 -10.628 -10.561 -10.357 -10.003 -9.471 -8.708 -7.593 -5.823 -7.001 -8.813 -10.299 -11.631 -12.873
-1 -10.561 -10.495 -10.287 -9.929 -9.390 -8.615 -7.473 -5.659 -7.123 -8.899 -10.367 -11.688 -12.923
-2 -10.356 -10.287 -10.074 -9.702 -9.142 -8.326 -7.095 -5.435 -7.483 -9.153 -10.570 -11.859 -13.071
-3 -10.000 -9.927 -9.701 -9.305 -8.701 -7.802 -6.369 -6.067 -8.031 -9.556 -10.896 -12.136 -13.314
-4 -9.466 -9.385 -9.137 -8.698 -8.012 -6.938 -5.223 -7.087 -8.708 -10.079 -11.330 -12.510 -13.645
-5 -8.697 -8.603 -8.314 -7.789 -6.923 -5.369 -6.493 -8.120 -9.470 -10.697 -11.855 -12.969 -14.054
-6 -7.558 -7.436 -7.049 -6.289 -4.790 -6.465 -7.900 -9.138 -10.287 -11.386 -12.455 -13.502 -14.535
-7 -5.479 -5.181 -4.278 -5.886 -7.040 -8.105 -9.133 -10.142 -11.140 -12.130 -13.116 -14.097 -15.076
-8 -6.899 -7.033 -7.420 -7.993 -8.687 -9.459 -10.281 -11.138 -12.018 -12.916 -13.826 -14.745 -15.671
-9 -8.778 -8.866 -9.126 -9.535 -10.065 -10.687 -11.381 -12.127 -12.914 -13.733 -14.575 -15.436 -16.312
-10 -10.279 -10.348 -10.553 -10.882 -11.319 -11.847 -12.449 -13.112 -13.824 -14.573 -15.356 16.163 -16.992
-11 -11.617 -11.674 -11.846 -12.125 -12.501 -12.962 -13.497 -14.094 -14.742 -15.434 -16.163 -16.922 -17.706
-12 -12.862 -12.912 -13.061 -13.305 -13.637 -14.048 -14.530 -15.073 -15.669 -16.310 -16.991 -17.705 -18.448

Table 4.12: Imaginary Part of Eigenvalue Spectrum of c2 Per Fourier Mode for
k, l ∈ [−12, 0], when λmn 6= λnm.

k
l

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

0 0 1.500 3.000 4.500 6.000 7.500 9.000 10.500 12.000 13.500 15.000 16.500 18.000
-1 2.500 4.000 5.500 7.000 8.500 10.000 11.500 13.000 14.500 16.000 17.500 19.000 20.500
-2 5.000 6.500 8.000 9.500 11.000 12.500 14.000 15.500 17.000 18.500 20.000 21.500 23.000
-3 7.500 9.000 10.500 12.000 13.500 15.000 16.500 18.000 19.500 21.000 22.500 24.000 25.500
-4 10.000 11.500 13.000 14.500 16.000 17.500 19.000 20.500 22.000 23.500 25.000 26.500 28.000
-5 12.500 14.000 15.500 17.000 18.500 20.000 21.500 23.000 24.500 26.000 27.500 29.000 30.500
-6 15.000 16.500 18.000 19.500 21.000 22.500 24.000 25.500 27.000 28.500 30.000 31.500 33.000
-7 17.500 19.000 20.500 22.000 23.500 25.000 26.500 28.000 29.500 31.000 32.500 34.000 35.500
-8 20.000 21.500 23.000 24.500 26.000 27.500 29.000 30.500 32.000 33.500 35.000 36.500 38.000
-9 22.500 24.000 25.500 27.000 28.500 30.000 31.500 33.000 34.500 36.000 37.500 39.000 40.500
-10 25.000 26.500 28.000 29.500 31.000 32.500 34.000 35.500 37.000 38.500 40.000 41.500 43.000
-11 27.500 29.000 30.500 32.000 33.500 35.000 36.500 38.000 39.500 41.000 42.500 44.000 45.500
-12 30.000 31.500 33.000 34.500 36.000 37.500 39.000 40.500 42.000 43.500 45.000 46.500 48.000
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Table 4.13: Real Part of Eigenvalue Spectrum of c1 Per Fourier Mode for k, l ∈
[0, 12], when λmn = λnm.

