
Soil organic and mineral compounds can be 
estimated non-destructively by visible and near 
infrared reflectance (VNIR) of electromagnetic 
radiation from the surface of the sample, allowing 
more intensive sampling, reducing the number of 
expensive laboratory or field assessments and esti-
mating several soil properties from one reflectance 
curve (SØrensen and Dalsgaard 2005). However, 
there is a need to supplement soil spectral data-
bases with new calibrations associated with diverse 
soil conditions, which will be validated to test the 
impact of soil heterogeneity on spectral algorithms 
and wavelengths used for the specific prediction. 
Due to broad and overlapping absorption of soil 
constituents, VNIR soil spectra is largely nonspe-
cific and results in complex absorption patterns. 
Absorptions in the visible region (400–760 nm) 

are primarily associated with minerals that contain 
iron and darkness of soil organic matter (SOM) 
(Stenberg et al. 2010). Visible region was found to 
significantly contribute to the overall absorption 
due to SOM (Islam et al. 2003, Viscarra Rossel et al. 
2006). Climatic and drainage conditions each have 
a significant influence on soil colour and further 
complicate the relation between spectral response 
and SOM (Stoner and Baumgardner 1981). Soil pH 
is reflected in complex spectral response due to its 
covariation with several spectrally active soil proper-
ties such as the presence of clay minerals, buffering 
capacity of SOM and microbial processes in the soil 
(Chang et al. 2001). Soil texture affects reflectance, 
as incoming radiation is scattered differently by 
coarse particles as compared to fine particles. If 
the particles are more compacted due to the finer 
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texture, spectral response is intensified because of 
the higher absorption surface and stronger reflec-
tion. Demattê et al. (2004) adopted a descriptive 
approach using a spectral reflectance-based strategy 
to assist soil survey and found that SOM, total iron, 
and mineralogy were the most important attributes 
influencing reflectance intensity, and allowed char-
acterization of soils. Viscarra Rossel et al. (2011) 
showed that VNIR reflectance spectra can replace 
the use of traditional soil properties to describe 
the soil and make pedological interpretations of 
its spatial distribution.

The research goal was to evaluate the ability of 
VNIR spectroscopy for assessment of soil prop-
erties in terms of variable mineral nitrogen (N) 
fertilization and intensive crop production. The 
objectives included: (a) determination of factors 
affecting soil spectral properties; (b) discrimina-
tion of different N fertilization treatments based 
on soil spectra; (c) farm-scale prediction of SOM 
content and soil pH.

MATERIAL AND METHODS

Experimental design and soil sampling. The 
research was conducted on the experimental field 
within hydro-ameliorated cropland in the Western 
Pannonia subregion of Croatia (45°33'N, 16°31'E). It 
was established as a non-randomized block design of 
ten different mineral N fertilization treatments with 
uniform phosphorus (P) and potassium (K) fertili-
zation rates (I. Control – no fertilization; II. N0PK; 
III. N100PK; IV. N150PK; V. N200PK; VI. N250PK; VII. 
N250PK + phosphogypsum; VIII. N250PK + dolomite; 
IX. N300PK; X. fallow, kg N/ha) and four repetition 
plots for each treatment (1–4). Dimension of each 
treatment plot was 30 × 130 m including blank space, 
and 26 × 26 m for the repetition plot, with the total 
experimental area of 4 ha. Basic fertilization for 
winter wheat (Triticum aestivum L.) as a test crop 
during the vegetation period 2009/2010, in form 

of 2:3 of the total amount of PK mineral fertilizer, 
was applied before ploughing, while other 1:3 of the 
total amount with 30% of N was applied directly 
before seedbed preparation. In all treatments except 
control, soil was treated with 150 kg P and 100 kg 
K, in form of triple superphosphate, 60% potas-
sium chloride and complex mineral fertilizer NPK 
10-30-20. Nitrogen topdressing was performed three 
times using calcium ammonium nitrate (CAN): I. 
25%; II. 25% and III. 20%. Semi-automatic circular 
tractor soil probe prototype (Patent: International 
Application No. PCT/HR2011/000021) was used for 
sample collection after harvest (20 July, 2010) with 
total number of 200 soil samples taken at 30 cm depth 
(regular grid: 15 × 15 m), meaning 20 samples per 
treatment and 5 samples per repetition plot. Each 
sampling location was precisely defined (± 1 cm) 
using GPS (Trimble GNSS R8, Sunnyvale, USA). The 
point sampling scheme was a circular line sampling 
of 0.5 m radius around the grid node representing 
the sampling site of the 16-samples soil composite.

