
Generalized Linear Splitting Rules in
Decision Forests

by

Tyler M. Tomita

A dissertation submitted to The Johns Hopkins University

in conformity with the requirements for the degree of

Doctor of Philosophy

Baltimore, Maryland

January, 2018

© 2018 by Tyler M. Tomita

All rights reserved

Abstract

Random forests (RFs) is one of the most widely employed machine learning

algorithms for general classification tasks due to its speed, ease-of-use,

and excellent empirical performance. Recent large-scale comparisons of

classification algorithms have concluded that RFs outperform many other

classifiers on a variety of datasets. However, the trees in a RF are con-

structed via a series of recursive axis-aligned splits, rendering the learning

procedure sensitive to the orientation of the data. Several studies have pro-

posed “oblique” decision forest methods to address this limitation, which

search for good splits that aren’t constrained to be axis-aligned. In this

work, we explore how properties of the split selection procedure relate to

empirical and theoretical performance. We then establish a generalized

decision forest framework called Randomer Forests (RerFs), which encom-

passes RFs and many previously proposed decision forest algorithms as

particular instantiations. With this framework in mind, we propose a

default instantiation and provide theoretical and experimental evidence

motivating its use. Additionally, we demonstrate how our framework can

exploit prior domain knowledge to boost performance. Last, we use RerF to

identify important biomarkers for ovarian cancer classification and learn

ii

a classifier with high sensitivity and specificity.

iii

Thesis Committee

Primary Readers

Joshua T. Vogelstein (Primary Advisor)
Assistant Professor
Department of Biomedical Engineering
Johns Hopkins University

Randal Burns
Professor
Department of Computer Science
Johns Hopkins University

Carey E. Priebe
Professor
Department of Applied Math and Statistics
Johns Hopkins University

iv

Acknowledgments

First and foremost, I’d like to thank my advisor Dr. Joshua T. Vogelstein.

Without Joshua, none of this would have been possible. He has always

supported me and made sure that my research was in line with my zone of

genius. I have learned a great deal from him about what it means to be a

great researcher and mentor.

I would also like to thank my thesis committee members. Dr. Randal

Burns for helping to keep the wheels turning and for invaluable discussions

about algorithm complexity, speed, and scalability. Dr. Carey E. Priebe for

inspiring discussions about statistical theory and pattern recognition. The

first lecture I sat in from him may have been the first time I got genuinely

excited over statistics.

Furthermore, I would like to thank my peers at Johns Hopkins whom I

have worked closely with for their diverse expertise, thought-provoking

discussions, and generous feedback on presentations, papers, etc. I would

especially like to thank James Browne, who has been integral to the

development of RerFs. With all of the great work he has done on the RerF

CRAN package, I am confident that RerFs will soon be adopted by many

data scientists and researchers world-wide.

v

Finally, I could never have gotten this far without my friends and family.

I thank my parents and sister for all of their love and support. Thanks

to Steven Chow for all the fun times in Baltimore and beyond that have

kept me sane during the long and winding journey towards my doctorate.

Thanks to my dear friends Chris Botros, David Kam, Walter Su, Ashwini

Bhat, and Lisa Beppu for their unconditional love, camaraderie, and the

unforgettable experiences we have shared over the years.

vi

Table of Contents

Table of Contents vii

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Classification . 1

1.2 Classification Trees . 1

1.3 Ensemble Learning . 3

1.4 Random Forests . 6

1.5 Overview . 8

2 Robust Decision Forests 9

2.1 Introduction . 9

2.2 Methodology . 10

2.2.1 Simulated Datasets . 10

2.2.2 Benchmark Datasets 11

vii

2.2.3 Transformations . 11

2.2.4 Classification Algorithms 11

2.2.5 Feature Scaling . 13

2.2.6 Training, Parameter Selection, and Testing 15

2.2.7 Classifier Background 15

2.3 Results . 17

2.3.1 Comparison of Classification Methods on Synthetic

Data . 17

2.3.2 Effects of Transformations 24

2.3.3 Benchmark Data . 27

2.4 Discussion . 28

2.5 Conclusion . 32

3 Randomer Forests 34

3.1 Introduction . 34

3.2 Methods . 35

3.2.1 Randomer Forests (RerF) Algorithm 35

3.2.2 Synthetic Datasets . 39

3.2.3 Benchmark Datasets 41

3.3 Results . 43

3.3.1 Illustrative Synthetic Data Experiments 43

3.3.2 RerF Performance on Benchmark Datasets 46

3.3.3 Strength and Correlation of Trees 50

viii

3.3.4 Understanding the Bias and Variance of RerF 54

3.3.5 Consistency of Randomer Forests 56

3.3.6 RerF Provides Feature Importance 58

3.3.7 Time and Space Complexity of RerF 59

3.3.7.1 Theory . 59

3.3.7.2 Empirical Speed 61

3.3.7.3 RerF Implementation Scalability 63

3.3.8 Structured RerF . 64

3.4 Conclusion . 66

4 Identifying Predictive Markers for Ovarian Cancer Classifi-

cation 70

4.1 Introduction . 70

4.2 Methods . 71

4.2.1 Quantifying Peptide Abundance in Plasma Using

SAFE-SRM . 71

4.2.2 Identification of Salient Peptides 72

4.3 Results . 73

4.4 Conclusion . 75

A Random Vectors in High Dimensions 78

B Statistical Theory 81

B.1 Proof of Theorem 3 . 81

ix

B.2 Bayes Error of Trunk’s Problem Along a Univariate Projection 82

C Pseudocode 84

x

List of Tables

2.1 Summary of performance relative to RF on each of the bench-

mark settings. 28

3.1 Summary of the random matrix distributions adopted by

various forest algorithms. 36

3.2 Five-fold cross-validation error rates for each of the UCI

datasets. 50

xi

List of Figures

2.1 Distribution of the sparse parity data when projected onto

the best split direction. 18

2.2 Posteriors and classifier estimates of posteriors for the sparse

parity problem. 20

2.3 Algorithm performance on synthetic data. 23

2.4 The effects of different transformations applied to the syn-

thetic datasets . 25

2.5 Comparison of feature scaling methods on the simulated

datasets. 26

2.6 Relative classification performance of algorithms on the var-

ious benchmark settings. 29

2.7 Comparison of scaling methods on the corrupted benchmark

datasets. 30

3.1 Comparison of the best projections found by RerF, RR-RF,

and RF on the 20-dimensional parallel hyperplanes synthetic

dataset. 39

xii

3.2 Classification performance on the sparse parity and orthant

synthetic classification problems for various numbers of

training samples. 45

3.3 Sensitivity of classification performance to the sparsity hy-

perparameter. 46

3.4 Pairwise relative errors of RF, RerF, and F-RC on the UCI

datasets. 51

3.5 Comparison of tree strength and correlation on the synthetic

datasets. 53

3.6 Bias, variance, variance effect, and error rate on the sparse

parity problem. 56

3.7 Most important projections found by RF and RerF on the

Trunk problem. 60

3.8 Comparison of training times on the sparse parity dataset. . 62

3.9 Classification performance of RerF and F-RC on the syn-

thetic datasets under a restricted computational budget. . . 62

3.10 Comparison of the computational performance of Ranger,

rerF, and XGBoost on big datasets. 65

3.11 Example of how RerF can exploit spatial structure for image

classification. 66

4.1 Evaluation of the predictiveness of the 318 peptide biomarkers 74

4.2 Top 10 projections found by RF and RerF on the ovarian

cancer classification data. 76

xiii

4.3 Misclassification rates of LR, RF, and RerF on the ovarian

cancer dataset. 77

A.1 The probability that RerF and RR-RF sample a projection

within an angle θ of some hypothetical optimal node projec-

tion v∗ in p dimensions when the density (number of nonze-

ros) λ∗ of v∗ is minimal (λ∗ = 1/p) and when it is maximal

(λ∗ = 1) for varying values of θ and p. When the optimal

projection is sparse (A - D), RerF has a reasonable proba-

bility of sampling projections close to it for all values of p.

The probability of RR-RF sampling a close projection quickly

degrades with increasing p. When the optimal projection is

dense (E - H), both RerF and RR-RF have a low probability

of sampling a close projection for p ≥ 16. Therefore, when

the number of dimensions is large, it may be safer to assume

v∗ is sparse and use a sampling distribution such as that

adopted by RerF rather than the one adopted by RR-RF. . . 80

xiv

Chapter 1

Introduction

1.1 Classification

The classification problem is briefly described as follows. Let (X, Y) ∼ fXY,

where X ∈ Rp is a random real-valued input vector (often called a feature

vector), Y ∈ Y = {c1, ..., cK} is an associated categorical response or class

label, and fXY is their joint probability distribution, which is generally

unknown. In this work, we will use the lower case counterparts (x, y) to

denote a particular realization of the random variable pair (X, Y). Given

a training set Dn = {(Xi, Yi)}n
1 ∈ Dn ⊆ Rp × Y , the goal is to learn a

classifier h(·|Dn) : Rp → Y that correctly predicts the unobserved class

label Y associated with an observed X. Specifically, we would like to

minimize P(h(X|Dn) ̸= Y), the probability of misclassification.

1.2 Classification Trees

A classification tree (more generally a decision tree) is a data structure

representing a series of recursive binary partitions of the training data

1

into disjoint subspaces. The nodes in a tree are split into two child nodes

by maximizing some notion of information gain, which typically reflects

the reduction in class impurity of the resulting partitions. A common

measure of information gain in decision trees is the decrease in Gini

impurity. For a set of observations S , the Gini impurity is defined as:

I(S) = ∑K
k=1 |S| fk(1 − fk), where fk = 1

|S| ∑i∈S I[yi = k]. Let θ = (j, τ),

where j is an index selecting a dimension and τ is a splitting threshold.

Furthermore, let SL(θ) = {i : x(j)
i ≤ τ, ∀i ∈ S} and SR(θ) = {i : x(j)

i >

τ, ∀i ∈ S} be the subsets of S to the left and right of the splitting threshold,

respectively. A split is made on a "best" θ∗ = (j∗, τ∗) via the following

optimization:

θ∗ = argmax
θ

I(S)− I(SL(θ))− I(SR(θ)). (1.1)

In the canonical classification tree algorithm, optimization is made via

exhaustive search over θ. Nodes are recursively split until a stopping

criteria is reached. Most commonly, the recursion stops when either a

maximum tree depth is reached, a minimum number of observations in a

node is reached, or a node is completely pure with respect to class label.

The result of the tree induction algorithm is a set of split nodes and leaf

nodes. The leaf nodes are disjoint partitions of the input space Rp, and

each one is associated with a local prediction function. Let lm be the mth

leaf node of a tree, and let S(lm) = {i : xi ∈ lm∀i ∈ [n]} be the subset of the

2

training data contained in lm. The local leaf prediction is:

h(lm) = argmax
ck∈Y

∑
i∈S(lm)

I[yi = ck] (1.2)

A tree predicts the class label for a new observation x by moving the

observation down the tree according to the split functions associated with

each split node until a terminal leaf node is reached. Let m(x) be the index

of the leaf node that x falls into. Then the tree prediction is h(lm(x)).

1.3 Ensemble Learning

In the 1990s, research in ensemble learning, sometimes called multiple

classifier systems, began gaining traction. In ensemble learning, pre-

dictions are made by aggregating the predictions of multiple different

classifiers. Different classifiers can be learned either by using inherently

different learning algorithms or by randomly perturbing a single base

algorithm. Dietterich lists three reasons motivating the use of ensemble

methods [1].

One reason is statistical. Each classifier can be thought of as a hy-

pothesis about the nature of the relationship between the input X and its

class label Y. In general, learning algorithms seek a hypothesis that fits

the training data well, assuming that such a hypothesis will generalize to

unseen examples. Unfortunately, when the number of training samples is

sufficiently small, many hypotheses may fit the training data equally well,

while not all of these will generalize well to new samples. For example,

there are many polynomials of degree two that can fit two points. By

3

averaging over many hypotheses, ensembles mitigate the risk of learning

a hypothesis with poor generalization. A more formal presentation of the

statistical motivation for ensemble decision making is Condorcet’s Jury

Theorem [2], which is restated below.

Theorem 1. Suppose each of n members of a jury votes on whether a

defendant on trial is guilty or not guilty. Let Y ∈ {0, 1} be the true state of

the defendant, where 0 indicates not guilty and 1 indicates guilty. Suppose

each juror has a probability p of voting in agreement with Y, and assume

the votes are independent from one another. Let hi denote the vote made

by the ith juror and h̄n = argmax
y∈{0,1}

n
∑

i=1
I[hi = y] denote the majority vote. If

p > 0.5, then

lim
n→∞

P(h̄n = Y) = 1.

Similarly, if p < 0.5, then

lim
n→∞

P(h̄n = Y) = 0.

The proof of this theorem is a straightforward computation of the limit-

ing probability of achieving n/2 + 1 successes (the definition of majority

vote) in n independent Bernoulli trials each having probability p > 0.5 of

success. In terms of classification, Condorcet’s jury theorem says that if

multiple independent classifiers all have a probability greater than chance

(i.e. random guessing) of classifying correctly, then the probability of the

majority vote classifier being correct approaches one as the number of

4

classifiers approaches infinity. The convergence of the probability of suc-

cess of the ensemble is dependent on two key conditions: independence of

the individual classifiers and the probability of success of each classifier

being better than chance (random guessing). Therefore, ensemble learning

methods attempt to learn multiple classifiers that are individually strong,

yet diverse.

A second motivation for ensemble methods is representational. There

are two sources of error in classification. One source arises from choosing

the wrong hypothesis, even when the true hypothesis is contained within

the hypothesis class. This is related to the statistical reason mentioned

above. The second source of error is approximation error, which occurs

when the hypothesis class does not contain the true hypothesis [3]. In other

words, the learning procedure cannot learn a classifier representative of

the true hypothesis. Averaging over hypotheses may expand the hypothesis

space and reduce the approximation error.

A third reason motivating the use of ensemble methods is computa-

tional. Methods such as decision trees and those that use gradient descent

iteratively perform greedy local optimizations. Therefore, there is no

guarantee that a globally optimal solution will be found if it exists. By

running an algorithm multiple times from different starting points, the

learning procedure may have a better chance of finding a solution close to

the globally optimal one.

Once a set of classifiers has been constructed, a class label prediction

for a new x is typicall made via majority vote of the individual classifier

5

predictions. Let ŷ(t) be the prediction made by the tth classifier. Then the

prediction of the ensemble is :

ŷ = argmax
ck∈Y

T

∑
t=1

I[ŷ(t) = ck] (1.3)

1.4 Random Forests

Much of the focus in development of ensemble methods has been centered

around the use of decision trees as base learners. In this work both "tree

ensembles" and "decision forests" will be used interchangeably. The popu-

larity of trees in ensemble learning can be attributed to (1) the observation

that decision trees are relatively sensitive to the training data and (2) the

amenability of tree construction to randomization. Therefore, it is easy to

generate a diverse set of classifiers using trees. Breiman took advantage

of the first reason, demonstrating that aggregation of trees constructed

from bootstrap samples of the training data, dubbed "bagging", was more

robust than a single tree classifier [4]. Next, Ho [5] and Amit and Geman

[6] independently demonstrated the effectiveness of ensembles of trees

constructed on random feature subspaces. Subsequently, in 2001 Brieman

introduced Random Forests (RFs), which combined both bagging and the

random subspace method. In his version of the random subspace method,

optimization of the splitting dimension j at each node is restricted to a

random subset of the total p dimensions, rather than over all dimensions.

He showed that aggregation of trees constructed with both bagging and

random subspaces more often than not leads to generalization performance

6

much better than that of a single deterministic classification tree [7]. He

also proved one of the few theoretical results in ensemble learning, which

gives an upper bound on the generalization error of a classifier that de-

pends on the strength and correlation of the individual classifiers. This

theorem is restated for completeness.

Theorem 2. An upper bound for the generalization error L of an ensemble

classifier is given by

L ≤ ρ̄(1 − s2)/s2 (1.4)

Here ρ̄ is a measure of the correlation of the base classifiers and s is

a measure of their average strength (classification performance). While

this bound is loose, it suggests that the strength and diversity of the base

classifiers are key factors influencing the success of the ensemble.

Due to this result, numerous methods have been proposed for learning

trees that are stronger and/or more diverse than those capable of being

learned by Breiman’s RF algorithm. One prominent feature of RFs that

limits both of these is its restriction of splitting hyperplanes to be orthogo-

nal to the coordinate axes of the feature space. Therefore, one of the largest

efforts for improving upon RFs has been in relaxing this restriction. The

resulting forests are sometimes referred to as “oblique” decision forests,

since the splits can be oblique to the coordinate axes. Mathematically,

directions along which splits are made are linear combinations of the

original p inputs.

Various algorithms have been proposed for constructing oblique forests.