k
l

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 -0.036 -0.072 -0.109 -0.146 -0.183 -0.221 -0.260 -0.298 -0.338 -0.378 -0.418 -0.459
1 -0.072 -0.109 -0.146 -0.183 -0.221 -0.260 -0.298 -0.338 -0.378 -0.418 -0.459 -0.500 -0.542
2 -0.146 -0.183 -0.221 -0.260 -0.298 -0.338 -0.378 -0.418 -0.459 -0.500 -0.542 -0.585 -0.628
3 -0.221 -0.260 -0.298 -0.338 -0.378 -0.418 -0.459 -0.500 -0.542 -0.585 -0.628 -0.672 -0.716
4 -0.298 -0.338 -0.378 -0.418 -0.459 -0.500 -0.542 -0.585 -0.628 -0.672 -0.716 -0.761 -0.807
5 -0.378 -0.418 -0.459 -0.500 -0.542 -0.585 -0.628 -0.672 -0.716 -0.761 -0.807 -0.854 -0.902
6 -0.459 -0.500 -0.542 -0.585 -0.628 -0.672 -0.716 -0.761 -0.807 -0.854 -0.902 -0.951 -1.000
7 -0.542 -0.585 -0.628 -0.672 -0.716 -0.761 -0.807 -0.854 -0.902 -0.951 -1.000 -1.051 -1.102
8 -0.628 -0.672 -0.716 -0.761 -0.807 -0.854 -0.902 -0.951 -1.000 -1.051 -1.102 -1.155 -1.209
9 -0.716 -0.761 -0.807 -0.854 -0.902 -0.951 -1.000 -1.051 -1.102 -1.155 -1.209 -1.264 -1.321
10 -0.807 -0.854 -0.902 -0.951 -1.000 -1.051 -1.102 -1.155 -1.209 -1.264 -1.321 -1.379 -1.438
11 -0.902 -0.951 -1.000 -1.051 -1.102 -1.155 -1.209 -1.264 -1.321 -1.379 -1.438 -1.500 -1.564
12 -1.000 -1.051 -1.102 -1.155 -1.209 -1.264 -1.321 -1.379 -1.438 -1.500 -1.564 -1.629 -1.697

Table 4.14: Imaginary Part of Eigenvalue Spectrum of c1 Per Fourier Mode for
k, l ∈ [0, 12], when λmn = λnm.

k
l

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1.500 3.000 4.500 6.000 7.500 9.000 10.500 12.000 13.500 15.000 16.500 18.000
1 2.500 4.000 5.500 7.000 8.500 10.000 11.500 13.000 14.500 16.000 17.500 19.000 20.500
2 5.000 6.500 8.000 9.500 11.000 12.500 14.000 15.500 17.000 18.500 20.000 21.500 23.000
3 7.500 9.000 10.500 12.000 13.500 15.000 16.500 18.000 19.500 21.000 22.500 24.000 25.500
4 10.000 11.500 13.000 14.500 16.000 17.500 19.000 20.500 22.000 23.500 25.000 26.500 28.000
5 12.500 14.000 15.500 17.000 18.500 20.000 21.500 23.000 24.500 26.000 27.500 29.000 30.500
6 15.000 16.500 18.000 19.500 21.000 22.500 24.000 25.500 27.000 28.500 30.000 31.500 33.000
7 17.500 19.000 20.500 22.000 23.500 25.000 26.500 28.000 29.500 31.000 32.500 34.000 35.500
8 20.000 21.500 23.000 24.500 26.000 27.500 29.000 30.500 32.000 33.500 35.000 36.500 38.000
9 22.500 24.000 25.500 27.000 28.500 30.000 31.500 33.000 34.500 36.000 37.500 39.000 40.500
10 25.000 26.500 28.000 29.500 31.000 32.500 34.000 35.500 37.000 38.500 40.000 41.500 43.000
11 27.500 29.000 30.500 32.000 33.500 35.000 36.500 38.000 39.500 41.000 42.500 44.000 45.500
12 30.000 31.500 33.000 34.500 36.000 37.500 39.000 40.500 42.000 43.500 45.000 46.500 48.000
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Table 4.15: Real Part of Eigenvalue Spectrum of c1 Per Fourier Mode for k, l ∈
[−12, 0], when λmn = λnm.