Agroecological conditions. Based on the rain-
fall amount of the vegetation period 2009/2010 
(850.7 mm) and comparison with the reference 
period 1965–1990 (699.3 mm), the investigated 
period can be found as sufficiently wet. Soil type 
of the trial site is classified as Dystric Stagnosols 
(IUSS Working Group WRB 2015). Terrain is flat 
with average elevation of 97.2 m a.s.l. Based on the 
soil profile analysis, soil texture of arable topsoil 
was defined as loam. Precipitation water periodi-
cally stagnates on illuvial horizon which was the 
reason for installing a pipeline drainage system 
across the experimental area. Besides soil physi-
cal properties that influence water stagnation in 
upper layers, main factors that limit crop yield are 
low soil pH and very low SOM content (Table 1). 
Figure 1 shows within-field spatial variability of soil 
pH, SOM content and total N content (0–30 cm 
depth) measured in 2010 after winter wheat har-
vest (ordinary kriging) (ArcView, ESRI 2006). A 
sequence of changes in pH values was influenced 

Table 1. Soil chemical and physical properties (adopted from Mesic et al. 2011)

Depth 
(cm) pHKCl

SOM 
(%)

Nutrient 
amount 

(mg/100 g)

Soil particles 
(ø mm, %) Soil 

texture

Porosity Water capacity Air capacity

vol. 
% qualifier vol. 

% qualifier vol. 
% qualifier

P K 2–0.2 0.2–0.02 0.02–0.002 < 0.002
0–30 4.84 1.01 7.73 8.67 0.36 55.24 30.30 14.10 loam 43.7 low 39.7 medium 4.0 very low

SOM – soil organic matter
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by increasing N mineral rates, influence of lime 
materials on treatment VIII, effect of parent sub-
strate in treatment with 100 kg N/ha as a result of 
drainage, and canal deposit on the north-eastern 
side of field. According to the increasing N rates 
and higher crop yields during the experimental 
years, the highest content of SOM and TN was 

recorded in treatments with 250–300 kg N/ha. 
Relations between soil pH, SOM and total N content 
were calculated and presented in the correlation 
matrix with strong to full significant correlations 
between variables (Table 2).

Spectral measurements. Non-destructive meas-
urements of soil reflectance were performed using 

Table 2. Correlation matrix between different soil properties (n = 200)

Variable Mean Standard deviation pH TN (%) SOM (%)

pH 4.404 0.962 1.000 –0.574 –0.523

Total nitrogen (TN, %) 0.122 0.037 –0.574 1.000 0.983

Soil organic matter (SOM, %) 2.189 0.674 –0.523 0.983 1.000

Correlations are significant at P < 0.05

Figure 1. Spatial distribution of (a) soil organic matter 
(%), (b) total nitrogen content (%) and (c) soil pH on 
the experimental field after winter wheat harvest, 2010 
(ArcView, ESRI 2006)
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a portable field spectroradiometer (FieldSpec®3, ASD 
Inc., Boulder, USA) with a wavelength range from 350 nm 
to 1050 nm, sampling interval of 1.4 nm and spectral 
resolution of 3 nm at 700 nm. Air-dried samples 
were milled and passed through the sieve (< 2 mm), 
placed on 9-cm diameter Petri dishes (borosilicate 
glass) forming 1.5-cm soil layer. Two hundred soil 
samples were scanned under laboratory conditions 
at fixed distance of 1 cm using a vertically posi-
tioned hand-held fiber-optic probe. Calibration panel 
(Spectralon®, Labsphere, North Sutton, USA) meas-
urements were taken before initial soil readings and 
repeated approximately every 15 min.

Laboratory measurements. Standard laboratory 
analyses were used as reference measurements for 
calibrating spectral data. Air-dried soil samples 
(T < 40°C) were crumbled, sieved (< 2 mm), and 
homogenized following the ISO 11464 (2004). Soil 
pH was measured in a 1:2.5 (w/v) soil suspension 
[1 mol/L KCl, modified ISO 10390 (2005)]. Total 
nitrogen content (TN [% DM; g/kg]) and total 
carbon content (TC [% DM; g/kg]) in soil were 
determined by dry combustion method according 
to HRN ISO 13878 (2004) and HRN ISO 10694 
(2004), respectively. Regarding very low average 
soil pH indicating acid soil, and assumption that 
mineral carbon is not present in investigated soil, 
TC can be equalized to soil organic carbon. In that 
manner, SOM was calculated from the TC content 
multiplied by the Van Bemmelen factor 1.724.

Statistical analysis. Spectral data were visually 
evaluated using the ViewSpec Pro 4.07 (2009). 
Original reflectance data (700 wavelengths) were 
calibrated to the SOM content and soil pH by 
partial least squares regression (PLSR) and full 
cross validation (Unscrambler 9.7, 2007). Statistical 
parameters used for the model accuracy included 
coefficient of determination (R2) and root mean 
square error (RMSE) with confidence limits of 95%.

RESULTS AND DISCUSSION

Treatment effect on soil reflectance. Different 
N fertilization rates indicated similar soil spectral 
response, but with certain variations of reflectance 
intensity appearing throughout the spectral range 
(Figure 2). The pattern of spectral reflectance was 
calculated: higher SOM content-lower reflec-
tance, and contrary, lower SOM-higher reflectance. 
Lower soil reflectance at treatments N100PK, fallow, 