7

Breiman proposed the Forest-RC algorithm, which constructs d univariate

projections, each projection a linear combination of L randomly chosen

dimensions [7]. The weights of each projection are independently sam-

pled uniformly over the interval [−1, 1]. Heath et al. samples a randomly

oriented hyperplane at each split node, then iteratively perturbs the orien-

tation of the hyperplane until a good split is obtained [8]. Rodriguez et al.

attempts to find discriminative split directions via PCA [9]. Menze et al.

performs supervised learning of linear discriminative models at each node

[10]. Blaser et al. uniformly randomly rotates the data prior to inducing

each tree. Trees are then learned via the typical axis-aligned procedure

on the rotated data [11]. Rainforth and Wood learn discriminative split

directions via canonical correlation analysis [12].

1.5 Overview

In this work, we explore the behavior of the axis-aligned RF and oblique

decision forests in the context of classification. In Chapter 2, we seek to

answer the question, "When presented with a wide variety of synthetic and

real-world classification problems, are any of the oblique forest methods

actually more robust than RFs? And if so, why?" In Chapter 3, we present

a general framework called Randomer Forests (RerFs) which encompasses

RFs and all of the oblique forest methods mentioned above. Using insights

from Chapter 2, we propose a default instantiation of RerFs. Finally, in

Chapter 4, we demonstrate how RerFs can be used to identify salient

biomarkers for ovarian cancer classification.

8

Chapter 2

Robust Decision Forests

2.1 Introduction

Two recent benchmark papers assess the performance of many different

classification algorithms on many different datasets [13, 14], and both

concluded the same thing: on average, RFs are the best classifier. Due to

the large number and wide variety of datasets used in these comparisons,

the results suggest that RFs are exceptionally robust to different distribu-

tions and representations of the data. Unfortunately, [13] only included

one oblique forest in its comparisons, and [14] did not include any. Since

one of the primary motivations for developing oblique forest algorithms

is to alleviate the sensitivity that the axis-aligned RF algorithm has to

orientation of the data, we might wonder whether oblique methods are

more robust in practice. In this chapter, we demonstrate that a sparse

variant of Breiman’s Forest-RC (F-RC) algorithm that rank transforms the

data prior to inducing the forest (which we call FRANK) exhibits superior

performance and robustness over other decision forest methods across a

9

wide range of settings. We offer insights into why we observe this.

2.2 Methodology

2.2.1 Simulated Datasets

Many classification problems arise in which both the signal (i.e. the infor-

mation regarding class membership) is mostly contained in a small subset

of dimensions and the optimal split directions are not axis-aligned. We

constructed two synthetic datasets with both of these properties (to vary-

ing degrees) in order to compare classification performance and training

time of different decision forest methods:

Sparse parity is a variation of the noisy parity problem. The noisy

parity problem is a multivariate generalization of the noisy XOR problem

and is one of the hardest constructed binary classification problems. In the

noisy parity problem, a given sample has p features, each of which being

uniformly distributed on (−1, 1). Let s = ∑
p
j=1 I(x(j)) > 0, where I(x(j) > 0)

is the indicator that the jth feature of a sample point x has a value greater

than zero. A sample’s class label is equal to the parity of s. Sparse parity

is an adaption of this problem in which the sample’s class label is equal

to the parity of s∗ = ∑
p∗

j=1 I(x(j) > 0), where p∗ < p. In other words, this is

a variant of the noisy parity problem in which only the first p∗ features

carry information about the class label.

Trunk is a well-known binary classification problem in which each

class is distributed as a p-dimensional multivariate Gaussian with iden-

tity covariance matrices [15]. The means of the two classes are µ1 =

10

(1, 1√
2
, 1√

3
, ..., 1√

p) and µ2 = −µ1. The signal-to-noise ratio of the jth dimen-

sion asymptotically decreases to zero with increasing j.

2.2.2 Benchmark Datasets

In addition to the synthetic classification problems, all algorithms were

evaluated on 114 of the 121 datasets as described in Fernandez-Delgado

et al. [13]. The seven remaining datasets were not used because their high

dimensionality and large number of data points rendered the rotation-

based classifiers costly in both time and space.

2.2.3 Transformations

We evaluated classifier sensitivity to various transformations of the data.

To do so, we consider several different modifications to the data: rotation,

scale, affine, and corruption. To rotate the data, we generate rotation

matrices uniformly at random and apply them to the data. To scale, we

applied a scaling factor sampled from a uniform distribution on the interval

[10−5, 105] to each dimension. Affine transformations were performed by

applying a rotation followed by a scaling. Data was corrupted by randomly

selecting 20% of the entries in the data matrix and multiplying each of

those entries by a factor uniformly sampled from the set {102, 103, 104, 105}.

2.2.4 Classification Algorithms

The algorithms examined in this study were RF, F-RC, and Blaser et al.’s

Random Rotation Random Forest (RR-RF). In order to motivate the choice

11

of these three algorithms, we will first provide a brief overview of each.

A RF is an ensemble of randomized decision trees constructed using

a CART-like procedure [16], where each tree is trained on a bootstrap

sample of the data. Each of the trees represents a series of greedy binary

recursive partitions of the feature space, where the objective is to create

partitions that have minimal class impurity. At each split node of each

tree, d features are randomly sampled without replacement from the set of

p features. For each of these randomly sampled features, a candidate split

is identified by finding the threshold value of that feature that splits the

data into the least impure partitions. The best split is chosen from the set

of d candidate splits and the partition is generated.

The sole difference between RF and F-RC lies in the sampling of candi-

date splits. Rather than randomly sampling features at each split node,

F-RC defines new features by taking random linear combinations of the

original features. A new feature is defined by first specifying a number L

of the original features to be combined. L features are randomly selected

and added together with coefficients randomly sampled with uniform prob-

ability on the interval [-1,1]. d such linear combinations are created, and

the best split is found over them.

RR-RF is an oblique decision forest method that adopts random rota-

tions of the feature space prior to inducing each tree in order to further

increase the diversity of trees [11]. For each tree, a uniformly random

rotation matrix is generated via a QR decomposition on a p × p matrix

12

of independently identically distributed samples from a univariate stan-

dard normal distribution. The feature space is rotated and the tree is

constructed in the same way as RF.

As mentioned previously, the method adopted by RF for constructing

trees restricts the splits to be axis-aligned. By uniformly randomly rotating

the feature space each time a tree is constructed, RR-RF can construct

oblique splits. However, random rotations of the feature space imply that in

general, splits will not be sparse (i.e. oblique splits are linear combinations

of all features rather than a subset of features). F-RC, on the other hand,

controls the sparsity of oblique splits via the parameter L. Therefore, we

conjecture that RR-RF will perform increasingly poorly as the ratio of the

number of irrelevant features to the number of relevant features becomes

larger, while RF and F-RC with a small value for L will be relatively more

robust to the increasing presence of irrelevant features. Furthermore, we

suspect that linearly combining features will lead to higher sensitivity to

data corruption. Therefore we also conjecture that F-RC and RR-RF will

be more susceptible to data corruption than is RF, with RR-RF being the

most sensitive.

2.2.5 Feature Scaling

Oblique forests are sensitive to scale. In all experiments, we tried three

different methods for commensurating features:

1. Rank Transformation Let {xi}n
i=1 be a set of n real-valued observa-

tions and x(1), . . . , x(n) be the corresponding order statistics. Suppose

13

the ith observation xi corresponds to the jth order statistic x(j). Then

the rank transformation of xi is ri = j. In other words, if xi is the jth

largest value then its corresponding rank is equal to j. In the case of

ties, all tied observations are assigned the average of what the ranks

would have been had they not been tied. For instance, if two obser-

vations xi and xk are both the jth largest value, had they not been

tied then one would have been the jth largest value and the other

the (j + 1)th largest value. Therefore ri = rk = j + 1
2 . Out-of-sample

observations are assigned a rank via linear interpolation if its value

falls between two in-sample points. If it happens to be less than all

in-sample point then it is assigned a rank of zero, and if it happens

to be greater than all n in-sample points then it is assigned a rank of

n + 1.

2. Percentiles Observations are scaled to [0,1] by linearly translating

each feature so that the smallest value is zero, and then linearly

scaling each feature so its largest value is one. Out-of-sample obser-

vations are scaled using the in-sample minimum and maximum.

3. Z-score For each feature, we subtract the sample mean and divide

by the sample standard deviation. Out-of-sample observations are

centered and scaled using the in-sample mean and standard devia-

tion.

While all of these methods scale features to proportion, rank-based

methods are exceptionally robust to noise and corruption. We suspect

14

this will be true when applied to the oblique decision forest classifiers

as well. In all that follows, the suffixes "(r)", "(n)", and "(z)" after an

algorithm name denotes that the algorithm uses the rank transformation,

percentile normalization, or z-score, respectively. The one exception is

F-RC with rank transformation, which we call FRANK. Note that RF

intrinsically operates on the ranks of each feature. Therefore, RF(r) should

have identical behavior to RF in all settings.

2.2.6 Training, Parameter Selection, and Testing

In all experiments, data was split into separate training and test sets. For

the benchmark datasets, training and test partitions were provided (see

[13] for details). In experiments pertaining to the simulated data, every

experiment was repeated ten times using different randomly generated

training and testing sets. The results reported for the simulated data are

the average over the ten trials. Classification algorithms were trained

using a range of parameter values. The best model for each algorithm was

chosen according to minimum out-of-bag-error on the training set, and

predictions were made on the test set.

2.2.7 Classifier Background

Let Dn = {(Xi, Yi) : i ∈ [n]} be a given dataset, where Xi ∈ X and

Yi ∈ Y = {c1, . . . , cK}. A classifier is a function h : X ↦→ Y learned from Dn

that predicts the class label Y in a new sample pair (X, Y) when only X is

observed. Typically, the goal in classification is to learn a classifier h(· |Dn)

15

such that P(h(X |Dn) ̸= Y) is minimized. The optimal classification rule is

the Bayes classifier h∗(x) = argmax
y∈Y

P(Y = y|X = x) [3].

In general, the joint distribution of (X, Y) is unknown so that the true

class posterior distribution P(Y|X) is unknown as well. However, we can at-

tempt to find good estimates P̂(Y|X ; Dn) and use those as surrogates, lead-

ing to the plug-in estimate of the Bayes classifier ĥ(x ; Dn) = argmax
y∈Y

P̂(Y =

y|X = x ; Dn). Any ensemble classifier that outputs the majority vote of

the ensemble, has a natural interpretation as a plug-in estimate of the

Bayes classifier. To see this, note that a decision forest classifier h̄(· |Dn)

is an ensemble of T randomized decision trees, where each tree classifier

ht(· |Dt) is trained on a bootstrap sample of the data Dt. The output of h̄

is the majority vote. That is, h̄(x |Dn) = argmax
y∈Y

∑T
t=1 I(ht(x, |Dt) = y) =

argmax
y∈Y

1
T ∑T

t=1 I(ht(x, |Dt) = y), where I(ht(x, |Dt) = y) is the indicator

that the tth tree predicts the class label to be y. The summation in the

right hand side of the last equality is the fraction of trees that predict

Y = y when X = x, which can naturally be interpreted as an estimate of

the probability that Y = y given X = x. Interpreted in this way, we have

h̄(x |Dn) = argmax
y∈Y

P̂(Y = y|X = x ; Dn).

16

2.3 Results

2.3.1 Comparison of Classification Methods on Synthetic
Data

One property that nearly all of the recent oblique forest methods have

is that the candidate splits sampled at each node are dense linear com-

binations of all of the features. This property is undesirable when the

information regarding class membership is contained in a small subset of

features, which is often the case. We illustrate this phenomenon using the

sparse parity dataset with 20 dimensions in Figure 2.1. The top, center,

and bottom panels show kernel density estimates of the data projected

onto the best first split direction found by a tree in RF, F-RC, and RR-RF,

respectively. In this example, RF searched over all 20 dimensions to find

the best split. F-RC searched over 8000 random linear combinations of

three variables. RR-RF rotated the data and searched over all 20 rotated

dimensions. Since every single dimension is uninformative, RF has a

zero probability of finding an informative first split direction. RR-RF,

which rotates the data via a dense matrix multiplication, has a very small

probability (virtually zero in this example) of finding an informative split

direction. F-RC, on the other hand, can find an informative split with high

probability. This motivates the use of a sparse oblique forest method such

as F-RC.

Figure 2.2 depicts both the true class posterior distribution P(Y = 1|X)

(top three panels) and estimates of the posteriors for RF, F-RC, FRANK, RR-

RF, and RR-RF(r) in three different representations of the sparse parity

17

Projection onto best first split direction
-3 0 3

D
en

si
ty

 E
st

im
at

e Sparse Parity (p = 20)

R
F

Class 0

Class 1

-3 0 3

F
-R

C

-4 0 4

R
R

-R
F

Figure 2.1: Distribution of the sparse parity data when projected onto the best split
direction found by RF (top), F-RC (center), and RR-RF (bottom). For RF, all twenty
dimensions were evaluated in the search for the best split. For F-RC, 8000 random linear
combinations of three variables were evaluated. For RR-RF, the data was randomly
rotated and all 20 rotated dimensions were evaluated. Only F-RC has a high probability
of finding a good first split.

simulation. The left column is the native sparse parity simulation, the mid-

dle is affine-transformed sparse parity, and the right column is corrupted

sparse parity. The plot on the very bottom shows the mean pointwise

Hellinger distance between the estimates of the posterior probabilities

and the true posterior probabilities for each classifier for each of the three

18

sparse parity representations. The Hellinger distance ranges from zero

to one, with a value of zero indicating a perfect estimate of the posterior

distribution. For these simulations, p = 10, p∗ = 3, and ntrain = 1000,

where p is the total number of dimensions, p∗ is the number of relevant

dimensions, and ntrain is the number of training points. All of the posterior

maps in Figure 2.2 are shown for the X1 − X2 plane with X3 = −0.5 and

X4, . . . , X10 = 0.

Comparing all algorithms on the raw sparse parity problem shows that

F-RC and FRANK give estimates of the posteriors closest to the true posteri-

ors. RF produces poorer estimates because oblique splits allow the feature

space to be partitioned more effectively. RR-RF produces poor estimates

because the signal is contained in only three of the ten dimensions, so that

rotating the data obscures the signal. All methods except for RR-RF(r) are

affected by affine transformations. However, FRANK is slightly less affected

than F-RC. The right most panels show that both F-RC and RR-RF are

vulnerable to data corruption, while FRANK, RR-RF(r), and RF are robust

to it. Across all three sparse parity representations, FRANK performs the

best.

The top panels of Figure 2.3 show two-dimensional scatter plots from

each of the two example simulations (using the first two dimensions).

The middle panels show the misclassification rate against the number

of dimensions p. The bottom panels show training time against p for all

classifiers. The number of trees used for each method in the sparse parity

and Trunk simulations were 500 and 1000, respectively. These numbers

19

Figure 2.2: Posteriors and classifier estimates of posteriors for the sparse parity problem.
Also plotted below are Hellinger distances between estimates and the true posteriors.
Oblique forests are especially sensitive to relative scale of predictor variables and data
corruption. Rank transforming the data simultaneously robustifies oblique methods
against incommensurable features and data corruption.

20

of trees were empirically determined to be sufficient for convergence of

out of bag error for all methods. In all methods, trees were unpruned,

and nodes were leaf nodes if they had less than 10 data points. The split

criteria was minimum Gini impurity. The only parameter tuned was d, the

number of candidate split directions evaluated at each split node. When

p ≤ 5, each classifier was trained for d = 1, . . . , p. When p > 5, each

classifier was trained for d = p1/4, p1/2, p3/4, and p. Additionally, F-RC

and FRANK were trained for d = p3/2 and p2. Note that for RF and RR-

RF, d is restricted to be no greater than p by definition. For F-RC, the

parameter L, which denotes the number of predictor variables to linearly

combine when generating new features, was fixed to two. The reported

training time for each algorithm is that corresponding to the classifier

using the best value of d. For sparse parity, ntrain = 1000, ntest = 10000,

and classifiers were evaluated for p = 2, 5, 10, 20, and 40. The relevant

number of features p∗ = min(p, 3). For Trunk, ntrain = 100, ntest = 10000

and classifiers were evaluated for p = 10, 50, 100, and 500.

In panel C, both F-RC and FRANK perform as well as or better than the

RF and RR-RF variants for all values of p. RF, F-RC, and FRANK perform

comparably when p ≤ 5, but F-RC and FRANK perform better for larger

p. As conjectured, the RR-RF variants perform the worst when p ≥ 5

because they have a difficult time finding good discriminant directions

when the signal is contained in a small subset features (the line for RR-

RF(r) is directly on top of that for RR-RF). The ability of F-RC and FRANK to

perform well compared to the others can be attributed to: 1) the ability to

21

generate oblique splits and 2) the sparsity imposed on said splits. In panel

D, F-RC and FRANK outperform RF and RF(r) for all values of p. This is

because linear combinations of a few features can yield a higher signal-to-

noise ratio than any single feature. RR-RF exhibits superior performance

up to p = 100. RR-RF is able to perform better than F-RC and FRANK in

these cases because a larger number of features are linearly combined to

yield an even higher signal-to-noise ratio. When p = 500, classification

performances of RR-RF and RR-RF(r) significantly degrade. This can be

explained by the fact that when p is large enough, many features contain

little information. When this occurs, random rotations of the feature space

often result in new rotated features that are less informative. Panel E

indicates that training time of F-RC and FRANK can be significantly larger

than RF and RR-RF variants on certain problems. The reason for the trend

seen in panel E is that the optimal value of d is p2 for F-RC variants for all

values of p in the sparse parity problem. On the other hand, the RF and

RR-RF variants cannot have a value of d greater than p. As will be detailed

in the next section, the theoretical time complexity of all algorithms is

proportional to d. Had d been restricted to be at most p for the F-RC

variants, the training times would be comparable to those of the RF and

RR-RF variants (not shown). As panel F indicates, training times of RR-RF

and RR-RF(r) increase the most quickly with increasing p because of the

expensive QR decomposition required for each random rotation. F-RC, on

the other hand, is just as fast as RF when p ≤ 100 and only slightly slower

than RF when p = 500.