k
l

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

0 0 0.036 0.071 0.106 0.140 0.174 0.208 0.242 0.275 0.308 0.341 0.373 0.405
-1 0.071 0.106 0.140 0.174 0.208 0.242 0.275 0.308 0.341 0.373 0.405 0.437 0.469
-2 0.140 0.174 0.208 0.242 0.275 0.308 0.341 0.373 0.405 0.437 0.469 0.500 0.531
-3 0.208 0.242 0.275 0.308 0.341 0.373 0.405 0.437 0.469 0.500 0.531 0.562 0.593
-4 0.275 0.308 0.341 0.373 0.405 0.437 0.469 0.500 0.531 0.562 0.593 0.623 0.653
-5 0.341 0.373 0.405 0.437 0.469 0.500 0.531 0.562 0.593 0.623 0.653 0.683 0.713
-6 0.405 0.437 0.469 0.500 0.531 0.562 0.593 0.623 0.653 0.683 0.713 0.743 0.772
-7 0.469 0.500 0.531 0.562 0.593 0.623 0.653 0.683 0.713 0.743 0.772 0.801 0.830
-8 0.531 0.562 0.593 0.623 0.653 0.683 0.713 0.743 0.772 0.801 0.830 0.859 0.888
-9 0.593 0.623 0.653 0.683 0.713 0.743 0.772 0.801 0.830 0.859 0.888 0.916 0.944
-10 0.653 0.683 0.713 0.743 0.772 0.801 0.830 0.859 0.888 0.916 0.944 0.972 1.000
-11 0.713 0.743 0.772 0.801 0.830 0.859 0.888 0.916 0.944 0.972 1.000 1.028 1.055
-12 0.772 0.801 0.830 0.859 0.888 0.916 0.944 0.972 1.000 1.028 1.0552 1.083 1.100

Table 4.16: Imaginary Part of Eigenvalue Spectrum of c1 Per Fourier Mode for
k, l ∈ [−12, 0], when λmn = λnm.

k
l

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

0 0 -1.500 -3.000 -4.500 -6.000 -7.500 -9.000 -10.500 -12.000 -13.500 -15.000 -16.500 -18.000
-1 -2.500 -4.000 -5.500 -7.000 -8.500 -10.000 -11.500 -13.000 -14.500 -16.000 -17.500 -19.000 -20.500
-2 -5.000 -6.500 -8.000 -9.500 -11.000 -12.500 -14.000 -15.500 -17.000 -18.500 -20.000 -21.500 -23.000
-3 -7.500 -9.000 -10.500 -12.000 -13.500 -15.000 -16.500 -18.000 -19.500 -21.000 -22.500 -24.000 -25.500
-4 -10.000 -11.500 -13.000 -14.500 -16.000 -17.500 -19.000 -20.500 -22.000 -23.500 -25.000 -26.500 -28.000
-5 -12.500 -14.000 -15.500 -17.000 -18.500 -20.000 -21.500 -23.000 -24.500 -26.000 -27.500 -29.000 -30.500
-6 -15.000 -16.500 -18.000 -19.500 -21.000 -22.500 -24.000 -25.500 -27.000 -28.500 -30.000 -31.500 -33.000
-7 -17.500 -19.000 -20.500 -22.000 -23.500 -25.000 -26.500 -28.000 -29.500 -31.000 -32.500 -34.000 -35.500
-8 -20.000 -21.500 -23.000 -24.500 -26.000 -27.500 -29.000 -30.500 -32.000 -33.500 -35.000 -36.500 -38.000
-9 -22.500 -24.000 -25.500 -27.000 -28.500 -30.000 -31.500 -33.000 -34.500 -36.000 -37.500 -39.000 -40.500
-10 -25.000 -26.500 -28.000 -29.500 -31.000 -32.500 -34.000 -35.500 -37.000 -38.500 -40.000 -41.500 -43.000
-11 -27.500 -29.000 -30.500 -32.000 -33.500 -35.000 -36.500 -38.000 -39.500 -41.000 -42.500 -44.000 -45.500
-12 -30.000 -31.500 -33.000 -34.500 -36.000 -37.500 -39.000 -40.500 -42.000 -43.500 -45.000 -46.500 -48.000

Table 4.17: Real Part of Eigenvalue Spectrum of c2 Per Fourier Mode for k, l ∈
[0, 12], when λmn = λnm.

k
l

0 1 2 3 4 5 6 7 8 9 10 11 12

0 -7.000 -6.964 -6.928 -6.891 -6.854 -6.817 -6.779 -6.740 -6.702 -6.662 -6.623 -6.582 -6.541
1 -6.928 -6.891 -6.854 -6.817 -6.779 -6.740 -6.702 -6.662 -6.623 -6.582 -6.541 -6.500 -6.458
2 -6.854 -6.817 -6.779 -6.740 -6.702 -6.662 -6.623 -6.582 -6.541 -6.500 -6.458 -6.416 -6.372
3 -6.779 -6.740 -6.702 -6.662 -6.623 -6.582 -6.541 -6.500 -6.458 -6.416 -6.372 -6.328 -6.284
4 -6.702 -6.662 -6.623 -6.582 -6.541 -6.500 -6.458 -6.416 -6.372 -6.328 -6.284 -6.239 -6.193
5 -6.623 -6.582 -6.541 -6.500 -6.458 -6.416 -6.372 -6.328 -6.284 -6.239 -6.193 -6.146 -6.098
6 -6.541 -6.500 -6.458 -6.416 -6.372 -6.328 -6.284 -6.239 -6.193 -6.146 -6.098 -6.050 -6.000
7 -6.458 -6.416 -6.372 -6.328 -6.284 -6.239 -6.193 -6.146 -6.098 -6.050 -6.000 -5.950 -5.898
8 -6.372 -6.328 -6.284 -6.239 -6.193 -6.146 -6.098 -6.050 -6.000 -5.950 -5.898 -5.845 -5.791
9 -6.284 -6.239 -6.193 -6.146 -6.098 -6.050 -6.000 -5.950 -5.898 -5.845 -5.791 -5.736 -5.679
10 -6.193 -6.146 -6.098 -6.050 -6.000 -5.950 -5.898 -5.845 -5.791 -5.736 -5.679 -5.621 -5.562
11 -6.098 -6.050 -6.000 -5.950 -5.898 -5.845 -5.791 -5.736 -5.679 -5.621 -5.562 -5.500 -5.437
12 -6.000 -5.950 -5.898 -5.845 -5.791 -5.736 -5.679 -5.621 -5.562 -5.500 -5.437 -5.371 -5.303
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Table 4.18: Imaginary Part of Eigenvalue Spectrum of c2 Per Fourier Mode for
k, l ∈ [0, 12], when λmn = λnm.