N250PK, N250PK + phospho-gypsum and N300PK 
can be explained by higher SOM content due to 
more intensive mineral fertilization (Figure 1), 
shorter period for SOM decomposition process, 
higher microbial activity and crop residue amount 
due to greater biomass. Despite numerous ab-
sorption bands of organic matter over the VNIR 
region, it is often reported that organic matter 
signals in this region are weak (Viscarra Rossel 
and McBratney 1998), particularly in soils that 
contain only a few percent organic matter (as 
1.0–3.7% at this experimental site), in a variable 
mineral matrix. Low reflectance curve concavity 
and weaker absorption can be observed around 
450 nm and 850 nm. Due to the eluvial process, 
it can be assumed that clay and free iron oxides 
were been removed, or segregated to the extent 
that colour of the horizon is determined by colour 
of sand and silt particles, which caused high re-
flectance intensity throughout the whole spectrum 
(average reflectance factor: 0.55–0.60). Natural 
renewal of SOM affected soil reflectance at the 
fallow treatment considering that this treatment 
was ploughed but not sowed. In the spectral range 
of 490–560 nm, spectral response confirmed con-
clusions given by McCoy (2005) about lower soil 
reflection where higher presence of SOM, total 
N and lower soil pH were recorded. In this case, 
lower level of mineralization indirectly affected 
decreased SOM decomposition. Similar results 
were reported by López-Granados et al. (2005) 
who found that high-SOM areas correlated with 
low-pH zones probably due to the presence of 
organic acids and unsaturated acidic humus.

Partial least squares regression. Considering 
the results of a correlation analysis between soil 
properties, PLSR for SOM was calculated based 
on the spectral data. Regression model for soil pH 
was calculated to find indirect relations with SOM 
and the potential outliers in the data. Figure 3 
shows the results of the PLSR model calibrated 
to estimate SOM content (upper figure) and soil 
pH (bottom figure) using original soil reflectance 
(700 wavelengths across full spectral range of 
350–1050 nm) and reference sample data (200 
samples). The score plot gave information about 
patterns in the samples in terms of delineation 
between higher and lower SOM content in soil 
samples based on the reflectance data. As seen for 
soil pH, low values prevailed based on the principal 
component (PC) scores. First two components for 
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both SOM and soil pH summarized the most varia-
tion in the data captured by VNIR spectra (PC1: 94%, 
PC2: 4% and PC1: 93%, PC2: 6%, respectively). As 
seen from the regression coefficients plot, red part 
of the spectrum (670–710 nm) with red edge region 
(730–770 nm) were identified as zones of major 
importance for the PLSR model of SOM content. 
Nanni and Demattê (2006) recorded spectral ranges 
of 480–600 nm and 720–820 nm as key regions for 
SOM prediction model development. Regarding the 
residuals of soil pH prediction, exclusion of several 

outliers could improve prediction and decrease re-
sidual variation. According to the PLSR statistics, a 
very strong correlation and low RMSE were obtained 
between predicted and measured values for the 
calibration (C) and validation (V) dataset, respec-
tively (SOM, %: RC

2 = 0.75 and RV
2 = 0.74, RMSEC 

= 0.334 and RMSEV = 0.346; soil pH: RC
2 = 0.78 and 

RV
2 = 0.62, RMSEC = 0.448 and RMSEV = 0.591), as 

shown in the scatter plot right below in each figure. 
Prediction scores of soil pH formed two groups of 
distribution. Small formation of scores (right) rep-

Figure 2. (a) Average absolute reflectance and (b) average first derivative of soil reflectance (dv1) at ten fertilization 
treatments
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resents samples with higher soil pH values, while 
larger ‘cloud’ on the right side of the regression 
trend line represents prevailing values of low soil 

pH. Very similar results were reported by Zhang et 
al. (2011) where R2 for SOM validation model was 
0.764 (particle size of air-dried soil sample < 0.15 mm) 
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Figure 3. Scatter plots for results of the partial least squares regression (PLSR) model performed using full 
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RMSE – root mean square error
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and RMSEV was 0.344. Qiao et al. (2017) used PLSR 
for SOM prediction based on hyperspectral data with 
different preprocessing methods. Their statistics of 
calibration (n = 165) and validation (n = 55) results 
are comparable with this research (R2 = 0.83 and 
R2 = 0.61, RMSEC = 0.266 and RMSEV = 0.419). 
VNIR spectroscopy predictions using PLSR models 
and cross-validation were considered reliable for 
SOC (R2 > 0.80), and SOM (R2 = 0.83), based on 
the results of Luce et al. (2014) and Feyziyev et al. 
(2016), respectively. Regarding the soil pH predic-
tions, reviewed literature reports reliable calibrations 
on a field-scale due to site-specific covariations of 
soil pH to other soil fertility variables, with RMSE 
values between 0.19 and 0.31 and R2 values between 
0.53 and 0.73 (McCarty and Reeves 2006, Viscarra 
Rossel et al. 2006).

According to the results of this research, a model 
obtained by PC explanatory analysis and PLSR was 
able to integrate pedological information from a 
number of spectral bands for estimating SOM con-
tent and soil pH, and to reveal delineation between 
higher- and lower-N level treatments conditioned 
by differences in soil properties. Regarding further 
work, more distinct information may be obtained 
using the instruments with a wider spectral range 
covering NIR and shortwave infrared radiation, where 
more apparent soil absorption features could be 
recorded and used for monitoring of soil functional 
attributes and making inferences about its quality.
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