22

X
1

-2 0 2

X
2

-2

0

2
Sparse Parity
(A)

Class 0

Class 1

p
2 5 10 20 40

E
rr

or
 R

at
e

0

0.1

0.2

0.3

0.4
(C)

p
2 5 10 20 40

T
ra

in
 T

im
e

(s
)

1

10

100 (E)

X
1

-5 0 5

X
2

-5

0

5
Trunk

(B)

p
10 100 500

E
rr

or
 R

at
e

0.05

0.1

0.15
(D)

p
10 100 500

T
ra

in
 T

im
e

(s
)

10

100 (F) RF
RF(r)
F-RC
Frank
RR-RF
RR-RF(r)

Figure 2.3: Sparse parity (A,C,E) and Trunk (B,D,F) simulations (see section 2.2.1 for
details).

23

2.3.2 Effects of Transformations

Figure 2.4 shows the effect of various transformations applied to the

sparse parity (left panels) and Trunk (right panels) problems on classifi-

cation performance of RF, F-RC, RR-RF, and their rank variants. RF and

RF(r) perform slightly worse than the oblique methods on rotated sparse

parity. Performance of F-RC and RR-RF are severely degraded when

random scaling is applied to sparse parity, and therefore also when affine-

transformations are applied. However, the performances of FRANK and

RR-RF(r) are unaffected by scale and affine transformations. Performance

of RF on sparse parity is minimally affected by data corruption, F-RC is

slightly affected, and RR-RF is very affected. FRANK and RR-RF(r), on the

other hand, are not noticeably affected by corruption.

Similar trends hold for the Trunk simulations. Note than in panels

D, F, and H the error plots of RR-RF are not seen because they are above

the limits of the y-axes. The improved performances of FRANK and RR-

RF(r) compared to their non-rank variants on the affine and corrupted

simulations indicate that rank transformations robustify oblique methods

to both the affects of affine transformations and corruption. We also

explored whether other feature scaling methods had a similar robustifying

effect on F-RC and RR-RF (see section 2.2.5 for details). Figure 2.5 suggests

that both normalization and z-scoring have a similar robustifying effect

as rank transformations on scaling and affine transformations but do not

help with data corruption.

24

p
2 5 10 20 40

R
o

ta
te

d
E

rr
or

 R
at

e

0

0.2

0.4

Sparse Parity
(A)

2 5 10 20 40

S
ca

le
d

0

0.2

0.4
(C)

2 5 10 20 40

A
ff

in
e

0

0.2

0.4
(E)

2 5 10 20 40

C
o

rr
u

p
te

d

0

0.2

0.4
(G)

10 100 500

0.05

0.1

0.15
Trunk

(B)

10 100 500

0.05

0.1

0.15
(D)

10 100 500

0.05

0.1

0.15
(F)

10 100 500

0.05

0.1

0.15
(H) RF

RF(r)
F-RC
F-RC(r)
RR-RF
RR-RF(r)

Figure 2.4: The effects of different transformations applied to the sparse parity (left
column) and Trunk (right column) simulations on classification performance (see section
2.2 for details). Specifically, we consider rotations, scalings, affine transformations, and
corruptions.

25

p
2 5 10 20 40

R
aw

E
rr

or
 R

at
e

0

0.2

0.4

Sparse Parity

(A)

2 5 10 20 40

R
o

ta
te

d

0

0.2

0.4
(C)

2 5 10 20 40

S
ca

le
d

0

0.2

0.4
(E)

2 5 10 20 40

A
ff

in
e

0

0.2

0.4
(G)

2 5 10 20 40

C
o

rr
u

p
te

d

0

0.2

0.4
(I)

10 50 100

0.02

0.04

0.06

0.08

0.1
Trunk

(B)

10 50 100

0.02

0.04

0.06

0.08

0.1
(D)

10 50 100

0.02

0.04

0.06

0.08

0.1
(F)

10 50 100

0.02

0.04

0.06

0.08

0.1
(H)

10 50 100

0.02

0.04

0.06

0.08

0.1
(J)

Frank
F-RC(n)
F-RC(z)
RR-RF(r)
RR-RF(n)
RR-RF(z)

Figure 2.5: Comparison of feature scaling methods on the simulated datasets.

26

2.3.3 Benchmark Data

Next we compared performance of the RF, F-RC, and RR-RF variants

on 114 benchmark datasets (refer to section 2.2.2 for details). As in the

previous section, transformations were applied to the datasets to observe

their effects on performance of the six classification methods. We used the

same values of d as in the simulations. The number of trees used in each

algorithm was 1000 for datasets having at most 1000 data points and 500

for datasets having greater than 1000 data points. These numbers of trees

were empirically seen to be sufficient for convergence of out-of-bag error.

Convergence plots for each benchmark dataset are available here.

For each benchmark dataset, for each algorithm, error was subtracted

by that of RF and normalized by the chance probability of error. Therefore,

a negative value indicates that an algorithm had a lower error rate than

RF. Chance probability of error for a particular dataset is defined as the

probability of error if the most populous class was always predicted for a

randomly sampled data point. These normalized relative errors were then

binned and the counts in each bin were computed. Histograms showing

the counts in each bin are shown in Figure 2.6. The y-axis represents

the bins. Color indicates how many times the normalized relative error

of an algorithm fell into a particular bin. For instance, the figure shows

that FRANK has a normalized error 0.05 to 0.10 less than that of RF

on approximately 15 datasets. The "0 to 0" bin indicates the number of

times the normalized relative error was exactly 0. Table 2.1 summarizes

which methods perform significantly better or worse than RF across the

27

https://github.com/ttomita/RandomerForest/tree/master/Figures/ROFLMAO/Supplementary

Raw Rotated Scaled Affine Corrupted
RF(r)

F − RC + + − −
Frank + + +

RR − RF − + − − −
RR − RF(r) − + − + −

Table 2.1: Summary of performance relative to RF on each of the benchmark settings.
(+) indicates method performed significantly better than RF (p < 0.05) and (-) indicates
method performed significantly worse than RF (p < 0.05)

different transformation settings according to one-sided Wilcoxon signed-

rank tests at a significance level of 0.05. Both F-RC variants perform better

than RF on the raw datasets, while the RR-RF variants perform worse.

As expected, all oblique methods perform better than RF on the rotated

datasets. Both RR-RF variants perform worse than RF on the scaled

datasets, with RR-RF(r) performing slightly better than RR-RF. F-RC and

RR-RF perform worse than RF on the affine datasets, while FRANK and

RR-RF(r) perform better. All oblique methods perform worse than RF on

the corrupted datasets with the exception of FRANK. Figure 2.7 shows that

unlike percentile normalization and z-scoring, rank transformations helps

against data corruption. Overall, FRANK is the most robust method.

2.4 Discussion

Incorporating random rotations into RF in the way that RR-RF does is

clearly a double-edged sword. While RR-RF is the only method of the

three that is completely invariant to the orientation of the data, the sparse

parity simulations demonstrate that it performs poorly when the signal is

28

Raw

F-RC Frank RR-RF RR-RF(r)

N
or

m
al

iz
ed

 E
rr

or
 R

el
at

iv
e

to
 R

F

 1
 0.2
 0.1

 0.05
 0.04
 0.03
 0.02
 0.01

 0.005
 0
 0

-0.005
 -0.01
 -0.02
 -0.03
 -0.04
 -0.05
 -0.1
 -0.2
 -1 0

5

10

15

20

25

Rotated

F-RC Frank RR-RF RR-RF(r)

 1
 0.2
 0.1

 0.05
 0.04
 0.03
 0.02
 0.01

 0.005
 0
 0

-0.005
 -0.01
 -0.02
 -0.03
 -0.04
 -0.05
 -0.1
 -0.2
 -1 0

2

4

6

8

10

12

14

16

18

20

Scaled

F-RC Frank RR-RF RR-RF(r)

 1
 0.2
 0.1

 0.05
 0.04
 0.03
 0.02
 0.01

 0.005
 0
 0

-0.005
 -0.01
 -0.02
 -0.03
 -0.04
 -0.05
 -0.1
 -0.2
 -1 0

5

10

15

20

25

30

35

40

45

50

Affine

F-RC Frank RR-RF RR-RF(r)

 1
 0.2
 0.1

 0.05
 0.04
 0.03
 0.02
 0.01

 0.005
 0
 0

-0.005
 -0.01
 -0.02
 -0.03
 -0.04
 -0.05
 -0.1
 -0.2
 -1 0

5

10

15

20

25

30

35

40

45

Corrupted

F-RC Frank RR-RF RR-RF(r)

 1
 0.2
 0.1

 0.05
 0.04
 0.03
 0.02
 0.01

 0.005
 0
 0

-0.005
 -0.01
 -0.02
 -0.03
 -0.04
 -0.05
 -0.1
 -0.2
 -1 0

5

10

15

20

25

30

35

40

45

50

Figure 2.6: Histograms of error relative to RF normalized by chance probability of error
on 114 benchmark datasets with various transformations applied. A negative normalized
relative error indicates better performance than RF, while a positive value indicates
worse performance. Bin edges are indicated by ticks on the y-axis. Color indicates the
absolute frequency in a particular bin.

29

Corrupted

Frank F-RC(n) F-RC(z)

N
or

m
al

iz
ed

 E
rr

or
 R

el
at

iv
e

to
 F

-R
C

 1
 0.2
 0.1

 0.05
 0.04
 0.03
 0.02
 0.01

 0.005
 0
 0

-0.005
 -0.01
 -0.02
 -0.03
 -0.04
 -0.05
 -0.1
 -0.2
 -1 0

5

10

15

20

25

30

35

Figure 2.7: Histograms of error relative to F-RC normalized by chance probability of
error on the corrupted benchmark datasets. FRANKperforms better than F-RC more often
than does F-RC(n) or F-RC(z), suggesting that rank transformations are better than
perentile normalization or z-scoring at mitigating the effects of data corruption.

concentrated in a small subset of the features. The simulations indicate

that F-RC and RF do not suffer from this problem. These results may

likely be explained by the "Bet on sparsity" principal proposed by Friedman,

Hastie, and Tibshirani [17]. This principle states that no method - dense or

sparse - will perform well in high dimensions when the truth is dense. On

the other hand, when the truth is sparse, then sparse methods will perform

well while dense methods will still perform poorly. RF is the most sparse

because each split is made on a single feature. The version of F-RC in this

study is relatively sparse because splits are made on linear combinations

of just two features. RR-RF, on the other hand, is dense because the

features in the rotated feature space are each linear combinations of all

of the features in the original space. RR-RF indeed performs the best up

30

to 100 dimensions on the Trunk problem, which has information in all of

the dimensions. However, its performance is only marginally better than

F-RC and is in fact worse when p = 500. We suspect that the dense nature

of RR-RF is also the reason that it is the most sensitive to scale, affine

transformations, and data corruptions. Overall, our results suggest that

the cost of using random rotations tends to outweigh the benefits.

There are many ways to deal with sensitivity to scale. Most often,

incommensurate features are either normalized to [0, 1] or transformed to

z-scores rather than rank transforming. Statistical procedures based on

ranks have shown to possess exceptional robustness to noise in several

different contexts [18–21]. Here we have shown that rank transformations

deal with incommensurability equally as well as other scaling methods,

and has the additional benefit of robustifying oblique methods to data

corruption.

Since the simulated datasets have known distributions, we can be cer-

tain in our characterizations of their underlying data structures. While this

is not the case with the benchmark datasets, our experiments allow us to

conjecture about the nature of these datasets. First, the fact that F-RC and

FRANK tend to outperform RF and RF(r) on the raw benchmark datasets

suggests that the intrinsic discriminant boundaries between classes are

often not axis-aligned. Second, the fact that RR-RF and RR-RF(r) per-

form substantially worse than the other methods on the raw benchmark

datasets suggests that the information regarding class membership is

often concentrated in a small subset of features.

31

2.5 Conclusion

In this work, we explored classification performance of several decision

forest methods, and in the process, identified an oblique forest method

that is robust to the representation of the data and has relatively low

computational complexity. While no single method dominates on every

classification problem, we observe that FRANK exhibits superior robustness

to the representation of the data and dominates more often than any of the

other methods evaluated. The RR-RF variants, on the other hand, tend to

lose more often than the other methods due to the dense nature of splits.

The contribution of this chapter is two-fold. First, it augments the large-

scale empirical study conducted by FD14 [13]. They concluded RF to be the

overall best classification method. On these same datasets, we demonstrate

that both F-RC and FRANK tend to have statistically significantly better

classification performance than RF. Second, we provide a novel analysis in

which we investigated the conditions under which various decision forest

methods dominate. As this study has demonstrated, different algorithms

vary in their sensitivity to the representation of the data. In the real world,

it is often the case that the optimal representation is not the one given.

Therefore, a procedure that is robust to the representation is desirable.

While our studies indicate FRANK to be the most robust of the procedures

analyzed, there is much room for improvement. For instance, the sparsity

of splits in FRANK, defined by the parameter L, is fixed across all nodes and

trees. With complex data structures, it might be the case that randomizing

the sparsity across nodes may yield better performance. Additionally,

32

FRANK naively samples the variables to combine as well as the weighting

of each variable. The search space using this approach can be vast. There

may exist more efficient ways to narrow down or guide the search.

33

Chapter 3

Randomer Forests

3.1 Introduction

In this chapter we develop novel procedures for learning decision forests.

To do so, we first state a generalized forest framework, Randomer Forests

(RerFs), which includes RFs and all oblique methods as particular instanti-

ations. The generalization stems from the fact that RFs and oblique forests

all evaluate a set of randomly oriented univariate projections at each split

node, the only difference between the methods being the distribution from

which the projections are sampled. This framework provides a lens that en-

ables us to propose our own instantiation. We demonstrate that our method

is robust over a wide range of datasets. Furthermore, we investigate why

and when a particular algorithm within this framework dominates, and

highlight which aspects of the sampling distribution of split projections

are important to consider. We then show how a sampling distribution can

be chosen to exploit prior domain knowledge. Lastly, we show that our

proposed method maintains a time complexity similar to that of RFs, and

34

offer a fast parallelized R implementation available on the Comprehensive

R Archive Network (CRAN) (https://cran.r-project.org/web/packages/rerf/).

3.2 Methods

3.2.1 Randomer Forests (RerF) Algorithm

We propose a general decision forest framework called Randomer Forest

(RerF), which encompasses any forest algorithm that recursively partitions

the data via arbitrarily oriented hyperplanes. RFs as well as all of the

previously mentioned oblique methods are particular instantiations RerFs.

The key idea of RerFs is that at each split node of the tree, we have a set

of predictor data points, X̄ = {Xs}s∈S l
i
∈ Rp×Sl

i , where Sl
i = |S l

i | is the

cardinality of the set of predictor data points at the ith node of the lth tree.

We sample a matrix A ∼ fA, where A ∈ Rp×d, possibly in a data dependent

fashion, which we use to randomly project the predictor matrix X̄, yielding

X̃ = ATX ∈ Rd×Sl
i , where d is the dimensionality of the projected space.

See Algorithm 1 for details. Table 3.1 summarizes the particular form of

fA adopted by various decision forest algorithms.

While the best fA is dataset dependent, it is unreasonable and/or unde-

sirable to try more than a handful of different instantiations. Therefore, for

general purpose classification we advocate for a default fA that addresses

the following issues:

1. While RF empirically performs well in many settings, it is quite

35

https://cran.r-project.org/web/packages/rerf/

Algorithm fA Ref
RF Let {jk}d

k=1 be a set of indices obtained by sampling without
replacement from {1, . . . , p}. Let ei be the ith column of the

p × p identity matrix. Then A = [ej1 ej2 · · · ejd].

[7]

F-RC Let aij denote the element corresponding to the ith row and
jth column of A. For each j ∈ {1, . . . , d}, let SL

j be a set of L
indices obtained by sampling without replacement from
{1, . . . , p}. Then aij

iid∼ U(−1, 1) ∀i ∈ SL
j , and aij = 0 ∀i /∈ SL

j .

[7]

RR-RF Let R be a p × p uniformly random rotation matrix. Then
A = RARF, where ARF is a random matrix sampled from

the fA defined for RF above.

[11]

Rot-For Let X ∈ Rn×p be the input data matrix at a split node. Let
Sj ∀j ∈ {1, . . . , K} be uniformly random disjoint subsets of

the column indices {1, . . . , p}, and let each I′j ∀j ∈ {1, . . . , K}
be a copy of the identity matrix such that the columns

indexed by Sj are zeroed out. Then
A = [PCA(XI′1) PCA(XI′2) · · · PCA(XI′K)], where PCA(·)

returns the matrix of principal components having nonzero
eigenvalues.

