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ABSTRACT: 

 

Graph based semi-supervised classification method are widely used for hyperspectral image classification. We present a couple 

graph based label propagation method, which contains both the adjacency graph and the similar graph. We propose to construct the 

similar graph by using the similar probability, which utilize the label similarity among examples probably. The adjacency graph was 

utilized by a common manifold learning method, which has effective improve the classification accuracy of hyperspectral data. The 

experiments indicate that the couple graph Laplacian which unite both the adjacency graph and the similar graph, produce superior 

classification results than other manifold Learning based graph Laplacian and Sparse representation based graph Laplacian in label 

propagation framework.  

 

 

1. INTRODUCTION 

As semi-supervised classifiers, graph based label propagation 

(LP) methods experienced fast growth over the past 

decade(Zhu, 2005), (Camps-Valls, 2007) and (Bai, 2013). 
The most common method such as Mincut(Blum et al., 2001), 

Gaussian Random and Harmonic Functions(Zhu, et al. 2003) 

short by GRHF, Local and Global Consistency(Zhou, et al. 

2003) short for LGC, Linear Neighbor Propagation(Wang, et al. 

2007) short for LNP, and the local tangent space 

alignment(Zhang, et al. 2004) short for LTSA, are widely 

applied to data classification by numerous researchers. For 

hyperspectral image classification, supervised classifier required 

a large number of labeled data due to the high dimensional 

spectra. However, labeled instances are often difficultly, costly, 

or time consuming to obtain. Those semi-supervised learning 

algorithm that utilizes both labeled and unlabeled data is widely 

employed to solve the small size sample problem. 

 

Usually, the graph Laplacian matrix in graph based label 

propagation method is obtained by constructing the data 

adjacency graph and choosing graph edge weights. k-nearest-

neighbor method used to construct the data adjacency, and 

graph weight are chosen by binary weights, heat kernel weights, 

or Euclidean distance weights. However, these weights are only 

determined by the pair wise distances between data points, 

ignoring the neighborhood relations and thereby potentially 

underutilizing available information. 

 

In this paper, we proposed a novel graph in label propagation 

framework which unites both the adjacency graph and the 

similar graph. Since manifold learning(ML) approach is capable 

of exploring the manifold geometry of data(Belkin, et la. 2006), 

it is suitable for calculating the graph Laplacian in LP. The 

laplacian eigenmaps(LE) which proposed by (Belkin, 2003), 

was used to construct the adjacency graph in this paper. The 

class-probability of each unlabeled point can be calculated by 

solving an l1 optimization problem, which has a significant 

influence to construct the similar graph. In this study, the 

adjacency graph and similar graph are liner combine in label 

propagation framework. Experiments on real hyperspetral data 

sets demonstrate the effectiveness of our approach. 

 

The rest of the paper is outlined as follows. Section 2 reviews 

the framework of label propagation, and the way to construct 

the adjacency graph and similar graph. Section 3 shows the 

experimental results, where four methods are contrast on two 

hypersprctral data, and two factors that influence the graph 

Laplcain are analyzed. Finally, conclusions are summarized in 

section 4.  

    

2. MTHODOLOGY 

2.1 The label propagation framework 

Under the regularization framework, the graph based label 

propagation is used exploit the geometry of the marginal 

distribution. Let Xl=[x1,…,xl] denote l labeled data with labels 

1{ } {1,...C}l

i iy   and Xu=[xl+1,…,xl+u] denote u unlabeled data. 

The regularized function to be minimized is defined as: 
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where  V = some loss function 

γI = the corresponding regularization parameters.  
2

f  = the manifold regularization term that reflects 

the smoothness of f on the data manifold, which defined as: 
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where   

M = D-W is the graph Laplacian matrix 

W = the edge weights of graph 

D = the diagonal degree matrix of W given by     
∑    

   
   .  

1/(l+u)2 = the normalizing coefficient, the nature scale 

factor for the empirical estimate of Laplace operator. 
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It should be note that, T

1[ ( ),..., ( )] = +l uf x f x bf K , where b 

is the bias term.  ̃                is normalized graph 

Laplacian. 