k
l

0 1 2 3 4 5 6 7 8 9 10 11 12

0 0 1.500 3.000 4.500 6.000 7.500 9.000 10.500 12.000 13.500 15.000 16.500 18.000
1 2.500 4.000 5.500 7.000 8.500 10.000 11.500 13.000 14.500 16.000 17.500 19.000 20.500
2 5.000 6.500 8.000 9.500 11.000 12.500 14.000 15.500 17.000 18.500 20.000 21.500 23.000
3 7.500 9.000 10.500 12.000 13.500 15.000 16.500 18.000 19.500 21.000 22.500 24.000 25.500
4 10.000 11.500 13.000 14.500 16.000 17.500 19.000 20.500 22.000 23.500 25.000 26.500 28.000
5 12.500 14.000 15.500 17.000 18.500 20.000 21.500 23.000 24.500 26.000 27.500 29.000 30.500
6 15.000 16.500 18.000 19.500 21.000 22.500 24.000 25.500 27.000 28.500 30.000 31.500 33.000
7 17.500 19.000 20.500 22.000 23.500 25.000 26.500 28.000 29.500 31.000 32.500 34.000 35.500
8 20.000 21.500 23.000 24.500 26.000 27.500 29.000 30.500 32.000 33.500 35.000 36.500 38.000
9 22.500 24.000 25.500 27.000 28.500 30.000 31.500 33.000 34.500 36.000 37.500 39.000 40.500
10 25.000 26.500 28.000 29.500 31.000 32.500 34.000 35.500 37.000 38.500 40.000 41.500 43.000
11 27.500 29.000 30.500 32.000 33.500 35.000 36.500 38.000 39.500 41.000 42.500 44.000 45.500
12 30.000 31.500 33.000 34.500 36.000 37.500 39.000 40.500 42.000 43.500 45.000 46.500 48.000

Table 4.19: Real Part of Eigenvalue Spectrum of c2 Per Fourier Mode for k, l ∈
[−12, 0], when λmn = λnm.

k
l

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

0 -7.000 -7.036 -7.071 -7.106 -7.140 -7.174 -7.208 -7.242 -7.275 -7.308 -7.341 -7.373 -7.405
-1 -7.071 -7.106 -7.140 -7.174 -7.208 -7.242 -7.275 -7.308 -7.341 -7.373 -7.405 -7.437 -7.469
-2 -7.140 -7.174 -7.208 -7.242 -7.275 -7.308 -7.341 -7.373 -7.405 -7.437 -7.469 -7.500 -7.531
-3 -7.208 -7.242 -7.275 -7.308 -7.341 -7.373 -7.405 -7.437 -7.469 -7.500 -7.531 -7.562 -7.593
-4 -7.275 -7.308 -7.341 -7.373 -7.405 -7.437 -7.469 -7.500 -7.531 -7.562 -7.593 -7.623 -7.653
-5 -7.341 -7.373 -7.405 -7.437 -7.469 -7.500 -7.531 -7.562 -7.593 -7.623 -7.653 -7.683 -7.713
-6 -7.405 -7.437 -7.469 -7.500 -7.531 -7.562 -7.593 -7.623 -7.653 -7.683 -7.713 -7.743 -7.772
-7 -7.469 -7.500 -7.531 -7.562 -7.593 -7.623 -7.653 -7.683 -7.713 -7.743 -7.772 -7.801 -7.830
-8 -7.531 -7.562 -7.593 -7.623 -7.653 -7.683 -7.713 -7.743 -7.772 -7.801 -7.830 -7.859 -7.888
-9 -7.593 -7.623 -7.653 -7.683 -7.713 -7.743 -7.772 -7.801 -7.830 -7.859 -7.888 -7.916 -7.944
-10 -7.653 -7.683 -7.713 -7.743 -7.772 -7.801 -7.830 -7.859 -7.888 -7.916 -7.944 -7.972 -8.000
-11 -7.713 -7.743 -7.772 -7.801 -7.830 -7.859 -7.888 -7.916 -7.944 -7.972 -8.000 -8.028 -8.055
-12 -7.772 -7.801 -7.830 -7.859 -7.888 -7.916 -7.944 -7.972 -8.000 -8.028 -8.0552 -8.083 -8.100