[9]

O-RF Let X ∈ Rn×p be the input data matrix at a split node and
y ∈ {0, 1}n×1 be corresponding class labels. Let I′ be a copy

of the p × p identity matrix with L columns – chosen at
random – zeroed out. Then A = RIDGE(XI′, y), where
RIDGE(·) returns the vector projection found by ridge

logistic regression.

[10]

Table 3.1: A summary of the random projection matrix distribution fA adopted by
previously proposed decision forest algorithms. Note that this list is not exhaustive. We
use the notation [A1 A2 A3] to denote a matrix defined by the column-wise concatenation
of the matrices (or column vectors) A1, A2, and A3

restrictive in that candidate splits evaluated at each node are con-

strained to be axis-aligned. Often, linear interactions of features

are more informative than individual features, in which case oblique

splits would be desired.

2. Robustness to irrelevant dimensions. In the previous chapter, we

36

Pseudocode 1 Pseudocode for learning a Randomer Forest decision tree
on a dataset.
Input: (1) Dn: training data (2) d: dimensionality of the projected space,

(3) fA: distribution of the random projection matrix, (4) Θ: set of split
eligibility criteria

Output: A RerF decision tree T
1: function T = GROWTREE(X, y, fA, Θ)
2: c = 1 ▷ c is the current node index
3: M = 1 ▷ M is the number of nodes currently existing
4: S(1) = bootstrap({1, ..., n}) ▷ S(c) is the indices of the observations

at node c
5: while c < M + 1 do ▷ visit each of the existing nodes
6: (X′, y′) = (xi, yi)i∈S(c) ▷ data at the current node
7: for k = 1, . . . , K do n(c)

k = ∑i∈S(c) I[yi = k] end for ▷ class counts
8: if Θ satisfied then ▷ do we split this node?
9: A ∼ fA ▷ sample random matrix

10: X̃ = ATX′ = (x̃i)i∈S(c) ▷ random projection into new feature
space

11: (j∗, τ∗(c)) = findbestsplit(X̃, y′) ▷ Algorithm 2 (see
supplementary material)

12: a∗(c) = aj∗ ▷ sparse split projection of current node
13: S(M+1) = {i : a∗(c) · x̃i ≤ τ∗(c) ∀i ∈ S(c)} ▷ assign to left child

node
14: S(M+2) = {i : a∗(c) · x̃i > τ∗(c) ∀i ∈ S(c)} ▷ assign to right

child node
15: κ(c) = {M + 1, M + 2} ▷ node indices of children of current

node
16: M = M + 2 ▷ update the number of nodes that exist
17: else
18: (a∗(c), τ∗(c), κ∗(c)) = NULL
19: end if
20: c = c + 1 ▷ move to next node
21: end while
22: return (S(1), {a∗(c), τ∗(c), κ(c), {n(c)

k }k∈Y}m−1
c=1)

23: end function

demonstrated that F-RC empirically performed much better than

RR-RF. The main difference between the two is that F-RC samples

37

directions defined by sparse linear combinations of inputs, whereas

in RR-RF split directions are dense linear combinations. Thus, it

seems that proper control of the sparsity of the random matrix A is

necessary when irrelevant dimensions are prevalent.

3. Often times models need to be interpretable in addition to being

accurate. While RF models can be complicated, suitable measures

have been proposed to assess the relative contribution (importance) of

each feature. This becomes prohibitive to compute for oblique forests

if the space of possible split projections is not sufficiently constrained.

4. Existing oblique decision forest algorithms involve expensive compu-

tations to identify and select splits, rendering them less space and

time efficient than RF.

Figure 3.1 offers geometric intuition of how RerF addresses the first two

issues above. A synthetic classification problem was constructed in which

two classes lie in parallel hyperplanes in 20 dimensions. Only the first

two dimensions are informative of the class label. Furthermore, neither

one of the first two dimensions are individually informative. Specifically,

class 0 is uniformly distributed on the noisy hyperplane X1 + X2 = −ϵ,

where ϵ ∼ N(0.1, 0.01) is a small amount of independent Gaussian noise.

Each of X1, X3, . . . , X20
iid∼ U(−0.5, 0.5), and X2 is distributed according to

the (noisy) hyperplane constraint. The distribution of class 1 is the same

as that for class 0, except that the hyperplane is defined as X1 + X2 =

+ϵ. The best projections at the root node found by RF, RerF, and RR-

RF were compared. For RerF we set λ to 1/20. RF cannot find a good

38

projection because no single dimension is informative. RR-RF samples

projections uniformly over the 20-dimensional hypersphere, and thus has

an infinitesimal probability of sampling a projection sufficiently close to

the optimal projection (1, 1, 0, . . . , 0). RerF is the only one that can find a

good projection. Indeed, if the example was instead constructed so that

all 20 dimensions were used to define the parallel hyperplanes (i.e. all 20

are informative but marginally uninformative), then RerF would struggle

because of the sparsity constraint on the distribution of A. However, RR-

RF, which does not have this constraint, would still struggle because any

projection it samples is very likely to be nearly orthogonal to the optimal

projection (see A for a more thorough explanation). This further supports

the adoption of our default fA for RerF.

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

X1

X
2

Parallel
Hyperplanes

(A)

Best Projection

K
D

E

RerF
(B)

RR−RF
(C)

RF
(D)

class
●

●

0

1

Figure 3.1: Comparison of the best projections found by RerF, RR-RF, and RF on the
20-dimensional parallel hyperplanes synthetic dataset.

3.2.2 Synthetic Datasets

In the sections that follow, we perform a variety of experiments on three

carefully constructed synthetic classification problems. These construc-

tions are chosen in order to highlight various properties of different algo-

rithms and gain insight into their behavior. The three problems are as

39

follows:

Sparse Parity is a multivariate generalization of the noisy XOR prob-

lem. It is a p-dimensional two-class problem in which the class label is

0 if the number of dimensions having positive values amongst the first

p∗ < p dimensions is even and 1 otherwise. Thus, only the first p∗ di-

mensions carry information about the class label, and no individual di-

mension contains any information. Specifically, let X = (X1, . . . , Xp) be a

p-dimensional feature vector, where each X1, . . . , Xp
iid∼ U(−1, 1). Further-

more, let S = ∑
p∗

j=1 I(Xj > 0), where p∗ < p and I(Xj > 0) is the indicator

that the jth feature of a sample point x has a value greater than zero. A

sample’s class label Y is equal to the parity of S. That is, Y = odd(S),

where odd returns 1 if its argument is odd and 0 otherwise. The Bayes op-

timal decision boundary for this problem is a union of hyperplanes aligned

along the first three dimensions. For the experiments presented in the

following sections, p∗ = 3 and p = 20. Figure 3.2 (panels A and B) show

cross-sections of the first two dimensions taken at two different locations

along the third dimension.

Orthant is a multi-class problem in which the class label is determined

by the orthant that a datapoint resides in. A key characteristic of this prob-

lem is that the individual dimensions are strongly and equally informative.

An orthant in Rp is a generalization of a quadrant in R2. In other words, it

is a subset of Rp defined by constraining each of the p coordinates to be pos-

itive or negative. For instance, in R2, there are four such subsets: (X1, X2)

can either be in 1) R+ × R+, 2) R− × R+, 3) R− × R−, or 4) R+ × R− .

40

Note that the number of orthants in p dimensions is 2p. Specifically for our

experiments, we sample each X1, . . . , Xp
iid∼ U(−1, 1). Associate a unique

integer index from 1 to 2p with each orthant, and let O(X) be the index

of the orthant that X belongs to. The class label is Y = O(X). The Bayes

optimal decision boundary in this setting is a union of hyperplanes aligned

along each of the p dimensions. We set p = 6 in the following experiments.

Figure 3.2 (panels D and E) show cross-sections of the first two dimensions

taken at two different locations along the third dimension.

Trunk is a balanced two-class problem in which each class is dis-

tributed as a p-dimensional multivariate Gaussian with identity covari-

ance matrices [15]. Every dimension is informative, but each subsequent

dimension is less informative than the last. The means of class 1 and 0

are µ1 = (1, 1√
2
, 1√

3
, ..., 1√

p) and µ0 = −µ1, respectively. The Bayes optimal

decision boundary is the hyperplane (µ1 − µ0) · X = 0. We set p = 10 in

the following experiments.

3.2.3 Benchmark Datasets

In addition to the synthetic datasets, comparisons of RF, RerF, and F-RC

was made on 105 benchmark datasets from the UCI machine learning

repository. These datasets are most of the datasets used in Fernandez-

Delgado et al. [13]. However, rather than using the preprocessed datasets

provided by them, we independently preprocessed them. The motivation

for our preprocessing steps was to try to minimize the noise concomitant

with real-world data. Details of the preprocessing steps are described as

41

follows:

1. Removal of nonsensical features. Some features, such as unique

sample identifiers, were removed because they have no relevance to

the classification problem.

2. Imputation of missing values. The R randomForest package was

used to impute missing values. This method was chosen because it

is nonparametric and is one of the few imputation methods that can

natively impute missing categorical entries.

3. One-hot-encoding categorical features. Most classifiers cannot

handle categorical data natively. In one-hot encoding, sometimes

called one-of-K encoding, a categorical feature that can assume K

possible categories is expanded into K binary features, where each

binary feature corresponds to presence or absence of a category. If

the ith category is observed for a sample, then the ith binary feature

is assigned a value of one, while the remaining K − 1 features are

assigned a value of zero.

4. Integer encoding of ordinal features. Categorical features hav-

ing order to them, such as "cold", "luke-warm", and "hot", were nu-

merically encoded to respect this ordering with integers starting from

1.

5. Standardization of the format. Lastly, all datasets were stored

as CSV files, with rows representing observations and columns repre-

senting features. The class labels were placed as the last column.

42

6. Five-fold paritioning. Each dataset was randomly divided into

five partitions for five-fold cross validation. Partitions preserved the

relative class frequencies as much as possible.

3.3 Results

3.3.1 Illustrative Synthetic Data Experiments

We compared error rates of RF, RerF, and F-RC on the sparse parity and

orthant problems over a range of training set sizes ntrain. Error rates were

estimated by taking a random sample of size ntrain, training the classifiers,

and computing the fraction misclassified in a test set of size 10000. This

was repeated ten times for each value of ntrain. The reported error rate is

the mean over the ten repeated experiments. The number of trees used for

each algorithm was 1000. This number of trees was empirically determined

to be sufficient for convergence of out-of-bag error for all methods. In all

methods, trees were unpruned and fully grown (i.e. nodes were split until

pure). The split objective was to maximize the reduction in Gini impurity.

Two hyperparameters were tuned via minimization of out-of-bag error.

The first parameter tuned was d, the number of candidate split directions

evaluated at each split node. Each algorithm was trained for d = p1/4,

p1/2, p3/4, and p. Additionally, RerF and F-RC were trained for d = p2.

Note that for RF d is restricted to be no greater than p by definition. The

second hyperparameter tuned was λ, the average sparsity of univariate

projections sampled at each split node. Note, for RF λ is fixed to 1/p by

definition, since the univariate projections are constrained to be along one

43

of the coordinate axes of the data.

Figure 3.2 (panels C and F) indicate that RerF performs as well as or

better than the other algorithms on both the sparse parity and orthant

problems, respectively. RF performs relatively poorly on the sparse parity

problem. Although the optimal decision boundary is a union of axis-

aligned hyperplanes, each dimension is completely non-informative on its

own. Since axis-aligned partitions are chosen one-at-a-time in a greedy

fashion, the trees in RF struggle to learn the correct partitioning. On the

other hand, oblique splits are informative, which substantially helps the

generalization ability of RerF and F-RC. While F-RC performs well on the

sparse parity problem, it performs much worse than RF and RerF on the

orthant problem. We highlight that on the orthant problem, in which RF

is is designed to do exceptionally well on, RerF performs just as well.

A key difference between the default distribution of RerF and F-RC

is that F-RC requires specification of a hyperparameter that fixes the

sparsity of the sampled univariate projections. RerF on the other hand,

requires specification of a sparsity on the entire random matrix A, and

hence, only an average sparsity on the univariate projections. In other

words, RerF induces a distribution on the sparsity of univariate projections,

whereas F-RC does not. An implication of this is that if the Bayes optimal

decision boundary is locally sparse, misspecification of the hyperparameter

controlling the sparsity of A may be more detrimental to F-RC than RerF.

Therefore, we examined the sensitivity of RerF and F-RC to the sparsity

hyperparameter on the synthetic datasets previously described. Let λ be

44

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

(A)
S

pa
rs

e
P

ar
ity

−1

0

1

−1 0 1
X1

X
2

X3 ∈ (− 1, 0)

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

(B)

−1

0

1

−1 0 1
X1

X
2

X3 ∈ (0, 1)

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

(D)

O
rt

ha
nt

−1

0

1

−1 0 1
X1

X
2

X3 ∈ (− 1, 0)
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

(E)

−1

0

1

−1 0 1
X1

X
2

X3 ∈ (0, 1)

(C)

0.00

0.20

0.40

1 5 10
ntrain (in thousands)

E
rr

or
 R

at
e

(F)

0.00

0.05

0.10

0.4 2 4
ntrain (in thousands)

E
rr

or
 R

at
e

Algorithm
RF

F−RC

RerF

Figure 3.2: Classification performance on the 20-dimensional sparse parity and 6-
dimensional orthant problems for various numbers of training samples. F-RC has been
known to perform much better than RF on the sparse parity problem [22]. The orthant
problem is designed for RF to perform well because the optimal splits are axis-aligned.
(A) A cross-section of the first two dimensions of sparse parity when X3 ∈ (−1, 0). Each
of X1, . . . , X20

iid∼ U(−1, 1). Only the first three dimensions are informative w.r.t. class
label. (B) The same as (A), except that the cross-section is taken over X3 ∈ (0, 1). (C)
Error rate plotted against the number of training samples for sparse parity. Error rate
is the average over ten repeated experiments. Error bars indicate the standard error of
the mean. (D) A cross-section of the first two dimensions of orthant when X3 ∈ (−1, 0).
Each of X1, . . . , X6

iid∼ U(−1, 1). All dimensions are required to determine the class label,
since each orthant corresponds to a different class. (E) The same as (D), except that the
cross-section is taken over X3 ∈ (0, 1). (F) The same as (C), except for orthant. RerF
exhibits superior performance on both problems, and is therefore more robust than RF
and F-RC to the distribution of the data.

the density (fraction of nonzeros) of A. For each of λ ∈ { 1
p , . . . , 5

p}, the best

model for each algorithm was selected with respect to the hyperparameter d

based on minimum out-of-bag error. Error rate on a test set was computed

for each of the five models for the two algorithms. Sensitivity of each

algorithm is defined as the sample standard deviation of the set of error

45

rates corresponding to different values of λ. The sensitivities of error rates

of RerF and F-RC to λ are shown in panels (A) and (B) of Figure 3.3 for

the sparse parity (ntrain = 5000) and orthant (ntrain = 400) settings. In both

settings, RerF is far more robust to the choice in λ than is F-RC.

(A)

0.00

0.04

0.08

2/p 3/p 4/p 5/p
λ

E
rr

or
 R

at
e

ntrain = 5000
Sparse Parity (B)

0.00

0.20

0.40

2/p 3/p 4/p 5/p
λ

E
rr

or
 R

at
e

ntrain = 400
Orthant

Algorithm
F−RC

RerF

Figure 3.3: Sensitivity of error rate to the hyperparameter λ, which controls the average
sparsity of projections. (A) Error rate as a function of λ on sparse parity (p = 20). (B)
The same as (A) except on orthant (p = 6). In both cases, RerF is far less sensitive to
different values of λ than is F-RC.

3.3.2 RerF Performance on Benchmark Datasets

Training procedures and hyperparameter selection were the same as those

described for the synthetic datasets. For each benchmark dataset, er-

ror rates were estimated via five-fold cross-validation. Error rates were

then normalized by the chance probability of error. Pairwise comparisons

were made for each pair of algorithms. For each pair, for each dataset

the normalized error rate of one algorithm was subtracted by that of the

other. Figure 3.4 shows histograms of the pairwise differences in errors

over the benchmark datasets. The left column shows comparisons for all

105 datasets, the middle column shows comparisons for the 65 numeric

46

datasets, and the right column shows comparisons for the 40 categorical

datasets. Categorical datasets are defined as those datasets having at least

one categorical (non-ordinal) feature. Over all datasets, both RerF and

F-RC tend to outperform RF, as indicated by the skew of the histograms

to the left. Wilcoxon signed-rank tests produce p-values < 0.01 for both of

these comparisons. A close examination of the top center and right panels

suggests that RerF performs disproportionately better on the numeric

datasets. This phenomenon is also evident in the comparison of F-RC with

RF. We note that the datasets having categorical features had to undergo

more processing due to one-of-K encoding of the categorical features. Also,

the categorical datasets tended to have relatively more missing data than

the other datasets. It is possible that this heavier processing of the cate-

gorical datasets introduces additional noise. A Wilcoxon signed-rank test

suggests no significant difference in performance between RerF and F-RC.

