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ABSTRACT: 

 

Near surface air temperature (NSAT) is a primary descriptor of terrestrial environment conditions. The availability of NSAT with 

high spatial resolution is deemed necessary for several applications such as hydrology, meteorology and ecology. In this study, a 

regression-based NSAT mapping method is proposed. This method is combined remote sensing variables with geographical 

variables, and uses geographically weighted regression to estimate NSAT. The altitude was selected as geographical variable; and the 

remote sensing variables include land surface temperature (LST) and Normalized Difference vegetation index (NDVI). The 

performance of the proposed method was assessed by predict monthly minimum, mean, and maximum NSAT from point station 

measurements in China, a domain with a large area, complex topography, and highly variable station density, and the NSAT maps 

were validated against the meteorology observations. Validation results with meteorological data show the proposed method 

achieved an accuracy of 1.58℃. It is concluded that the proposed method for mapping NSAT is very operational and has good 

precision. 
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1. INTRODUCTION 

Near surface temperature air temperature (NSAT) is a primary 

descriptor of terrestrial environment conditions (Guan et al. 

2013). NSAT is the most important component of global 

climate change and is sensitive to local anthropogenic 

disturbance (Hansen et al. 2006). Thus, the availability of 

NSAT with high spatial resolution is deemed necessary for 

several applications such as hydrology, meteorology and 

ecology (Zhu et al. 2013). 

Considering the high spatial autocorrelation of NSAT, several 

spatial interpolation methods have been employed to generate 

spatially continuous NSAT from point station measurements, 

including inverse distance weighting (IDW), Spline, Kriging, 

and even more sophisticated methods, such as co-Kriging and 

elevation-de-trended Kriging techniques(Duhan et al. 2013). 

However the performance of interpolation methods is highly 

dependent on the spatial density and distribution of weather 

stations. Satellite remote sensing provides the ability to extract 

spatially continuous information of land surface characteristics 

such as land surface temperature (LST) and the vegetation index 

(VI), which are closely relative to NSAT. The regression 

analysis methods for estimating NSAT take advantage of the 

correlations between NSAT and other environmental variables. 

Multiple linear regression (MLR) analysis using both remote 

sensing and geographical variables, including LST, VI, latitude, 

altitude, and so on, as predictors was performed to model NSAT 

(Cristóbal et al. 2008). However, a global regression analysis 

may miss local details that can be significant if the relationship 

is spatially non-stationary. The geographically weighted 

regression (GWR) is a local regression model, in which the 

contribution of an observation site to the point to be calculated 

is weighted using a distance decay function based on the 

assumption that the observations near to the point to be 

calculated would have more influence on the estimate than 

those further away (Fotheringham et al. 2003). 

In this paper, a GWR based NSAT mapping method is proposed, 

in which remote sensing variables and geographical variables 

were considered. The adaptive bi-square function is selected as 

the kernel type for GWR model; and the golden section search 

is used to determine the optimal bandwidth. MODIS LST and 

Normalized Difference vegetation index (NDVI) data were 

employed to predict NSAT. The performance of the proposed 

method was assessed by mapping monthly minimum, mean and 

maximum NSAT in China for a period of 12 months of 2010, 

and the estimated NSAT were validated against the meteorology 

observations. 

 

2. DATA 

2.1 Satellite Data 

The MOD13A3 is the monthly VI product at a 1 km spatial 

resolution produced by averaging one month of daily VI 

product. MOD11A2 is a tile of the eight-day LST product at a 

resolution of 1 km produced by averaging eight days of the 

daily LST product. In this study, NDVI from MOD13A3 and 

the daytime LST from MOD11A2 data were employed to 

predict the monthly NSAT. The MOD13A3 and MOD11A2 

products covering China territory in 2010 were collected . The 

MODIS products were preprocessed, including projection, 

mosaicking, and clipping, using MRT software. In addition, 
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monthly LST data were generated by averaging four MOD11A2 

data sets for each calendar month of 2010. 

  

2.2 Station Data 

Daily NSAT (i.e., minimum, maximum, and mean NSAT) data 

in 2010 were provided by the China Meteorological Data 

Service Center. These data were collected from 2132 

meteorological stations in China. To predict monthly NSAT, the 

daily NSAT were aggregated to monthly NSAT. In this study, 

we have selected 80% of the meteorological stations (i.e., 1706 

stations) for predicting NSAT and the remaining 20% (i.e., 426 

stations) were used for validation. 

 

2.3 Elevation Data 

The global digital elevation model (DEM) at the spatial 

resolution of 90 m that was produced by the NASA Shuttle 

Radar Topographic Mission (SRTM) was collected. In this 

study, the SRTM DEM data were resampled from 90 m to 1 km 

to render them consistent with the MODIS product 

 

3. METHODOLOGY 

3.1 Principle of Geographically Weighted Regression 

The GWR is a regional regression method that can be used to 

investigate the non-stationary relationship between the 

dependent and explanatory variables(Foody 2003; 

Fotheringham et al. 2003). The GWR expands the standard 

multiply linear regression model for use with spatial data. With 

geographically weighted regression, the relationship between 

the dependent variable Y and explanatory variables Xi can be 

expressed as: 
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where  0 ,j ju v  and  ,i j ju v  are the intercept and the slope 

estimated at the jth point, respectively; 
j

 is the regression 

residual at the jth point; and  ,j ju v  are the coordinates of the 

jth point. Unlike a global regression method, the coefficients in 

Equation (2) are estimated by the observations around the jth 

point, and the contribution of an observation site to the 

coefficients estimate for the jth point is weighted using a 

distance decay function based on the assumption that the 

observations near to the jth point would have more influence on 

the estimate than those further away. Therefore, the coefficients 

can be obtained from: 
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where  ˆ ,j ju v  represents the local coefficients to be 

estimated at location  ,j ju v ; X and Y are the vectors of the 

explanatory and the dependent variables, respectively; and 

 ,j jW u v  is the weight matrix. Gaussian and bi-square kernel 

functions are two common kernel types for the GWR model. 