Table 4.20: Imaginary Part of Eigenvalue Spectrum of c2 Per Fourier Mode for
k, l ∈ [−12, 0], when λmn = λnm.

k
l

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

0 0 -1.500 -3.000 -4.500 -6.000 -7.500 -9.000 -10.500 -12.000 -13.500 -15.000 -16.500 -18.000
-1 -2.500 -4.000 -5.500 -7.000 -8.500 -10.000 -11.500 -13.000 -14.500 -16.000 -17.500 -19.000 -20.500
-2 -5.000 -6.500 -8.000 -9.500 -11.000 -12.500 -14.000 -15.500 -17.000 -18.500 -20.000 -21.500 -23.000
-3 -7.500 -9.000 -10.500 -12.000 -13.500 -15.000 -16.500 -18.000 -19.500 -21.000 -22.500 -24.000 -25.500
-4 -10.000 -11.500 -13.000 -14.500 -16.000 -17.500 -19.000 -20.500 -22.000 -23.500 -25.000 -26.500 -28.000
-5 -12.500 -14.000 -15.500 -17.000 -18.500 -20.000 -21.500 -23.000 -24.500 -26.000 -27.500 -29.000 -30.500
-6 -15.000 -16.500 -18.000 -19.500 -21.000 -22.500 -24.000 -25.500 -27.000 -28.500 -30.000 -31.500 -33.000
-7 -17.500 -19.000 -20.500 -22.000 -23.500 -25.000 -26.500 -28.000 -29.500 -31.000 -32.500 -34.000 -35.500
-8 -20.000 -21.500 -23.000 -24.500 -26.000 -27.500 -29.000 -30.500 -32.000 -33.500 -35.000 -36.500 -38.000
-9 -22.500 -24.000 -25.500 -27.000 -28.500 -30.000 -31.500 -33.000 -34.500 -36.000 -37.500 -39.000 -40.500
-10 -25.000 -26.500 -28.000 -29.500 -31.000 -32.500 -34.000 -35.500 -37.000 -38.500 -40.000 -41.500 -43.000
-11 -27.500 -29.000 -30.500 -32.000 -33.500 -35.000 -36.500 -38.000 -39.500 -41.000 -42.500 -44.000 -45.500
-12 -30.000 -31.500 -33.000 -34.500 -36.000 -37.500 -39.000 -40.500 -42.000 -43.500 -45.000 -46.500 -48.000
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4.3 Example

Next, we solve a variation of an analogous problem as in the work of Parthasarathy,

[37] for the case of the 1-D stochastic fluid queue (2.4) with the initial conditions (2.5)

given as

Wm(x, 0) = f(x) = 1 and W n(x, 0) = g(x) = 0. (4.1)

Equation (4.1) implies that the initial behavior rests solely on the malicious activity

occurring at Sm. In this case, F (k) and G(k) become

F (k) =


1, if k = 0

0, otherwise,

and G(k) = 0 (4.2)

Therefore, the explicit solutions become

Wm(x, t) =
λmn

λmn + λnm
+
λnme

−(λmn+λnm)t

λmn + λnm
(4.3)

and

W n(x, t) =
λnm

λmn + λnm
+
λnme

−(λmn+λnm)t

λmn + λnm
(4.4)
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Figure 4.2: Variation of Wm(x, t) for λmn = 2 and λnm = 1.

Figure 6 is a surface representation of the variation of the impact of cyber behavior

within threat level Sm, where λmn = 2 and λnm = 1. This behavior gradually

decreases which converge to 2
3

as t → ∞. From (4.4), we can determine that W n

presents opposite behavior where the probabilistic impact steadily climbs to a limit of

1
3

as time increases. This behavior shows that as the cyber activity migrates between

the two threat levels, the impact within each state is steadily affected. Furthermore,

if the system failure rates are unaffected, then the stationary probabilities would be

equally likely.
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Chapter 5

Conclusion and Future Work

This thesis analyzes the impact of virulent activity within supercomputing envi-

ronments for the specific case of constant dynamic switching behavior. We model

these dynamics as a stochastic fluid queue fed by an ON-OFF source, where two

main scenarios are considered. First, we studied the case of malicious activity affect-

ing both the system failure rates and the threat levels, where we determined that

unstable solutions depend on the combination of attack rates, system failure rates,

and Fourier modes. Also we explored the case of cyber actions not affecting the

system failure rates, where we find stable solutions throughout. In both scenarios,

the stationary analysis for the 1-D case shows convergence to the attractive line of

equilibrium governed by the system failure rates.