Cross-validation errors for each dataset are tabulated in Table 3.2. Bold

indicates the lowest error for each dataset.

5-fold CV Error Rate
Dataset RF RerF F-RC
abalone 0.759 ± 0.006 0.758 ± 0.007 0.751 ± 0.009

acute_inflammation_task_1 0 ± 0 0 ± 0 0 ± 0
acute_inflammation_task_2 0 ± 0 0 ± 0 0 ± 0

adult 0.139 ± 0.002 0.138 ± 0.002 0.139 ± 0.002
annealing 0.467 ± 0.05 0.482 ± 0.066 0.628 ± 0.004

arrhythmia 0.29 ± 0.016 0.296 ± 0.017 0.535 ± 0.027
audiology_std 0.388 ± 0.025 0.375 ± 0.023 0.295 ± 0.049
balance_scale 0.118 ± 0.018 0.034 ± 0.006 0.053 ± 0.007

balloons 0.4 ± 0.113 0.4 ± 0.138 0.267 ± 0.113
bank 0.078 ± 0.001 0.071 ± 0 0.074 ± 0.001
blood 0.213 ± 0.005 0.214 ± 0.009 0.235 ± 0.006

47

breast_cancer 0.262 ± 0.006 0.266 ± 0.007 0.283 ± 0.009
breast_cancer-wisconsin 0.029 ± 0.01 0.027 ± 0.01 0.027 ± 0.012

breast_cancer-wisconsin-diag 0.04 ± 0.008 0.026 ± 0.007 0.026 ± 0.007
breast_cancer-wisconsin-prog 0.207 ± 0.019 0.207 ± 0.019 0.212 ± 0.024

car 0.02 ± 0.002 0.012 ± 0.001 0.008 ± 0.002
cardiotocography_task_1 0.129 ± 0.003 0.125 ± 0.003 0.122 ± 0.005
cardiotocography_task_2 0.056 ± 0.005 0.053 ± 0.004 0.054 ± 0.006

chess_krvk 0.508 ± 0.002 0.512 ± 0.001 0.508 ± 0.002
chess_krvkp 0.005 ± 0.002 0.004 ± 0.001 0.005 ± 0.001

congressional_voting 0.032 ± 0.012 0.032 ± 0.009 0.028 ± 0.009
conn_bench-sonar-mines-rocks 0.144 ± 0.026 0.149 ± 0.028 0.134 ± 0.025

conn_bench-vowel-deterding 0.042 ± 0.005 0.032 ± 0.005 0.029 ± 0.005
contrac 0.449 ± 0.013 0.463 ± 0.016 0.462 ± 0.011

credit_approval 0.122 ± 0.008 0.13 ± 0.01 0.13 ± 0.01
dermatology 0.022 ± 0.009 0.019 ± 0.01 0.027 ± 0.01

ecoli 0.134 ± 0.018 0.143 ± 0.016 0.131 ± 0.016
flags 0.37 ± 0.021 0.371 ± 0.01 0.365 ± 0.018
glass 0.218 ± 0.042 0.21 ± 0.04 0.228 ± 0.038

haberman_survival 0.281 ± 0.02 0.268 ± 0.02 0.317 ± 0.026
hayes_roth 0.191 ± 0.037 0.198 ± 0.044 0.206 ± 0.035

heart_cleveland 0.446 ± 0.01 0.423 ± 0.021 0.403 ± 0.014
heart_hungarian 0.092 ± 0.014 0.085 ± 0.02 0.092 ± 0.017

heart_switzerland 0.617 ± 0.04 0.634 ± 0.024 0.658 ± 0.038
heart_va 0.645 ± 0.052 0.66 ± 0.043 0.675 ± 0.048
hepatitis 0.116 ± 0.024 0.129 ± 0.014 0.116 ± 0.024

hill_valley 0.449 ± 0.012 0 ± 0 0.002 ± 0.002
hill_valley-noise 0.508 ± 0.02 0.048 ± 0.01 0.036 ± 0.011

horse_colic 0.157 ± 0.016 0.154 ± 0.014 0.154 ± 0.014
ilpd_indian-liver 0.287 ± 0.017 0.261 ± 0.021 0.278 ± 0.017

image_segmentation 0.071 ± 0.024 0.09 ± 0.016 0.081 ± 0.022
ionosphere 0.068 ± 0.01 0.068 ± 0.008 0.063 ± 0.013

iris 0.053 ± 0.017 0.06 ± 0.016 0.047 ± 0.017
led_display 0.278 ± 0.009 0.285 ± 0.013 0.279 ± 0.009

lenses 0.29 ± 0.046 0.21 ± 0.064 0.17 ± 0.077
letter 0.034 ± 0.001 0.03 ± 0.001 0.031 ± 0.001
libras 0.178 ± 0.018 0.128 ± 0.014 0.133 ± 0.02

low_res-spect 0.426 ± 0.021 0.356 ± 0.022 0.349 ± 0.025
lung_cancer 0.533 ± 0.076 0.533 ± 0.066 0.567 ± 0.047

48

magic 0.119 ± 0.003 0.111 ± 0.002 0.108 ± 0.002
mammographic 0.169 ± 0.009 0.166 ± 0.012 0.184 ± 0.01

molec_biol-promoter 0.303 ± 0.026 0.302 ± 0.013 0.293 ± 0.024
molec_biol-splice 0.033 ± 0.004 0.034 ± 0.004 0.032 ± 0.003

monks_1 0.322 ± 0.039 0.25 ± 0.047 0.266 ± 0.057
monks_2 0.32 ± 0.024 0.26 ± 0.032 0.272 ± 0.023
monks_3 0.098 ± 0.016 0.09 ± 0.015 0.106 ± 0.009

mushroom 0 ± 0 0 ± 0 0 ± 0
musk_1 0.118 ± 0.016 0.103 ± 0.013 0.109 ± 0.016
musk_2 0.022 ± 0.003 0.022 ± 0.003 0.022 ± 0.003
nursery 0.009 ± 0.001 0.001 ± 0.001 0 ± 0
optical 0.023 ± 0.002 0.024 ± 0.003 0.022 ± 0.002
ozone 0.056 ± 0.002 0.055 ± 0.001 0.055 ± 0.002

page_blocks 0.026 ± 0.001 0.025 ± 0.002 0.026 ± 0.002
parkinsons 0.062 ± 0.006 0.072 ± 0.013 0.062 ± 0.019

pendigits 0.008 ± 0.001 0.005 ± 0.001 0.005 ± 0.001
pima 0.232 ± 0.028 0.213 ± 0.028 0.221 ± 0.025

pittsburgh_bridges-MATERIAL 0.142 ± 0.021 0.123 ± 0.012 0.132 ± 0.017
pittsburgh_bridges-REL-L 0.29 ± 0.048 0.298 ± 0.076 0.299 ± 0.057
pittsburgh_bridges-SPAN 0.403 ± 0.051 0.369 ± 0.056 0.337 ± 0.043

pittsburgh_bridges-T-OR-D 0.128 ± 0.03 0.138 ± 0.02 0.128 ± 0.03
pittsburgh_bridges-TYPE 0.369 ± 0.03 0.35 ± 0.022 0.388 ± 0.032

planning 0.296 ± 0.026 0.28 ± 0.019 0.297 ± 0.009
post_operative 0.353 ± 0.057 0.321 ± 0.026 0.367 ± 0.04

ringnorm 0.038 ± 0.003 0.02 ± 0.001 0.019 ± 0.002
seeds 0.071 ± 0.025 0.057 ± 0.012 0.076 ± 0.03

semeion 0.056 ± 0.005 0.058 ± 0.005 0.056 ± 0.007
soybean 0.108 ± 0.02 0.098 ± 0.006 0.107 ± 0.008

spambase 0.05 ± 0.004 0.044 ± 0.004 0.045 ± 0.004
spect 0.312 ± 0.071 0.325 ± 0.067 0.325 ± 0.067

spectf 0.238 ± 0.023 0.262 ± 0.046 0.225 ± 0.032
statlog_australian-credit 0.123 ± 0.006 0.122 ± 0.013 0.133 ± 0.01

statlog_german-credit 0.234 ± 0.009 0.236 ± 0.013 0.245 ± 0.018
statlog_heart 0.163 ± 0.014 0.174 ± 0.014 0.178 ± 0.009

statlog_image 0.021 ± 0.004 0.024 ± 0.003 0.023 ± 0.002
statlog_landsat 0.088 ± 0.005 0.087 ± 0.005 0.087 ± 0.004
statlog_shuttle 0 ± 0 0 ± 0 0 ± 0
statlog_vehicle 0.238 ± 0.012 0.194 ± 0.006 0.197 ± 0.007

49

steel_plates 0.203 ± 0.004 0.207 ± 0.008 0.211 ± 0.008
synthetic_control 0.018 ± 0.007 0.015 ± 0.007 0.017 ± 0.006

teaching 0.496 ± 0.038 0.404 ± 0.034 0.404 ± 0.034
thyroid 0.002 ± 0.001 0.002 ± 0.001 0.002 ± 0.001

tic_tac-toe 0.205 ± 0.009 0.215 ± 0.014 0.214 ± 0.014
titanic 0.217 ± 0.004 0.213 ± 0.003 0.213 ± 0.003
trains 0.3 ± 0.2 0.2 ± 0.2 0.3 ± 0.2

twonorm 0.026 ± 0.002 0.022 ± 0.002 0.021 ± 0.002
vertebral_column_task_1 0.165 ± 0.011 0.158 ± 0.009 0.161 ± 0.011
vertebral_column_task_2 0.177 ± 0.017 0.174 ± 0.014 0.165 ± 0.013

wall_following 0.004 ± 0.001 0.005 ± 0.001 0.008 ± 0.002
waveform 0.145 ± 0.004 0.134 ± 0.003 0.134 ± 0.003

waveform_noise 0.143 ± 0.004 0.135 ± 0.003 0.131 ± 0.003
wine 0.028 ± 0.022 0.017 ± 0.011 0.028 ± 0.018

wine_quality-red 0.31 ± 0.018 0.306 ± 0.015 0.305 ± 0.016
wine_quality-white 0.313 ± 0.007 0.311 ± 0.012 0.31 ± 0.011

yeast 0.377 ± 0.017 0.369 ± 0.019 0.375 ± 0.014
zoo 0.06 ± 0.029 0.06 ± 0.037 0.07 ± 0.037

Table 3.2: Five-fold cross-validation error rates for each of the UCI datasets. For each
dataset, bold indicates lowest error rate among the algorithms.

3.3.3 Strength and Correlation of Trees

One of the most important and well-known results in ensemble learning

theory for classification states that the generalization error of an ensemble

learning procedure is bounded above by the quantity ρ̄(1−s2)
s2 , where ρ̄ is

a particular measure of the correlation of the base learners and s is a

particular measure of the strength of the base learners [7]. In both RerF

and F-RC, the set of possible splits that can be sampled is far larger in size

than that for RF, which may lead to more diverse trees. Simultaneously,

the ability to sample a more diverse set of splits may increase the likelihood

50

(A)

(D)

(G)

(B)

(E)

(H)

(C)

(F)

(I)

All 105 65 Numeric 40 Categorical

R
erF

 −
 R

F
F

−
R

C
 −

 R
F

F
−

R
C

 −
 R

erF

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

0

20

40

60

0

20

40

60

0
10
20
30
40
50

Relative Error

C
ou

nt

105 UCI Datasets

Figure 3.4: Histograms of the pairwise relative errors of RF, RerF, and F-RC, normalized
by chance on benchmark datasets from the UCI machine learning repository. Each row
corresponds to a comparison of a particular pair of algorithms. For instance, in the top
row, the relative error is defined as error of RerF subtracted by that of RF. The x-axis
represents the relative error discretized into bins. The y-axis represents the counts
(number of datasets) in each of the bins. The left, center, and right columns are the
histograms for all 105 UCI datasets, the 65 numeric datasets, and the 40 categorical
datasets, respectively. Both RerF and F-RC tend to outperform RF across all 105 datasets.
However, RerF performs better than RF more frequently than does F-RC. When directly
compared, RerF and F-RC show no significant difference in classification performance.

of finding good splits and therefore boost the strength of the trees. In order

to investigate the effects of the various sampling distributions on fA, we

estimated these quantities for all of the experiments previously described.

Scatter plots of tree strength vs tree correlation are shown in Figure 3.5

for sparse parity (ntrain = 1000), orthant (ntrain = 400), Trunk (ntrain = 10),

and Trunk (ntrain = 100) (panels A-D, respectively). In all four settings, we

note that RerF classifies as well as or better than RF and F-RC.

51

On the sparse parity dataset Figure 3.5 (panel A), RerF and F-RC

produce significantly stronger trees than does RF, at the expense of an

increase in correlation amongst the trees. Noting that both RerF and

F-RC are much more accurate than RF in this setting, any performance

degradation due to the increase in correlation relative to RF is outweighed

by the increased strength. RerF produces slightly less correlated trees

than does F-RC, which may explain why RerF has a slightly lower error

rate than does F-RC on this setting.

On the orthant dataset Figure 3.5 (panel B), F-RC produces trees of

roughly the same strength as those in RF, but significantly more correlated.

This may explain why F-RC has substantially worse prediction accuracy

than does RF. RerF also produces trees more correlated than those in

RF, but to a lesser extent than F-RC. Furthermore, the trees in RerF are

stronger than those in RF. Observing that RerF has roughly the same error

rate as RF does, it seems that any contribution of greater tree strength in

RerF is canceled by a contribution of greater tree correlation.

On the Trunk problem with p = 10 and ntrain = 10 Figure 3.5 (panel C),

RerF and F-RC produces trees that are comparable in strength to those in

RF but less correlated. However, increasing ntrain to 100 Figure 3.5 (panel

D), the trees in RerF and F-RC become both stronger and more correlated.

In both cases, RerF and F-RC have better classification performance than

RF.

The results shown in panels (C) and (D) suggest something that may

be indicative of a general phenomenon. Namely, for smaller training set

52

sizes, tree correlation may be a more critical factor than tree strength

because their simply is not enough data to induce strong trees, and thus,

the only way to improve performance is through increasing the diversity

of trees. Likewise, when the training set is sufficiently large enough, tree

correlation matters less because their is enough data to induce strong trees.

Since RerF has the ability to produce both stronger and more diverse trees,

it is better adaptive to both regimes than is RF. We point out that in all four

settings, RerF never produces more correlated trees than does F-RC, and

sometimes produces less correlated trees. A possible explanation for this is

that the splits made by RerF are linear combinations of a random number

of dimensions, whereas in F-RC the splits are linear combinations of a fixed

number of dimensions. Thus, in some sense, there is more randomness in

the default fA adopted by RerF than in that adopted by F-RC.

●

●

●
●

●

●

●

● ●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

(A)

0.00

0.05

0.10

0.15

0.20

0.02 0.03 0.04
Tree Correlation

Tr
ee

 S
tr

en
gt

h

p = 20, ntrain = 1000
Sparse Parity

●

●
●

●

●

● ●
●● ●

●

● ●

●
●

●

●

●●
●

●
●

●

●
●

●

●●

●

●

(B)

0.4

0.5

0.6

0.10 0.15 0.20

p = 6, ntrain = 400
Orthant

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

(C)

0.3

0.4

0.5

0.1 0.2 0.3 0.4

p = 10, ntrain = 10
Trunk

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

(D)

0.55

0.60

0.65

0.70

0.15 0.25 0.35

p = 10, ntrain = 100
Trunk

Algorithm
●

●

●

RerF

RF

F−RC

Figure 3.5: Comparison of tree strength and correlation of RerF, RF, and F-RC on four
of the synthetic datasets: (A) sparse parity with p = 10, ntrain = 1000, (B) orthant with
p = 6, ntrain = 400, (C) Trunk with p = 10, ntrain = 10, and (D) Trunk with p = 10, ntrain =
100. For a particular algorithm, there are ten dots, each corresponding to one of ten
trials. Note in all settings, RerF beats RF and/or F-RC. However, the mechanism by
which it does varies across the different settings. In sparse parity RerF wins because
the trees are substantially stronger, even though the correlation increases. In Trunk for
small sample size, it’s purely because of less correlated trees. However, when sample size
increases 10-fold, it wins purely because of stronger trees. This suggests that the degree
of randomization may be more influential for smaller sample size, whereas tree strength
may be more influential when sample size is sufficiently large.

53

3.3.4 Understanding the Bias and Variance of RerF

The crux of all learning tasks is to try to optimize the trade-off between

bias and variance. As a first step in understanding how the choice in fA

effects the balance between bias and variance, we estimated bias, variance,

and error rate of the various algorithms on the sparse parity problem.

Universally agreed upon definitions of bias and variance for 0-1 loss do not

exist, and several such definitions have been proposed for each. Here we

adopt the framework for defining bias and variance for 0-1 loss proposed

in James (2003) [23]. Under this framework, bias and variance for 0-1 loss

have similar interpretations to those for mean squared error. That is, bias

is a measure of the distance between the expected output of a classifier

and the true output, and variance is a measure of the average deviation

of a classifier output around its expected output. Unfortunately, these

definitions (along with the term for Bayes error) do not provide an additive

decomposition for the expected 0-1 loss. Therefore, James (2003) provides

two additional statistics that do provide an additive decomposition. In this

decomposition, the so-called "systematic effect" measures the contribution

of bias to the error rate, while the "variance effect" measures the contri-

bution of variance to the error rate. For completeness, we restate these

definitions below.