 

2.2 The couple graph based label propagation method 

In this paper, we attempt to build a couple graph combine with 

the adjacency graph and the similar graph. The geometry of data 

is modeled with the couple graph where nodes consist of both 

labeled and unlabeled data points connected by edge weights. 

The couple graph Laplacian matrix is defined as follows: 

 

           ̃                                  (3) 

 

Where  M = the couple graph Laplacian matrix, 

   = the adjacency graph matrix, 

  ̃ = the similar graph matrix, a is the scale factor for the 

empirical estimate of adjacency graph and similar graph. 

   = the tradeoff between the similar graph and the 

adjacency graph. 

 

L=D-W is the adjacency graph Laplacian, given by
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Construct the adjacency graph 

with labeled and unlabeled data is using k-nearest-neighbors, 

where spectral information divergence (SID) was utilized to 

choose neighbors of the adjacency graph. Then calculate the 

edge weight matrix W by using LE. 

 

  ̃   ̃   ̃  is the similarity graph Laplacian, that
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 % %f fL . where  ̃ is the edge weight of 

the similar graph. The main question is to find the similar data 

pairs and calculate the edge weight. We try to choose the similar 

data pairs, by solving an l1 optimization problem on sparse 

representation (SR): 

 

Firstly, calculate the class-probability of each unlabeled 

data by.
 

T

0
ˆ(( ) )=i LP  X Y , where (X0)i is an unlabeled data , ̂

is the sparse coefficient vector. l c

L R Y is the true label of 

train data.  

 

Secondly, utilize the class-probability to find the similar 

data pairs. Calculate the class-probability by: 
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where 

 xi , xj = unlabeled, or one labeled and the other 

unlabeled label 

  (     ) = the probability of xi and xj that have the same 

label. 

 

Set T as an empirical threshold, when  (     )    denote xi 

and xj may have the same label, and set the weights of xi and xj 

as           ‖     ‖
 
    . On the otherwise, if 

 (     )    denotes xi and xj may have the different labels, set 

Wij=0. 

 

3. EXPERIMENTAL 

3.1 Data Description 

Two hyperspectral data were used for the experiment. The first 

one was collected by the Hyperion scanner on the EO-1 satellite, 

which has a 30-m spatial resolution, covering the 357-2576nm 

of the spectrum in 10-nm bands, over Okavango Delta 

Botswana (BOT) in May 2001. The second is the 224-Band 

AVIRIS data set, which was collected over the Kennedy Space 

Center(KSC) in March 1996, KSC has a 18-m spatial resolution 

and a 10-nm spectral resolution over the range of 400-2500nm. 

After removing the un-calibrated and noisy bands, 149-bands 

and 176-bands are remained for BOT and KSC data 

respectively. 

 

In the BOT data, labeled data consist of nine identified land 

cover types, and classes 3(Riparian) and classes 6 (Woodlands) 

are very alike among the total 9 classes. In the KSC data, 13 

land cover classes were labeled. The classes of Cabbage 

Palm/Oak Hammock (classes 4) and Slash Pine (classes 5)are 

all trees that grow in upland; they have mixed spectral 

signatures with subtle differences and are very difficult to 

classify. Focusing on the classification of the novel gaph 

Laplacian, we choose classes 3 and classes 6 of BOT data, 

classes 4 and classes 5 of KSC data as our experiment data sets. 

“One Versus Other” classification strategy can be used in the 

multiclass classifier. All the points will be dividing into two 

subsets, one for training and other for testing. 

 

3.2 Analysis of CGLP 

In the proposed couple graph based label propagation (CGLP) 

method, we chose radial basis function (RBF) kernels, 

 (     )        ‖     ‖
 
     , where δ is the kernel 

width, and varied in the range {0.001,0.01,0.1}. For the other 

three parameters (k,    and T): Parameters k which is the 

number of nearest neighbors in adjacency graph was varied in 

the range {5,...,20} with step of 5; T is an empirical threshold of 

similar probability, which varied in the range (0.1,0.9) with step 

of 0.1;   appoint the tradeoff between the similar graph and the 

adjacency graph, which varied in the range (0,1) with step of 0.1. 