Similar to the 1-D case, we also determined that for 2-D case, unstable solutions

depend on the combination of attack rates, infected application rates, system failure
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rates, and Fourier modes in the x and y directions. Furthermore, we explored the

case of cyber actions not affecting the system failure rates and infected application

rates where we found stable parabolic and hyperbolic solutions throughout, which

depend on the fluid rates in the x and y directions.

The numerical results in Chapter 4 verify our analyses in Chapter 2 and Chapter

3. The example also shows the ease of use of our method. Therefore, the analysis

presented is more robust and comprehensive than the prior works of Faissol and

Gallagher [29] and Clark [31].

The results of our work have several applications that can benefit the supercom-

puting community. We can apply the analysis directly to investigate the behavioral

impacts of Distributed Denial of Service (DDoS), which is in the realm of intentional

failures [42]. Furthermore, we can extend this methodology presented to analyzing

the behavior of SFQs with multiple on-off sources. Our work can also be useful for

other applications of stochastic fluid queues. The powerful element to our approach

is the spectral characterization, which explicitly transforms the system of coupled

partial differential equations to an eigenvalue system. From this, we can compute the

instability conditions and series coefficients directly.

Future explorations of our work include generalizing this approach for under-

standing these effects using multiple ON-OFF sources. Although we can extend the

proposed approach for this purpose, it could get computationally expensive. We also

need investigations to account for situations where certain supercomputing compo-
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nents are temporarily out of commission. Researching these avenues helps with the

ability to attain a more comprehensive understanding of cyber phenomena within

supercomputing infrastructures.
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Appendix A

Codes of Phase Plane in Figure 2.3

[x1, x2] = meshgrid(-4:1:4, -4:1:4);

x1dot = 1/2.*x2-x1; %Note the use of .* and .^

x2dot = 2.*x1-x2; %a=2, b=1, lambda{mn}=1, lambda{nm}=2

quiver(x1,x2,x1dot, x2dot)

xlabel(’Wm’)

ylabel(’Wn’)

title(’phase plane’)

xlim([-4,4])

ylim([-4,4])

grid

hold on

t=-4:1:4;

plot(t,2*t,’r’)

% plot(-t,2*t,’r’)
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Appendix B

Codes of Variation of Wm(x, t) in

Figure 4.2

lambda_mn=2;

lambda_nm=1;

% Defining factors for the solution

evalFactor = lambda_mn + lambda_nm;

Factor_1m = lambda_mn/evalFactor;

Factor_1n = lambda_nm/evalFactor;

f1=Factor_1m+(Factor_1n).*exp(-evalFactor.*t);

f2=Factor_1n-(Factor_1n).*exp(-evalFactor.*t);

% t=0:0.1:10;

% plot(t,f1)

%

% xlabel(’time t’)

% ylabel(’W^m’)

% text(t,f1,’\lambda_{mn}=2, \lambda_{nm}=1’)

[X,t] = meshgrid(1:.1:10,1:.01:10);

mesh(X,t,f1)
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colormap winter
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Appendix C

Compute Eigenvalues 1-D case

% ComputeEigenvalues: written by Antwan D. Clark and Ning Liu.

% This program computes the eigenvalues for 2-D the two-state stochastic fluid

% queue (SFQ) for both Markovian (lambda_mn != lambda_nm) and Poisson

% (lambda_mn = lambda_nm) cases. The eigenvalues are computed for each

% Fourier mode, which is part of the exact solutions for W^m and W^n.

%

% For the Markovian Case, this program takes into account the stability of

% the solutions via estimating the range of Fourier modes where each mode

% of the solutions W^m and W^n are stable. From this, the same program can

% be used for a spectrum of stable eigenvalues. These eigenvalues can be

% incorporated to produce approximate solutions for W^m and W^n.

%

% Input Parameters:

% 1.) lambda_mn -- System failure rate going from State m to State n.

% 2.) lambda_nm -- System failure rate going from State n to State m.

% 3.) a_m -- cyber attack rate in State m

% 4.) a_n -- cyber attafck rate in State n.

% 5.) K -- the magnitude of the maximum Fourier mode number. The span of

% Fourier modes ranges from -K to K.