Suppose we observe a training set Dn = (X1, Y1), . . . , (Xn, Yn) ∈ Rp ×

{1, . . . , K}, where X is a random p-dimensional input vector and Y is a class

label associated with X. Let fXY denote the joint distribution of X and Y,

which induces a conditional probability distribution PY|X. Suppose we use

54

a learning procedure to train a classifier on Dn, which is to be used in order

to predict the unobserved value of Y associated with a newly observed X.

Denote this classifier as h(·|Dn). Let h∗(X) = argmax
k

PY|X(Y = k|X) be

the Bayes optimal classifier, and let h̄(X) = argmax
k

PDn(h(X|Dn) = k) be

the most common prediction (mode) with respect to the distribution of Dn.

The latter is referred to as the "systematic" prediction in James (2003).

Furthermore, let P∗(X) = PY|X(Y = h∗(X)|X) and P̄(X) = PDn(h(X|Dn) =

h̄(X)) The bias, variance, systematic effect (SE), and variance effect (VE)

are defined as

Bias = PX(h̄(X) = h∗(X)), (3.1)

Var = 1 − EX[P̄(X)], (3.2)

SE = EX[P∗(X)− PY|X(Y = h̄(X)|X)], (3.3)

VE = EX[PY|X(Y = h̄(X)|X)− ∑
k

PY|X(Y = k|X)PDn(h(X|Dn) = k)]. (3.4)

Figure 3.6 compares estimates of bias, variance, variance effect, and

error rate for RerF, RF, and F-RC as a function of number of training

samples. Note that since Bayes error is zero in this setting, systematic

effect is the same as bias. The four metrics were estimated from 100

repeated experiments for each value of ntrain. In panel (A) of Figure 3.6,

RerF has lower bias than both RF and F-RC for all training set sizes. All

algorithms converge to approximately zero bias after about 3000 samples.

55

Panel (B) shows that RF has substantially more variance than do RerF

and F-RC, and RerF has slightly less variance than F-RC at 3000 samples.

The trend in panel (C) is similar to that in panel (B), which is not too

surprising since VE measures the direct contribution of the variance to the

error rate. Interestingly, although RF has noticeably more variance at 500

samples than do RerF and F-RC, it has slightly lower VE. In Figure 3.6

(panel D), the error rate is shown for reference, which is the sum of bias

and VE. Overall, these results suggest that RerF wins primarily through

lower bias/SE for fewer training samples, while it wins mainly via lower

variance/VE for greater training samples.

Sparse Parity

(A)

0.0

0.1

0.2

0.3

0.5 1 3
ntrain (in thousands)

B
ia

s

(B)

0.0
0.1
0.2
0.3
0.4
0.5

0.5 1 3

V
ar

ia
nc

e

(C)

0.0

0.1

0.2

0.3

0.5 1 3

V
ar

. E
ffe

ct

(D)

0.0
0.1
0.2
0.3
0.4
0.5

0.5 1 3

E
rr

or
 R

at
e

Algorithm
RF

F−RC

RerF

Figure 3.6: Bias (A), variance (B), variance effect (C), and error rate (D) of RerF, RF,
and F-RC on sparse parity as a function of the number of training samples. Error rate is
the sum of systematic effect and variance effect, which roughly measure the contributions
of bias and variance to the error rate, respectively. Note that in this example, bias and
systematic effect are exactly equal because Bayes error is zero (refer to [23]). For smaller
training sets, RerF wins primarily through lower bias/systematic effect, while for larger
training sets it wins primarily through lower variance effect.

3.3.5 Consistency of Randomer Forests

Suppose (X, Y), (X1, Y1), . . . , (Xn, Yn) ∈ [0, 1]p × {1, . . . , K} are iid pairs of

random variables, where (X, Y) is the testing pair and the remaining are

the training. A classifier hn(x, Dn) is a function of all the training pairs

56

Dn = {(x1, y1), · · · , (xn, yn)} and the testing data x, which estimates the

unknown label y ∈ {1, . . . , K}. For brevity, we always denote the classifier

by hn(x), and the probability of error is defined by L(hn) = P(hn(X) ̸= Y).

The classifier that minimizes the probability of error is called the Bayes

classifier, whose error rate is optimal and denoted by L∗. The sequence of

classifiers hn(x) is consistent for a certain distribution fxy if and only if

L(hn) → L∗ as n → ∞, and universally consistent if and only if consistent

against all possible distributions fxy. For theoretical purposes, we define a

data-agnostic version of RerF.

Definition 1. The data-agnostic RerF is defined as the original RerF

whose partition is random and independent of the class labels, i.e., the

split algorithm 2 shall be replaced by any random split mechanism that

is independent from the class labels, and the projection matrix A is also

sampled independently from the class labels.

Theorem 3. Denote the number of partitions of the random forest as tn.

Then data-agnostic RerF is universally consistent for classification when

tn → ∞ and tn
n → 0 as n → ∞.

The universal consistency of data-agnostic RerF essentially follows

from Stone’s theorem for local averaging estimates [24, 25]. It essentially

states that the RerF algorithm is as consistent as the RF method previously

proposed. The proof is in Appendix B .

57

3.3.6 RerF Provides Feature Importance

For many data scientists and researchers, understanding the observed

data is just as critical as finding an algorithm with excellent predictive

performance (and often the two are coupled). One of the reasons for RF’s

popularity is its ability to learn good predictive models that simultaneously

lend themselves to extraction of suitable feature importance measures.

One such measure is the Gini importance [7]. For a particular feature, it

is defined as the sum of the reduction in Gini impurity over all splits of

all trees made on that feature. With this metric, features that are used in

splits often, and when used, result in much purer nodes, will have large

importance scores. Unfortunately, with RF, features that are not very

informative on there own but are informative when linearly combined with

other features may not be given large importance scores. Since splits in

RerF are linear combinations of the original features, such features will

not be missed. For RerF, we compute Gini importance for each unique

projection (linear combination of canonical features).

Gini importance was computed for both RF and RerF on the Trunk

problem with ntrain = 1000. Figure 3.7 (panels A and B) depict the linear

weights of the observed features that define each of the top ten split node

projections. Projections are sorted from highest Gini importance to lowest

Gini importance. Note that the top ten projections in RerF are all linear

combinations of dimensions, whereas in RF the projections can only be

along single dimensions. RF fails to sort some of the individual features

according to their "true" informativeness, where true informativeness is

58

measured by the Bayes error of a distribution along a projection. For

example, it ranks a projection along the X9 dimension as third most im-

portant. However, X9 is actually the ninth most informative projection

when only considering axis-aligned projections. The linear combinations

in RerF tend to include the first few dimensions, which contain most of

the "true" signal. The best possible projection that RerF could sample is

the vector of all ones. However, since λ = 5/10 for this experiment, the

probability of sampling such a dense projection having the appropriate

coefficients is almost negligible. Figure 3.7 (panel C) shows the normalized

Gini importance of the top ten projections for each algorithm. RerF finds

many important projections, whereas for RF, only one projection seems

to be important. Figure 3.7 (panel D) shows the Bayes error rate of the

top ten projections for each algorithm. The results show that RerF finds

highly discriminative split node projections compared to RF.

3.3.7 Time and Space Complexity of RerF

3.3.7.1 Theory

The time complexity of an algorithm characterizes how the theoretical

processing time for a given input relies on both the hyper-parameters of

the algorithm and the characteristics of the input. Let T be the number

of trees, n the number of training samples, and d the number of features

sampled at each split node. The average case time complexity of RF is

O(Tdn(log n)2) [26]. The dn log n accounts for the sorting of d features

at each node. The additional log n accounts for both the reduction in

59

(A)

10
9
8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 9 10
Projection

D
im

en
si

on

Top 10 Projections
RerF

(B)

10
9
8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 9 10
Projection

D
im

en
si

on

Top 10 Projections
RF

coefficient
−1

0

+1

● ●

●
●

●

●
● ● ● ●

●

●
● ●

●
●

● ● ● ●

(C)

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10
Projection

G
in

i I
m

po
rt

an
ce

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

(D)

0.1

0.2

0.3

1 2 3 4 5 6 7 8 9 10
Projection

B
ay

es
 E

rr
or

classifier
●

●

RerF

RF

Figure 3.7: The ten projections with the highest Gini importance found by RF and RerF
on the Trunk problem with p = 10, ntrain = 1000. (A) Visual representation of the top 10
projections identified by RerF. The x-axis indicates the projection. The y-axis indicates
the index of the ten canonical dimensions. The colors in the heat map indicate the linear
coefficients of each canonical dimension that define each of the projections. (B) The same
as (A), except for RF. (C) Comparison of the Gini importances of the 10 best projections
found by each algorithm. (D) Comparison of the Bayes error of the 10 best projections
found by each algorithm (see B.2 for details). The top 10 projections used in RerF all have
substantially lower Bayes error than those used in RF.

node size at lower levels of the tree and the average number of nodes

produced. RF’s polynomial complexity shows that a good implementation

will scale nicely with large input sizes, making it a suitable algorithm to

process big data. RerF’s average case time complexity is similar to RF’s,

the only difference being the addition of a term representing a sparse

matrix multiplication which is required in each node. This makes RerF’s

complexity O(T ∗ n log n(d log n + s)), where s is the number of nonzeros in

the sparse projection matrix. We generally let s be on the order of d, giving

a complexity of O(Tdn log2 n), which is the same as for RF. Of note, in RF

d is constrained to be no greater than p, the dimensionality of the data.

60

RerF, on the other hand, does not have this restriction on d. Therefore, if d

is selected to be greater than p, RerF may take longer to train. However,

d > p often results in substantial predictive performance.

3.3.7.2 Empirical Speed

Comparison of training times on the sparse parity problem is shown in

Figure 3.8 (panel A). Training times reported are those corresponding to

the best hyperparameter settings for each algorithm. F-RC is the slowest,

RF is the fastest, and RerF is in between. While not shown, we note that

a similar trend holds for the orthant problem. 3.8 (panel B) shows that

when the hyperparameter d of RerF and F-RC is the same as that for

RF, training times are comparable. However, training time continues to

increase as d exceeds p for RerF and F-RC, which largely accounts for the

trend seen in panel (A). 3.8 (panel C) indicates that this additional training

time comes with the benefit of substantially improved accuracy. We point

out that we could restrict d to be no greater than p for RerF in this setting

and it would still perform noticeably better than RF at no additional cost

in training time.

Since allowing d to be greater than p can result in substantially greater

training times, we wondered if we could restrict d to be no greater than

p without hurting performance. Therefore we repeated the experiments

for the synthetic datasets, this time not allowing d to be greater than p in

RerF and F-RC. Thus, the computational budgets for these algorithms are

restricted to be (approximately) the same as that for RF. Error rates are

61

Sparse Parity
(A)

0

200

400

1 5 10
ntrain(in thousands)

Tr
ai

ni
ng

 T
im

e
(s

ec
) (B)

5
10

100

5 20 400
d

Tr
ai

ni
ng

 T
im

e
(s

ec
)

(C)

0.0

0.1

0.2

0.3

5 20 400
d

E
rr

or
 R

at
e

Algorithm
RF

F−RC

RerF

Figure 3.8: Comparison of training times of RF, RerF, and F-RC on the sparse parity
dataset. (A) Dependency of training time (y-axis) on the number of training samples
(x-axis) for the sparse parity problem. 40 cores were used. Reported times correspond to
the best set of hyperparameters. (B) Dependency of training time (y-axis) on the number
of projections sampled at each split node (x-axis) for the sparse parity problem with 5000
training samples. (C) Dependency of error rate (y-axis) on the number of projections
sampled at each split node (x-axis) for the sparse parity problem with 5000 training
samples. RerF and F-RC can sample many more than p projections, unlike RF. As seen
in panels (B) and (C), doing so dramatically improves classification performance at the
expense of larger training times. However, comparing error rates and training times at
d = 20, RerF can classify substantially better than RF even with no additional cost in
training time.

shown in Figure 3.9. Overall, we still see that RerF is the best performing

algorithm.

0.0

0.1

0.2

0.3

0.4

1 5 10
ntrain (in thousands)

E
rr

or
 R

at
e

Sparse ParityA

0.00

0.05

0.10

0.15

0.4 2 4
ntrain (in thousands)

E
rr

or
 R

at
e

OrthantB

0.05

0.10

0.15

0.20

0.01 0.1 1 10
ntrain (in thousands)

E
rr

or
 R

at
e

TrunkC

Algorithm
RF

F−RC

RerF

Figure 3.9: The same as Figure 3.2, except that the number of projections sampled by
RerF and F-RC were restricted to be no greater than p

62

3.3.7.3 RerF Implementation Scalability

We offer an openly available multi-core R implementation of RerF on

CRAN [27]. We compared speed of training and strong scaling of our

implementation to those of the R Ranger [28] and XGBoost [29] packages,

which are currently two of the fastest decision tree ensemble software

packages available. Ranger offers a fast multicore version of RF that has

been extensively optimized for runtime performance. XGBoost offers a fast

multicore version of gradient boosted trees. Strong scaling is the relative

increase in speed of using multiple cores over that of using a single core.

In the ideal case, the use of N cores would produce a factor N speedup.

Comparisons were made using three openly available large datasets. For

our comparisons, hyperparameters were chosen for each implementation

so as to make the comparisons as fair as possible. For all implementations,

trees were grown to full depth, 100 trees were constructed, and d =
√

p

features sampled at each node. For RerF, the default fA was used with

λ = 1/p.

MNIST The MNIST dataset [30] has 60,000 training observations and

784 (28x28) features. In Figure 3.10 (panel A), for a small number of

cores, RerF is faster than XGBoost but slower than Ranger. However,

when 48 cores are used, RerF is just as fast as Ranger and still faster

than XGBoost. Figure 3.10 (panel D) shows that RerF has the best

scaling with number of cores.

Higgs The Higgs dataset [31] has 250,000 training observations and 31

63

features. Figure 3.10 (panel B) shows that when 48 cores are used,

RerF is just as fast as ranger and faster than XGBoost. Figure

3.10 (panel E) again shows that RerF utilizes additional cores more

effectively than the other implementations.

p53 The p53 dataset [32] has 31,159 training observations and 5,409 fea-

tures. Figure 3.10 (panel C) shows a similar trend as for MNIST. Fig-

ure 3.10 (panel F) indicates that RerF has strong scaling in between

that of Ranger and XGBoost. For this dataset, utilizing additional

resources with RerF does not provide as much benefit due to the

classification task being too easy – the trees are shallow, causing the

overhead cost of multithreading to outweigh the speed increase due

to parallelism.

3.3.8 Structured RerF

In this section, we highlight that the matrix distribution fA can be chosen

in order to exploit domain knowledge. In computer vision tasks, convolu-

tional neural networks (CNNs) typically exhibit exceptional performance

partially because they exploit the spatial relationship of pixels within

images. In a similar vein, we propose an fA which enables the learning

procedure to exploit spatial structure. We will refer to this particular

instantiation of RerF as Structured RerF (S-RerF). At each split node,

S-RerF randomly samples d patches of spatially contiguous pixels. For

each patch, a new feature is constructed by taking a randomly weighted

linear combination of the pixels within the patch. The split is made by

64

(A) (B) (C)
MNIST (60000x784) Higgs(250000x31) p53(31159x5409)

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
0

5

10

15

Number of Threads

T
im

e
(s

)

Ranger

RerF

XGBoost

Parallel Execution Runtime

(D) (E) (F)
MNIST (60000x784) Higgs(250000x31) p53(31159x5409)

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
0

10

20

30

40

50

Number of Cores

R
el

at
iv

e
P

er
fo

rm
an

ce

Ideal

Ranger

RerF

XGBoost

Strong Scaling

Figure 3.10: Top: The per tree training time for three large real world datasets. Training
was performed using matching parameters where possible and default parameters oth-
erwise. RerF’s performance is comparable to the highly optimized XGBoost and Ranger
and even outperforms XGBoost on two of the datasets. This is achieved despite RerF
both having to rotate data at each node and being highly customizable due to it almost
entirely being implemented in R. Bottom: Strong scaling is the time needed to train a
forest with one core divided by the time needed to train a forest with multiple cores. This
is a measurement of a systems ability to efficiently utilize additional resources. RerF is
able to scale well over the entire range of tested cores whereas XGBoost has sharp drops
in scalability where it is unable to use additional threads due to characteristics of the
given datasets. The p53 dataset, despite having a large number of dimensions, is easily
classifiable, which leads to short trees. The p53 strong scaling plot shows that when
trees are short the overhead of multithreading prevents RerF from efficiently using the
additional resources.

optimizing the split criteria over this set of d constructed features. The key

idea here is that by constructing new features from spatially contiguous

pixels, the features can represent low-level objects like simple edges and

shapes. These low-level objects can then be used to construct meaning-

ful hierarchical decision rules using a dictionary of patches (rather than

65

pixels).

To test this idea, we constructed a toy image classification problem.