 
Figure 1 Classification results by different methods over 

Classes 3 and Classes 6 of BOT data 

 

Four classifiers were applied on the two data sets. There are 

GRHF, LNP, NSRC(Non-negative Sparse Representation 

Classifier) and CGLP. NSRC is sparse representation based 

supervised method. It should be note that the k-NN method was 

employed as the adjacency measurement to search neighbors 
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and use radial basis function to calculate graph weigh for the 

first two label propagation method. We randomly selected 

labeled data with number of {3, 5, 10, 20, 30} for each class. 

The average classification accuracies of 20 replications are 

obtained, where the results with the optimal parameter 

combination chosen by exhaustive search are shown in figure 1 

and figure 2. 

 
Figure 2 Classification results by different methods over 

Classes 4 and Classes 5 of KSC data  

 

Figure 1 shows the overall accuracies of Classes 3 and Classes 6 

of BOT data set and figure 2 shows the overall accuracies of 

Classes 4 and Classes 5 of KSC data set, by using the above 

four method. Several observations can be obtained: 1) CGLP 

always produced higher classification accuracies than other four 

methods. For KSC data, CGLP produce slightly better 

performance than other three methods. For BOT data, CGLP 

produce significantly outperform than other three methods. 2) 

With the number of labels decreases, CGLP have a better 

performance than NSRC. 3) Both KSC and BOT data, the 

NSRC improved fast by enhance the number of label data.  

 

3.3 Analysis of threshold T and coefficient   

To analyze the impact of the empirical threshold T to graph 

Laplacian, we selected 30 labeled samples for each class, and 

changed the parameter T with the steps of 0.1 in the range 

{0.3, …, 0.7}, δ and k as shown above. It can be seen that the 

value of T can not be too big or too small. The T value is 

meaningless if T is too small. Too big, the similar graph has 

little contribution to graph Laplacian. Through the adjustment 

of T, and seek out those important and meaningful points. The 

random test data for Classes 4 and Classes 5 of KSC data 

were presented in figure 3. 

 
To analyze the impact of tradeoff between the similar graph and 

the adjacency graph. We fixed the empirical threshold T fixed 

to 0.5, and selected 30 labeled samples for each class, δ and k as 

shown above. According to experience, the value of   better 

less than 0.5. We changed the parameter    with the steps of 0.1 

in the range {0, … , 0.4}. With the increase of  , the 

classification accuracy is increased. The random test data 

experimental results of Classes 4 and Classes 5 of KSC data 

were presented in figure 4. 

 

 

 

Figure 3 the impact of T for Classes 4 and 5 of KSC data 

 

 

 

Figure 4 the impact of   or Classes 4 and 5 of KSC data 

 

4. CONCLUSION 

This paper proposed a couple graph Laplacian, which unite both 

the adjacency graph and the similar graph in label propagation 

framework. For the adjacency graph, k-nearest-neighbors used 

to choose neighbors, and LE used to calculate the graph weights. 

For the similar graph, similar data pairs were chosen by solving 

an l1 optimization problem on SR. Contrast with two label 

propagation methods, there are GRHF, LNP, and NSRC, for 

hyperspectral image classification. From the experiments on 

two hyperspectral data sets, we conclude that the CGLP has a 

better performance than other three classifiers. Moreover, when 

the number of label point is small, CGLP achieve superior 

accuracies. In addition, NSRC improved fast by enhance the 

number of label data, especially for BOT data.  

 

It should be note that multi-graph by other characteristics also 

can be unite in this framework. However, the combination of 

similar graph and adjacency graph is not only limited to linear 

method. Combine multi-graph with nonlinear method will be in 

the future work. 
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