%

% Output Parameters:

% Step 1: Defining input parameters. (Right now, just test for Poisson
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% Case)

lambda_mn = 3.75;

lambda_nm = 3.5;

K = 12;

a_m = 2;

a_n = 3;

%Step 2: Allocating the eigenvalue spectrum

kk = -K:K;

%Prestep: initializing vectors

c1 = zeros(1,length(kk));

c2 = zeros(1,length(kk));

phi = zeros(1, length(kk)); % This is for the Poisson case.

% Initializing for the Markovian case as well as preparing for Theorem 1.

RSquared = zeros(1, length(kk));

phi_k = zeros(1, length(kk));

varpi_k = zeros(1, length(kk));

%Allocating for recording unstable eigenvalues and modes

c1_unstable = zeros(1,length(kk));

kk_unstable = zeros(1,length(kk));

count = 1; %initializing counter for recording unstable modes.

% This is to keep track of the associate location within the vector

% corresponding to the unstable modes.

unstableIndex = zeros(1,length(kk));

% Step 2: Compute eigenvalues for each mode. If lambda_mn = lambda_nm, then

% all of the eigenvalues are stable since the real part is always

% non-positive (i.e. <= 0). Otherwise, we would need to check the

% conditions based on Theorem 1.

if lambda_mn ==lambda_nm %Poisson case.

lambda = lambda_mn;

for j = 1:length(kk)

phi(j) = sqrt(lambda^2 - kk(j)^2*((a_n - a_m)/2)^2);

c1(j) = -lambda + 1i*kk(j)*((a_m + a_n)/2) + phi(j);

c2(j) = -lambda + 1i*kk(j)*((a_m + a_n)/2) - phi(j);

end % end for loop

else %lambda_mn != lambda_nm (Markov case).
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for j =1:length(kk)

% Step 2a: Computing R^2, phi_k, and varpi_k

RSquared(j) = ((lambda_mn + lambda_nm)^2 -(kk(j))^2*(a_n - a_m)^2)^2

+ 4*(kk(j))^2*(a_n - a_m)^2*(lambda_mn - lambda_nm)^2;

R(j) = sqrt(RSquared(j));

phi_k(j) = sqrt((R(j) + ((lambda_mn + lambda_nm)^2

-(kk(j))^2*(a_n - a_m)^2))/2);

varpi_k(j) = sqrt((R(j) - ((lambda_mn + lambda_nm)^2

-(kk(j))^2*(a_n - a_m)^2))/2);

%Step 2b: Compute eigenvalue spectrum

c1(j) = -((lambda_mn + lambda_nm) + 1i*kk(j)*(a_m + a_n))/2

+ (phi_k(j) + varpi_k(j))/2;

c2(j) = -((lambda_mn + lambda_nm) + 1i*kk(j)*(a_m + a_n))/2

- (phi_k(j) + varpi_k(j))/2;

%Step 3: Apply Theorem 1. The goal is to perform a check to determine

%whether the eigenvalue falls within the instability region defined in

%Theorem 1. If it does, then the eigenvalue, Fourier mode, and location

%within each vector is recorded.

dist = (real(c1(j) + ((lambda_mn + lambda_nm)/2)^2

+ (imag(c1(j)) +kk(j)*(a_m + a_n)/2)^2));

if (real(c1(j)) > 0 && dist <= RSquared(j)/4)

c1_unstable(count) = c1(j); % Recording unstable eigenvalue

kk_unstable(count) = kk(j); % Recording corresponding unstable mode.

unstableIndex(count) = j; % Recording corresponding index.

count =count+ 1;

end

end

end

% Next, gathering the growth rate data to plot corresponding to each

% Fourier mode.
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Compute Eigenvalues 2-D case

% ComputeEigenvalues: written by Antwan D. Clark and Ning Liu.

% This program computes the eigenvalues for 3-D the two-state stochastic fluid

% queue (SFQ) for both Markovian (lambda_mn != lambda_nm) and Poisson

% (lambda_mn = lambda_nm) cases. The eigenvalues are computed for each

% Fourier mode, which is part of the exact solutions for W^m and W^n.

%

% For the Markovian Case, this program takes into account the stability of

% the solutions via estimating the range of Fourier modes where each mode

% of the solutions W^m and W^n are stable. From this, the same program can

% be used for a spectrum of stable eigenvalues. These eigenvalues can be

% incorporated to produce approximate solutions for W^m and W^n.

%

% Input Parameters:

% 1.) lambda_mn -- System failure rate going from State m to State n.

% 2.) lambda_nm -- System failure rate going from State m to State n.

% 3.) a_m -- cyber attack rate in State m.

% 4.) a_n -- cyber attafck rate in State n.

% 5.) r_m -- cyber infected rate in State m.

% 6.) r_n -- cyber infected rate in state n.

% 5.) K -- the magnitude of the maximum Fourier mode number. The span of

% Fourier modes ranges from -K to K.