One class of images contains randomly sized and spaced horizontal lines.

The other class contains randomly sized and spaced vertical lines. Fig-

ure 3.11 (panel A) shows three example images from each class. Figure

3.11 (panel B) shows performance of RF, the default RerF, S-RerF, and a

control RerF. The control RerF samples contiguous patches as in S-RerF,

but subsequently randomly reassigns the sampled pixel locations so as

to abolish the exploitation of spatial structure. S-RerF demonstrates a

remarkable improvement in classification performance over all other algo-

rithms, achieving near-perfect accuracy with just ten training samples.

Class 0

Class 1

(A)

0.00

0.25

0.50

10 20 50
ntrain

E
rr

or
 R

at
e

Control
RF
RerF
S−RerF

(B)

Figure 3.11: Exploiting spatial structure in image classification. (A) Simulated images:
Class 0 are horizontal bars; Class 1 are vertical bars. (B): classification performance of
Structure RerF (S-RerF), RerF, RF, and Control RerF (using the same projection sparsity
as that in Structure RerF), demonstrates that S-RerF achieves a dramatic empirical
improvement in efficiency.

3.4 Conclusion

RerFs provides a general framework under which all orthogonal and

oblique tree ensemble methods fall. Our open-source implementation

allows users to easily specify any instantiation they desire. Nonetheless,

66

we propose a default instantiation and motivate its use. Experiments

on synthetic problems show that it learns particularly well on datasets

for which individual dimensions have little or no information but are

jointly informative, and when there are a large number of irrelevant di-

mensions, which we hypothesize are two properties that generic datasets

often possess. The superior performance of RerFs on a suite of 105 bench-

mark datasets support this hypothesis. We offer experimental evidence

highlighting three properties of the random projection matrix that can sub-

stantially affect classification performance, namely 1) its average sparsity,

2) the distribution of column sparsity (in particular, fixed vs. varying), and

3) the width (number of projections sampled). We also highlight that we

can exploit prior domain knowledge via selection of an appropriate random

matrix distribution. Additionally, we show that the training time of our

method can be on par with some of the fastest RF implementations cur-

rently available. Lastly, we demonstrate that unlike other oblique methods,

we can tractably adopt the Gini feature importance measure, which is a

fast and useful approach for identifying informative linear combinations

of features.

The RerF framework opens up a myriad of interesting questions. On the

theoretical side, the work of Biau et al. (2016) can be extended to the RerF

setting [25, 33]. In this work, we proved consistency of a simplified version

of RerF that doesn’t use the data to choose splits. However, it is very likely

that the theorems in Biau et al. (2016) for the original supervised RF

algorithm can be immediately extended to the default RerF with some

67

minor modifications – their proofs rely on clever adaptations of classical

consistency results for data-independent partitioning classifiers, which are

agnostic to whether the partitions are hyper-rectangular or not. Moreover,

we hope that theoretical investigations will yield more insight into which

distributions fA will be optimal under different distributional settings, both

asymptotically and under finite sample assumptions. For instance, Biau et

al. construct a distribution for which RF with fixed depth is guaranteed to

have a probability of error of at least 1/6. Although the optimal decision

boundary is a union of axis-aligned splits, the greedy nature in which splits

are selected (rather than global optimization) prevents it from learning the

appropriate rules, regardless of the amount of training data. The default

RerF should be able to achieve a probability of error lower than 1/6 on this

problem, for similar reasons that it is able to perform better than RF on

the sparse parity problem (the distributions of the two problems are quite

similar). The idea that oblique methods are consistent on a wider class

of problems seems likely to be true, given that they are more flexible in

some sense. Additionally, it would be interested to see what theoretical

guarantees hold when the random matrix distribution depends on the

data. In other words, when a supervised procedure is used to identify

(hopefully) strong discriminant directions, are there different/additional

conditions needed to guarantee consistency? Since such procedures may

substantially reduce the diversity of trees, it seems plausible that the data

subsampling and/or depth conditions required for consistency in Biau et

al. (2016) may need to be changed. Indeed, the work of Rainforth and

Wood (2015) [12], which utilizes canonical correlation analysis to explicitly

68

compute directions along which to split, suggests that in order to achieve

strong empirical performance, a novel sampling procedure which they call

projection bootstrapping is often necessary.

Another avenue is to further explore Structured RerF, in computer

vision as well as in other domains. In this work we only present one

sampling distribution for exploiting spatial structure for computer vision.

Furthermore, the distribution we use is still rather simplistic and naive.

However, the point was simply to illustrate how domain knowledge can

be used to bias the sampling distribution in order to achieve better per-

formance. As a final statement, we vouch that the RerF implementation

developed in this work is a competitive alternative to existing tree ensem-

ble implementations, and can in fact realize any previously proposed tree

ensemble methods, possibly with some minor modifications. Open source

code is available: https://github.com/neurodata/R-RerF.

69

https://github.com/neurodata/R-RerF

Chapter 4

Identifying Predictive Markers
for Ovarian Cancer
Classification

4.1 Introduction

More than 22,000 women are estimated to receive an ovarian cancer

diagnosis for the year 2018, and approximately 14,000 will die from ovarian

cancer [34]. If caught and treated early, the five-year survival rate is above

90%. Unfortunately, due to a lack of effective screening methods, only

15% of cases are found early enough [35]. When discovered at late-stage,

survival rates are poor. Thus, there is a need for an effective early screening

method for ovarian cancer. In this chapter, we briefly review a highly

sensitive technique developed by Wang et al. [36] for measuring blood

plasma levels of peptides known to be associated with cancer. We then

demonstrate how RerFs can be used to identify the most salient peptides

for ovarian cancer and to learn a highly accurate model for classifying a

sample as ovarian cancer or normal.

70

4.2 Methods

4.2.1 Quantifying Peptide Abundance in Plasma Us-
ing SAFE-SRM

Wang et al. [36] develops a high-throughput, robust, and reproducible

method for validating candidate peptide biomarkers, demonstrating re-

markable effectiveness when applied to distinguishing normal patients

from those having ovarian cancer. The method, called sequential analysis

of fractionated eluates by selected reaction monitoring (SAFE-SRM), en-

ables highly sensitive and robust quantification of low-abundance peptides

present in blood plasma samples.

SAFE-SRM was used to measure the abundance of 318 candidate pep-

tides contained in blood plasma samples from patients known to have

ovarian cancer and those without it. Various supervised learning tech-

niques were used to identify interpretable and predictive classifiers on

a training set consisting of 27 non-cancerous samples and 7 cancerous

samples (refer to 4.2.2 below). The class-imbalance in the training set was

intentional for the purpose of minimizing the false positive rate (FPR).

For cancer screening and diagnosis, it is common to prioritize FPR over

false negative rate (FNR) because cancer therapies can be harsh and/or

invasive. FNR and FPR were reported for various classifiers on a test set

consisting of 10 non-cancerous samples and 22 cancerous samples.

71

4.2.2 Identification of Salient Peptides

In order to identify the most predictive peptides, a stepwise forward selec-

tion logistic regression was employed. First, a logistic regression model

was fit to the training set. Leave-one-out cross-validation was used to

estimate predictive performance of each model. The peptide yielding the

lowest cross-validated misclassification rate on the training set was se-

lected for inclusion in the model. If more than one peptide achieved the

lowest misclassification rate, ties were broken by selecting the peptide

that produced the greatest model likelihood. This process of selecting a

peptide biomarker to be added to the model was repeated until no further

decrease in cross-validated misclassification rate could be achieved by ad-

dition of a peptide. To find a subset of peptides from the same protein that

could achieve perfect classification, the same stepwise forward selection

procedure was applied for each potential biomarker protein. After identi-

fying the best classifiers, predictive performance of models fit to different

combinations of the peptide biomarkers was compared on the test set.

For comparison, we also utilized the Gini importance metric of RF and

RerF for identifying important peptides. Both algorithms were trained

with varying numbers d of projections sampled at each split node. The best

model for each algorithm was chosen via out-of-bag error.

72

4.3 Results

Figure 4.1 shows the logistic regression mean squared errors on the train-

ing data for each individual peptide in order of increasing error. The

peptide VSFELFADK from the PPIA gene was identified as being sub-

stantially more predictive than any other peptide. Next, we determined

whether including any additional peptides from PPIA in the logistic re-

gression model could further improve predictive performance. The peptide

FEDENFILK further reduced the mean squared error when combined

with VSFELFADK. On a test set consisting of 22 ovarian samples and 10

normal samples, the logistic regression classifier using these two peptide

abundances has a 0% false positive rate (FPR) and 15.6% false negative

rate (FNR).

Figure 4.2 shows the ten projections with largest Gini importance for

each algorithm. Both RF and RerF identify VSFELFADK as the most

predictive peptide, which agrees with the sequential forward selection

logistic regression approach. Both RF and RerF have a 0% FPR. However,

they both have FNRs significantly greater than that of the logistic regres-

sion model. This is not surprising, since no dimensionality reduction was

performed prior to learning the forest classifiers, unlike for the logistic

regression classifier. Thus, the curse of dimensionality hurts the gener-

alization ability of the forest classifiers. However, the Gini importance

metric offers a straightforward approach for reducing the dimensionality.

Both RF and RerF were run again using only the two peptides with highest

Gini importance. The second most important peptides found by RF and

73

Figure 4.1: (A) Mean squared errors (MSEs) on the training set of LR models using
each of the 318 peptides. Peptides are sorted from most predictive (lowest MSE) to
least predictive. (B) A zoomed in view of the first ten peptides from (A). The peptide
VSFELFADK from the PPIA gene is the strongest predictor. (C) Ovarian cancer prediction
performance was further improved by additionally incorporating FEDENFILK into the
LR model. Adapted from Wang et al. [36]

74

RerF were VVLAYEPVWAIGTGK and ICLDLQAPLYK, respectively. By

reducing the dimensionality via Gini importance-based feature selection,

RerF achieves identical classification performance to that of the logistic

regression model. The performance of RF improves substantially, but still

has a slightly higher FNR than the logistic regression model. The worse

performance of RF compared to RerF when feature selection is performed

prior to model fitting suggests that RerF may be better at identifying the

predictive peptides. The error rates for LR, RF, and RerF with and without

dimensionality reduction are compared in Figure 4.3. Notice that when

using the full 318-dimensional data rather than performing feature selec-

tion to reduce the dimensionality, the LR classifier performs significantly

worse than the RF and RerF classifiers, even having an unacceptable FPR

(as deemed by the cancer experts) of about 3%. This suggests that RF and

RerF are less affected by the curse of dimensionality than is LR.

4.4 Conclusion

In this chapter, we identified peptide biomarkers with high sensitivity and

perfect specificity for predicting ovarian cancer. We compared a sequen-

tial forward selection logistic regression approach for learning a classifier

with decision forest Gini importance-based feature selection approaches.

The most predictive models were the LR model with the peptides VS-

FELFADK and FEDENFILK and the RerF model with VSFELFADK and

ICLDLQAPLYK, both classifiers having 15.6% FNR and 0% FPR. The

75

VSFELFADK

1 2 3 4 5 6 7 8 9 10
Projection

D
im

en
si

on

Top 10 Projections
RF

(A)

1 2 3 4 5 6 7 8 9 10
Projection

D
im

en
si

on coefficient
−1

0

+1

Top 10 Projections
RerF

(B)

●

●

●

●
● ●

●

●
●

●

●

●

● ● ● ●

●
● ●

●0.2

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10
Projection

G
in

i I
m

po
rt

an
ce

classifier
●

●

RerF

RF

(C)

Figure 4.2: Top 10 projections. (A) Projections found by RF with highest Gini importance,
(B): Same as (A), but for RerF. (C): Gini importances corresponding to the projections
shown in (A) and (B).

76

0.0

0.2

0.4

LR RF RerF LR−2 RF−2 RerF−2
Classifier

E
rr

or
 R

at
e

FNR

FPR

Figure 4.3: FPR and FNR of LR, RF, and RerF classifiers on the ovarian cancer data
set. The “-2” suffix denotes dimensionality was reduced down to two dimensions prior to
training the classifier.

worse performance of RF, even when Gini importance-based feature se-

lection is performed, suggests that it does not identify salient peptides

as accurately as RerF. Last, we show that when no feature selection is

performed to reduce the dimensionality, the decision forest procedures are

less affected by the curse of dimensionality. Therefore, RerFs demonstrates

great promise as a tool for identifying salient features in large p small n

classification problems.

77

Appendix A

Random Vectors in High
Dimensions

Here we provide additional geometric motivation for the adoption of sparse

random matrix distributions in the RerF framework. Let v∗ be a hypo-

thetical locally optimal split projection in p dimensions at a generic split

node. We sample a random matrix A according to a specified distribution

fA and measure the angle of the closest univariate projection in A. If we

repeat this many times, we can estimate the probability of sampling a

projection whose direction comes within some angle Θ of v∗. We performed

this experiment using both the fA adopted by the default implementation

of RerF and that adopted by RR-RF, which is simply a rotation matrix. For

RerF, two values of d, which specifies the number of columns in A, were

tested. Note for RR-RF that since A is a rotation matrix, it will always be

p × p. Two cases were tested for v∗. In one case, v∗ has a single nonzero.

That is, the split is sparse. In another case, v∗ is all ones (dense). We

repeated this experiment 10000 times for various values of p. Figure A.1

shows that when v∗ is sparse, RerF has a high probability of sampling a

78

projection close in angle to v∗ for all values of p, while RR-RF has a low

probability of sampling a close projection. On the other hand, when v∗ is

dense and p is large, both RerF and RR-RF have a very low probability of

sampling a projection close in angle to v∗. These results are in line with

established theory on high-dimensional random vectors, which says that as

the number of dimensions increases, the probability that two independent

and isotropic random vectors are nearly orthogonal tends to one [37].

79

0.0

0.2

0.4

2 4 8 16 32 64
p

P
(θ

≤
1°

)

λ* = 1 p(A)

0.0

0.2

0.4

2 4 8 16 32 64
p

P
(θ

≤
1°

)

λ* = 1(E)

0.0

0.2

0.4

2 4 8 16 32 64
p

P
(θ

≤
10

°)

(B)

0.00

0.25

0.50

0.75

1.00

2 4 8 16 32 64
p

P
(θ

≤
10

°)

(F)

0.0

0.2

0.4

0.6

2 4 8 16 32 64
p

P
(θ

≤
22

.5
°)

(C)

0.00

0.25

0.50

0.75

1.00

2 4 8 16 32 64
p

P
(θ

≤
22

.5
°)

(G)

0.0

0.2

0.4

0.6

0.8

2 4 8 16 32 64
p

P
(θ

≤
45

°)

(D)

0.00

0.25

0.50

0.75

1.00

2 4 8 16 32 64
p

P
(θ

≤
45

°)

(H)

random.vector
RR−RF

RerF

Figure A.1: The probability that RerF and RR-RF sample a projection within an angle
θ of some hypothetical optimal node projection v∗ in p dimensions when the density
(number of nonzeros) λ∗ of v∗ is minimal (λ∗ = 1/p) and when it is maximal (λ∗ = 1)
for varying values of θ and p. When the optimal projection is sparse (A - D), RerF
has a reasonable probability of sampling projections close to it for all values of p. The
probability of RR-RF sampling a close projection quickly degrades with increasing p.
When the optimal projection is dense (E - H), both RerF and RR-RF have a low probability
of sampling a close projection for p ≥ 16. Therefore, when the number of dimensions is
large, it may be safer to assume v∗ is sparse and use a sampling distribution such as that
adopted by RerF rather than the one adopted by RR-RF.

80

Appendix B

Statistical Theory

B.1 Proof of Theorem 3

Proof. This theorem essentially follows from Theorem 3.1 in Biau, De-

vroye, and Lugosi [25] by incorporating the random projection matrix: by

Theorem 6.1 in Devroye, Györfi, and Lugosi [3], data-agnostic RerF (or any

partition algorithm that is independent of the class label) is consistent if

diam(Bn(X)) → 0 and Nn(X) → ∞, where Bn(X) is the random partition

(the child node of RerF) that contains X, and

Nn(X) =
n

∑
i=1

I(Xi ∈ Bn(X))

is the number of data points in the same partition as X, i.e., the number of

training data in the same child node as X. Following the same step in [25],

any random partition algorithm satisfies

Prob(Nn(X) < t) ≤ (t − 1)tn/(n + 1) → 0

81

for any fixed t > 0 when tn/(n + 1) → 0. Thus Nn(X) → ∞, and it remains

to show that the diameter of Bn(X) converges to 0 in probability.

As tn → ∞, the number of partitions for each dimension of Bn(X)

increases to ∞, and since the partitions of data-agnostic RerF are randomly

chosen for each dimension up-to a random projection, the size of each

dimension of Bn(X) is guaranteed to converge to 0 in probability. Therefore

classification consistency holds for data-agnostic RerF.

B.2 Bayes Error of Trunk’s Problem Along a
Univariate Projection

Suppose the prototypical pair (X, Y) ∈ Rp × {c1, . . . , cK} has joint distribu-

tion fXY. Let L∗ be defined as in Section 3.3.5, and a ∈ Rp be a projection

vector. Then the projection X′ = ⟨X, a⟩ ∈ R of X onto a induces a joint

distribution fX′Y. The Bayes error with respect to fX′Y is denoted by L′∗.