The Gaussian kernel weights gradually decrease from the center 

of the kernel, but never reach zero. The bi-square kernel 

function has a clear-cut range where the weighting is non-zero 

(Chen et al. 2015). In this study, the adaptive bi-square function 

is used to derive the weight matrix: 
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where dij is the Euclidean distance between the jth point and 

neighboring observation i and b is the kernel bandwidth. 

Golden section search is used to determine the optimal 

bandwidth. and is excluded in the GWR model. 

 

3.2 Mapping Near Surface Air Temperature based on 

Geographically Weighted Regression 

Because the GWR is a regional model, the effect of latitude on 

NSAT can be assumed to be constant. In this study, predictor 

variables used for GWR-based NSAT mapping include altitude, 

LST, and NDVI, The basic assumption of this method is that 

altitude, LST, and NDVI have a significant correlation with 

NSAT. However, the values of altitude and NDVI are usually 

constant over regions covered by snow and lakes, which 

contradicts this assumption, so the pixels of water body and 

snow are removed from further analysis. Figure 1 represents the 

flow chart of the GWR based mapping NSAT method proposed 

in this study. 
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Figure 1 The flow chart of method for mapping near surface air 

temperature proposed in this study. 

 

4. RESULT 

4.1 Result 

Figure 2 represents regression residual map and NSAT map 

derived using the GWR model in June 2010. The NSAT map 

shows some texture information, and includes some ‘Nodata’ 

due to the missing data (e.g., snow cover and water body). The 

estimated NSAT in China continent in June 2010 is between 

5 °C and 33 °C. As shown in Figure 2 (b), the NSAT in most 

regions of China is greater than 20 °C, except for the high 

terrain regions, such as the Tibetan Plateau and Tianshan 

Mountains. The residuals derived using GWR model range from 

-5 °C to 5 °C, and most of them range from-2 °C to 2 °C. 
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Figure 2 (a) The regression residual derived from GWR model 

in June 2010, (b) NSAT map derived using the GWR model in 

June 2010. 

 

Figure 3 represents the RMSE and R2 of the predicted monthly 

minimum, mean, and maximum NSAT using the GWR model in 

China in 12 months of 2010. In the colder months (i.e., from 

January to March and from October to December), the RMESs 

of the predicted monthly mean NSAT using the GWR model are 

lower than those of the monthly maximum NSAT, and the 

RMSEs of the predicted monthly maximum NSAT are lower 

than those of the predicted monthly minimum NSAT. In the 

warmer months (i.e., from April to September), the RMSEs of 

the predicted monthly mean and minimum NSAT are similar, 

and both of them are lower than those of the predicted monthly 

maximum NSAT. The mean RMSEs for 12 months using the 

GWR model are 1.52 °C for monthly mean NSAT, 1.62 °C for 

monthly minimum NSAT, and 1.62 °C for monthly maximum 

NSAT, respectively. The Total RMSE for three NSAT variables 

is 1.58 °C. The R2 for monthly minimum, mean, and maximum 

NSAT are similar in the colder months. The R2 decrease in the 

order from monthly minimum, to mean, to maximum NSAT in 

the warmer months. 

 

 
Figure 3 RMSE and R2 of the predicted monthly minimum, 

mean, and maximum near surface air temperature using the 

geographically weighted regression model in China in 12 

months of 2010. 

 

Figure 4 represents the RMSE and R2 of the predicted monthly 

mean NSAT using GWR model for varied terrain types in China 

in 12 months of 2010. As shown in Figure 4, with month 

change, the RMSEs using the GWR model for plateaus, hills, 

and plains are stable, while the RMSEs for basins are variable. 

The mean RMSEs of 12 months using the GWR model are 

2.09 °C for plateaus, 1.41 °C for basins, 0.48 °C for plains, and 

1.13 °C for hills, respectively. The mean RMSE for plateaus 

and basins is higher than that of hills and plains. One possible 

reason for this is that the weather station density of hills and 

plains is greater than that of plateaus and basins. The R2 values 

of GWR model decrease first and then increase as the month 

progresses for all terrain types. The mean R2 values of 12 

months using the GWR model are 0.85 for plateaus, 0.87 for 

basins, 0.94 for plains, and 0.94 for hills, respectively. 
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Figure 4 RMSE and R2 of the predicted monthly mean near 

surface air temperature using the geographically weighted 

regression model for varied terrain types in China in 12 months 

of 2010. 
 

5. CONCLUSION 

In this study, a regression-based NSAT mapping method is 

proposed. This method is combined remote sensing variables 

with geographical variables, and uses geographically weighted 

regression to obtain continuous surface of NSAT. The 

meteorology observations were used to validate the NSAT 

retrieved using the proposed method. NSAT variable type, 

season and terrain type have impact on predicting NSAT using 

GWR model. Validation results with meteorological data show 

the proposed method achieved an total accuracy of 1.58℃.  
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APPENDIX (OPTIONAL) 

Any additional supporting data may be appended, provided the 

paper does not exceed the limits given above.  
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