% 6.) L -- the magnitude of the maximum Fourier mode number. The span of

% Fourier modes ranges from -L to L.

%

% Output Parameters:
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% Step 1: Defining input parameters. (Right now, just test for Poisson

% Case)

lambda_mn = 3.5;

lambda_nm = 3.5;

K = 12;

L = 12;

a_m = 2;

a_n = 3;

r_m = 2;

r_n = 1;

%Step 2: Allocating the eigenvalue spectrum

kk = -K:K;

ll = -L:L;

%Prestep: initializing vectors

c1 = zeros(length(kk),length(ll));

c2 = zeros(length(kk),length(ll));

phi =zeros(length(kk),length(ll)); % This is for the Poisson case.

% Initializing for the Markovian case as well as preparing for Theorem 1.

RSquared = zeros(length(kk),length(ll));

phi_kl = zeros(length(kk),length(ll));

varpi_kl = zeros(length(kk),length(ll));

%Allocating for recording unstable eigenvalues and modes

c1_unstable = zeros(length(kk),length(ll));

kk_unstable = zeros(1,length(kk));

ll_unstable = zeros(1,length(kk));

countx = 1; %initializing counter for recording unstable modes.

county = 1;

% This is to keep track of the associate location within the vector

% corresponding to the unstable modes.

unstableIndex = zeros(length(kk),length(ll));

% Step 2: Compute eigenvalues for each mode. If lambda_mn = lambda_nm, then

% all of the eigenvalues are stable since the real part is always

% non-positive (i.e. <= 0). Otherwise, we would need to check the

% conditions based on Theorem 1.
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if lambda_mn ==lambda_nm %Poisson case.

lambda = lambda_mn;

for j = 1:length(kk)

for s=1:length(ll)

phi(j,s) = sqrt(lambda^2 - (kk(j)*((a_n - a_m)/2)+ll(s)*((r_n-r_m)/2)^2));

c1(j,s) = -lambda + 1i*(kk(j)*((a_m + a_n)/2)+ll(s)*((r_m+r_n)/2)) + phi(j,s);

c2(j,s) = -lambda + 1i*(kk(j)*((a_m + a_n)/2)+ll(s)*((r_m+r_n)/2)) - phi(j,s);

end % end for l loop

end % end for k loop

else %lambda_mn != lambda_nm (Markov case).

for j =1:length(kk)

for s =1:length(ll)

% Step 2a: Computing R^2, phi_k, and varpi_k

RSquared(j,s) = ((lambda_mn + lambda_nm)^2 -(kk(j))^2*(a_n - a_m)^2

-(ll(s)^2*(r_n-r_m)^2))^2 + 4*((kk(j))*(a_n - a_m)*(lambda_mn - lambda_nm)^2

+(ll(s)*(r_n-r_m))*(lambda_mn - lambda_nm))^2;

R(j,s) = sqrt(RSquared(j,s));

phi_kl(j,s) = sqrt((R(j,s) + ((lambda_mn + lambda_nm)^2

-(kk(j))^2*(a_n - a_m)^2-(ll(s))^2*(r_n-r_m)^2)/2));

varpi_kl(j,s) = sqrt((R(j,s) - ((lambda_mn + lambda_nm)^2

-(kk(j))^2*(a_n - a_m)^2-(ll(s))^2*(r_n-r_m)^2)/2));

%Step 2b: Compute eigenvalue spectrum

c1(j,s) = -((lambda_mn + lambda_nm) + 1i*kk(j)*(a_m + a_n)

+1i*ll(s)*(r_m+r_n))/2 + (phi_kl(j,s) + varpi_kl(j,s))/2;

c2(j,s) = -((lambda_mn + lambda_nm) + 1i*kk(j)*(a_m + a_n)

+1i*ll(s)*(r_m+r_n))/2 - (phi_kl(j,s) + varpi_kl(j,s))/2;

%Step 3: Apply Theorem 1. The goal is to perform a check to determine

%whether the eigenvalue falls within the instability region defined in

%Theorem 1. If it does, then the eigenvalue, Fourier mode, and location

%within each vector is recorded.

dist = (real(c1(j,s) + ((lambda_mn + lambda_nm)/2)^2 + (imag(c1(j,s))

+kk(j)*(a_m + a_n)/2 +ll(s)*(r_m+r_n)/2)^2));

if (real(c1(j,s)) > 0 && dist <= RSquared(j,s)/4)

c1_unstable(countx,county) = c1(j,s); % Recording unstable eigenvalue

kk_unstable(countx) = kk(j); % Recording corresponding unstable mode.

ll_unstable(county) = ll(s);

end

end

end
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end

% Next, gathering the growth rate data to plot corresponding to each

% Fourier mode.
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