In Trunk’s problem, the task is to discriminate between two p-dimensional

normal populations N(µ0, Σ) and N(µ1, Σ), where an observation comes

from each population with equal probability and µ0, µ1 and Σ are described

as in Section 3.2.2. The Bayes error for this problem is

L∗ = 1 − Φ(
1
2
(∆TΣ−1∆)1/2)

= 1 − Φ(
1
2
||∆||2)

= 1 − Φ(||µ1||2)

where Φ is the standard normal cumulative distribution function and ∆ =

82

µ1 − µ0 [38]. Now suppose we have an arbitrarily oriented projection vector

a. Without loss of generality, let ||a||2 = 1 (only direction of the projection

will effect the Bayes error). Using the fact that for Trunk’s problem, any

vector projection of X is a sum of (scaled) independent random variables,

it is straightforward to show that the Bayes error of the projection X′ is

L′∗ = 1 − Φ(|⟨µ1, a⟩|).

83

Appendix C

Pseudocode

84

Pseudocode 2 Pseudocode for finding the best split of the data. This
function is called by growtree (Alg 1) at every split node. For each of the p
dimensions in X ∈ Rp×n, a binary split is assessed at each location between
adjacent observations. The dimension j∗ and split value τ∗ in j∗ that best
split the data are selected. The notion of "best" means maximizing some
choice in scoring function. In classification, the scoring function is typically
the reduction in Gini impurity or entropy. The increment function called
within this function updates the counts in the left and right partitions as
the split is incrementally moved to the right.
Input: (1) (X, y) ∈ Rp×n ×Yn, where Y = {1, . . . , K}
Output: (1) dimension j∗, (2) split value τ∗

1: function (j∗, τ∗) = FINDBESTSPLIT(X, y)
2: for j = 1, . . . , p do
3: Let x(j) = (x(j)

1 , . . . , x(j)
n) be the jth row of X.

4: {mj
i}i∈[n] = sort(x(j)) ▷ mj

i is the index of the ith smallest value in
x(j)

5: t = 0 ▷ initialize split to the left of all observations
6: n′ = 0 ▷ number of observations left of the current split
7: n′′ = n ▷ number of observations right of the current split
8: for k = 1, . . . , K do
9: nk = ∑n

i=1 I[yi = k] ▷ total number of observations in class k
10: n′

k = 0 ▷ number of observations in class k left of the current
split

11: n′′
k = nk ▷ number of observations in class k right of the

current split
12: end for
13: for t = 1, . . . , n − 1 do ▷ assess split location, moving right one

at a time
14: ({(n′

k, n′′
k)}, n′, n′′, y

mj
t
) = increment({(n′

k, n′′
k)}, n′, n′′, y

mj
t
)

15: Q(j,t) = score({(n′
k, n′′

k)}, n′, n′′) ▷ measure of split quality
16: end for
17: end for
18: (j∗, t∗) = argmax

j,t
Q(j,t)

19: for i = 0, 1 do ci = mj∗

t∗+i end for
20: τ∗ = 1

2(x(j∗)
c0 + x(j∗)

c1) ▷ compute the actual split location from the
index j∗

21: return (j∗, τ∗)
22: end function

85

Pseudocode 3 Pseudocode for predicting the class label associated with
an input x ∈ Rp using a RerF decision tree constructed using the function
growtree (Alg 1) . A decision tree is a sequence of M nodes, each node
being defined by a split projection a, a split value τ, the indices of left and
right child nodes κ = {κL, κR}, and the class counts {nk}k∈Y

Input: (1) x ∈ Rp, (2) T = {(a(m), τ(m), κ(m), {n(m)
k })}M

m=1
Output: (1) Predicted class label ŷ

1: function ŷ = PREDICT(T, x)
2: m = 1
3: while κ(m) ̸= NULL do ▷ move down the tree until a leaf node is

reached
4: x̃ = a(m) · x
5: if x̃ ≤ τ(m) then
6: m = κ

(m)
L

7: else
8: m = κ

(m)
R

9: end if
10: end while
11: return argmax

k∈Y
n(m)

k ▷ prediction is the most populous class at the

leaf node
12: end function

86

References

[1] Thomas G Dietterich et al. “Ensemble methods in machine learning”.
In: Multiple classifier systems 1857 (2000), pp. 1–15.

[2] Robi Polikar. “Ensemble learning”. In: Ensemble machine learning.
Springer, 2012, pp. 1–34.

[3] Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic theory
of pattern recognition. Vol. 31. Springer Science & Business Media,
2013.

[4] Leo Breiman. “Bagging predictors”. In: Machine learning 24.2 (1996),
pp. 123–140.

[5] T. K. Ho. “The random subspace method for constructing decision
forests”. In: Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on 20.8 (1998), pp. 832–844. ISSN: 0162-8828. DOI: 10.1109/
34.709601.

[6] Yali Amit and Donald Geman. “Shape quantization and recognition
with randomized trees”. In: Neural computation 9.7 (1997), pp. 1545–
1588.

[7] L. Breiman. “Random Forests”. In: Machine Learning 4.1 (2001),
pp. 5–32.

[8] D. Heath, S. Kasif, and S. Salzberg. “Induction of Oblique Decision
Trees”. In: Journal of Artificial Intelligence Research 2.2 (1993),
pp. 1–32.

[9] J. J. Rodriguez, L. I. Kuncheva, and C. J. Alonso. “Rotation forest: A
new classifier ensemble method”. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 28.10 (2006), pp. 1619–1630.

87

http://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.1109/34.709601

[10] B. H. Menze, B.M Kelm, D. N. Splitthoff, U. Koethe, and F. A. Ham-
precht. “On Oblique Random Forests”. English. In: Machine Learning
and Knowledge Discovery in Databases. Ed. by Dimitrios Gunopu-
los, Thomas Hofmann, Donato Malerba, and Michalis Vazirgiannis.
Vol. 6912. Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2011, pp. 453–469. ISBN: 978-3-642-23782-9. DOI: 10.1007/
978-3-642-23783-6_29. URL: http://dx.doi.org/10.1007/
978-3-642-23783-6_29.

[11] Rico Blaser and Piotr Fryzlewicz. “Random Rotation Ensembles”. In:
Journal of Machine Learning Research 17.4 (2016), pp. 1–26.

[12] Tom Rainforth and Frank Wood. “Canonical correlation forests”. In:
arXiv preprint arXiv:1507.05444 (2015).

[13] M. Fernandez-Delgado, E. Cernadas, S. Barro, and D. Amorim. “Do
we Need Hundreds of Classifiers to Solve Real World Classification
Problems?” In: Journal of Machine Learning Research 15.1 (2014),
pp. 3133–3181.

[14] R. Caruana, N. Karampatziakis, and A. Yessenalina. “An Empirical
Evaluation of Supervised Learning in High Dimensions”. In: Pro-
ceedings of the 25th International Conference on Machine Learning
(2008).

[15] G. V. Trunk. “A problem of dimensionality: A simple example”. In:
Pattern Analysis and Machine Intelligence, IEEE Transactions on 3
(1979), pp. 306–307.

[16] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A
Olshen. Classification and regression trees. CRC press, 1984.

[17] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The ele-
ments of statistical learning. Vol. 1. Springer series in statistics New
York, 2001.

[18] Ronald L Iman and William J Conover. “The use of the rank trans-
form in regression”. In: Technometrics 21.4 (1979), pp. 499–509.

[19] WJ Conover and Ronald L Iman. “The rank transformation as a
method of discrimination with some examples”. In: Communications
in Statistics-Theory and Methods 9.5 (1980), pp. 465–487.

[20] William J Conover and Ronald L Iman. “Rank transformations as a
bridge between parametric and nonparametric statistics”. In: The
American Statistician 35.3 (1981), pp. 124–129.

88

http://dx.doi.org/10.1007/978-3-642-23783-6_29
http://dx.doi.org/10.1007/978-3-642-23783-6_29
http://dx.doi.org/10.1007/978-3-642-23783-6_29
http://dx.doi.org/10.1007/978-3-642-23783-6_29

[21] William J Conover and Ronald L Iman. “Analysis of covariance using
the rank transformation”. In: Biometrics (1982), pp. 715–724.

[22] Tyler M Tomita, Mauro Maggioni, and Joshua T Vogelstein. “ROFLMAO:
Robust Oblique Forests with Linear MAtrix Operations”. In: SIAM
Data Mining. 2017.

[23] Gareth M James. “Variance and bias for general loss functions”. In:
Machine Learning 51.2 (2003), pp. 115–135.

[24] Charles J Stone. “Consistent nonparametric regression”. In: The
annals of statistics (1977), pp. 595–620.

[25] G. Biau, L. Devroye, and G. Lugosi. “Consistency of random forests
and other averaging classifiers”. In: The Journal of Machine Learn-
ing Research 9 (2008), pp. 2015–2033.

[26] Gilles Louppe. “Understanding random forests: From theory to prac-
tice”. In: arXiv preprint arXiv:1407.7502 (2014).

[27] rerf: Randomer Forest. https://cran.r-project.org/web/packages/rerf/.

[28] ranger: A fast Implementation of Random Forests. https://cran.r-
project.org/web/packages/ranger/.

[29] xgboost: Extreme Gradient Boosting. https://cran.r-project.org/web/packages/xgboost/.

[30] The MNIST Database of Handwritten Digits. http://yann.lecun.com/exdb/mnist/.

[31] Kaggle: Higgs Boson Machine Learning Challenge. https://www.kaggle.com/c/higgs-
boson.

[32] UCI Machine Learning Repository: p53 Dataset. https://archive.ics.uci.edu/ml/datasets/p53+Mutants.

[33] Gérard Biau, Erwan Scornet, and Johannes Welbl. “Neural Random
Forests”. In: arXiv preprint arXiv:1604.07143 (2016).

[34] American Cancer Society: Ovarian Cancer. https://www.cancer.org/cancer/ovarian-
cancer/.

[35] Lynn AG Ries, D Harkins, M Krapcho, Angela Mariotto, Barry A
Miller, Eric J Feuer, Limin X Clegg, MP Eisner, Marie-Josèphe
Horner, Nadia Howlader, et al. “SEER cancer statistics review, 1975-
2003”. In: (2006).

89

https://cran.r-project.org/web/packages/rerf/
https://cran.r-project.org/web/packages/ranger/
https://cran.r-project.org/web/packages/ranger/
https://cran.r-project.org/web/packages/xgboost/
http://yann.lecun.com/exdb/mnist/
https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/higgs-boson
https://archive.ics.uci.edu/ml/datasets/p53+Mutants
https://www.cancer.org/cancer/ovarian-cancer/
https://www.cancer.org/cancer/ovarian-cancer/

[36] Qing Wang, Ming Zhang, Tyler Tomita, Joshua T Vogelstein, Shibin
Zhou, Nickolas Papadopoulos, Kenneth W Kinzler, and Bert Vogel-
stein. “Selected reaction monitoring approach for validating peptide
biomarkers”. In: Proceedings of the National Academy of Sciences
(2017), p. 201712731.

[37] Roman Vershynin. High Dimensional Probability: An Introduction
with Applications in Data Science. 2017. URL: http://www-personal.
umich.edu/~romanv/papers/HDP-book/HDP-book.pdf.

[38] P. J. Bickel and E. Levina. “Some theory for Fisher’s linear discrim-
inant function, ‘naive Bayes’, and some alternatives when there
are many more variables than observations”. In: Bernoulli 10.6
(2004), pp. 989–1010. DOI: 10.3150/bj/1106314847. URL: http:
//dx.doi.org/10.3150/bj/1106314847.

90

http://www-personal.umich.edu/~romanv/papers/HDP-book/HDP-book.pdf
http://www-personal.umich.edu/~romanv/papers/HDP-book/HDP-book.pdf
http://dx.doi.org/10.3150/bj/1106314847
http://dx.doi.org/10.3150/bj/1106314847
http://dx.doi.org/10.3150/bj/1106314847

Tyler M. Tomita
17 E Centre St, Apt 7 Email: ttomita@jhu.edu
Baltimore, MD 21202 Web: https://github.com/ttomita
Phone: (925) 596-1688

Education
2011–2018 Johns Hopkins University, Baltimore, MD

Ph.D. in Biomedical Engineering
Thesis Title: Generalized Linear Splitting Rules in Decision Tree Ensembles
Advisor: Joshua T. Vogelstein

2005–2010 University of California, Davis
B.S. in Biomedical Engineering and Biological Systems Engineering, cum laude

Research Experience
2011–present Department of Biomedical Engineering, Johns Hopkins University

Doctoral Research
Research Advisor: Joshua T. Vogelstein
• Developed a novel machine learning algorithm called Randomer Forest for general-
purpose classification.

• Demonstrated superior accuracy of Randomer Forest to that of existing state-of-the-
art classification algorithms.

• Investigated the statistical and computational properties of the algorithm.
• Created a memory-efficient parallelized R implementation and package openly
available on the Comprehensive R Archive Network (CRAN).

Teaching Assistant
2014 EN.580.321 Statistical Mechanics and Thermodynamics, Johns Hopkins University
2013 EN.580.321 Statistical Mechanics and Thermodynamics, Johns Hopkins University

Manuscript Preprints
Tomita, T.M., Browne, J., Maggioni, M., Vogelstein, J.T. Randomer Forests. URL:
https://arxiv.org/pdf/1506.03410.pdf

Peer-Reviewed Publications
[1] Tomita, T.M., Maggioni, M., Vogelstein, J.T. (2017). ROFLMAO: Ro-

bust Oblique Forests with Linear Matrix Operations. Proceedings of the
2017 SIAM Interational Conference on Data Mining, 498–506. URL:
http://epubs.siam.org/doi/pdf/10.1137/1.9781611974973.56

[2] Wang, Q., Zhang, M., Tomita, T., Vogelstein, J.T., Zhou, S., Papadopoulos, N., Kin-
zler, K.W., Vogelstein, B. (2017) A Selected Reaction Monitoring Approach for Vali-
dating Candidate Biomarkers. Forthcoming in Proceedings of the National Academy
of Sciences.

[3] Masica, D.L., Dal Molin, M., Wolfgang, C.L., Tomita, T., Ostovaneh, M.R., Black-
ford, A., Moran, R.A., Law, J.K., Barkley, T., Goggins, M. Irene Canto, M. (2016).
A novel approach for selecting combination clinical markers of pathology applied
to a large retrospective cohort of surgically resected pancreatic cysts. Journal of the
American Medical Informatics Association, 24(1), 145-152.

[4] Springer, S., Wang, Y., Dal Molin, M., Masica, D.L., Jiao, Y., Kinde, I., Blackford,
A., Raman, S.P., Wolfgang, C.L., Tomita, T., Niknafs, N. (2015). A combination of
molecular markers and clinical features improve the classification of pancreatic cysts.
Gastroenterology, 149(6), 1501-1510.

[5] Sumida, G.M., Tomita, T.M., Shih, W., Yamada, S. (2011). Myosin II activity depen-
dent and independent vinculin recruitment to the sites of E-cadherin-mediated cell-cell
adhesion. BMC cell biology, 12(1), 48.

Contributed Presentations
Tomita, T.M. (2017, April). ROFLMAO: Robust Oblique Forests with Linear Matrix
Operations. 2017 SIAM Interational Conference on Data Mining, Houston, TX, USA.

Posters
Tomita, T.M. (2017, April). ROFLMAO: Robust Oblique Forests with Linear Matrix
Operations. 2017 SIAM Interational Conference on Data Mining, Houston, TX, USA.

Honors and Awards
2009 Tau Beta Pi Engineering Honor Society inductee
2008 Robert Roy Owen Scholarship recipient

Software Proficiencies
Python, R, MATLAB, C++, Linux, git

2

	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Classification
	Classification Trees
	Ensemble Learning
	Random Forests
	Overview

	Robust Decision Forests
	Introduction
	Methodology
	Simulated Datasets
	Benchmark Datasets
	Transformations
	Classification Algorithms
	Feature Scaling
	Training, Parameter Selection, and Testing
	Classifier Background

	Results
	Comparison of Classification Methods on Synthetic Data
	Effects of Transformations
	Benchmark Data

	Discussion
	Conclusion

	Randomer Forests
	Introduction
	Methods
	Randomer Forests (RerF) Algorithm
	Synthetic Datasets
	Benchmark Datasets

	Results
	Illustrative Synthetic Data Experiments
	RerF Performance on Benchmark Datasets
	Strength and Correlation of Trees
	Understanding the Bias and Variance of RerF
	Consistency of Randomer Forests
	RerF Provides Feature Importance
	Time and Space Complexity of RerF
	Theory
	Empirical Speed
	RerF Implementation Scalability

	Structured RerF

	Conclusion

	Identifying Predictive Markers for Ovarian Cancer Classification
	Introduction
	Methods
	Quantifying Peptide Abundance in Plasma Using SAFE-SRM
	Identification of Salient Peptides

	Results
	Conclusion

	Random Vectors in High Dimensions
	Statistical Theory
	Proof of Theorem 3
	Bayes Error of Trunk's Problem Along a Univariate Projection

	Pseudocode

