
INFACTORY : A RESTFUL API SERVER FOR EASILY CREATING INDOORGML

Hyemi Jeong, Hyung-gyu Ryoo, Ki-Joune Li∗

Dept. of Computer Science&Engineering, Pusan National University, Kumjeong-Gu, 46241, Pusan, South Korea
- (hyemi.jeong, hgryoo, lik)@pnu.kr

Commission IV, WG IV/4

KEY WORDS: Data construction, Indoor space, OGC, IndoorGML, RESTful API, PostGIS

ABSTRACT:

Recently, services and systems that deal with indoor spatial information are increasing. Each service or system adopts a data model
that can store necessary indoor space data according to its purpose. However, since the content of indoor spatial information that can
be expressed by each data model is differ and limited, it is necessary to exchange information between the systems in order to use rich
indoor spatial data. OGC has published IndoorGML as the standard for exchange of indoor spatial information data between systems.
To use IndoorGML as an exchange format, the software which supports IndoorGML construction is fundamental. But there are several
limitations in the previous IndoorGML data editing tools. There is no editing tool that can generate all the features which are defined
by IndoorGML. If users want to generate IndoorGML data, they need to consider the requirements of the IndoorGML. In this study, we
implemented InFactory, which is a IndoorGML generation tool based on RESTful API supporting users to easily construct IndoorGML
data. Users can easily create IndoorGML without knowledge on the schema and requirements of IndoorGML using InFactory. In
addition, developers on IndoorGML data construction tools such as GUI editors do not have to implement duplicated IndoorGML
generation program for their systems. Using Java API that supports CRUD on IndoorGML data, users can also deal with IndoorGML
data in their applications.

1. INTRODUCTION

Nowadays, there is an increasing number of services dealing with
indoor space. For example, indoor space services include indoor
maps from Google Maps1, and indoor maps from OpenStreetMap
(OSM)2. The indoor spatial information service adopts the data
model for the representation and storage of the necessary data
according to the purpose of the service. In this situation, an ex-
change format is required for smooth interface between various
indoor spatial information services.

The Open Geospatial Consortium (OGC)(Open Geospatial Con-
sortium, 1994) has published IndoorGML(Open Geospatial Con-
sortium, 2014) as the standard exchange format for indoor spa-
tial information exchange. IndoorGML is designed to represent
and exchange indoor spatial information among indoor space data
services. The existing indoor spatial information standards such
as CityGML(Open Geospatial Consortium, 2008), KML(Open
Geospatial Consortium, n.d.), and IFC(Liebich, 2013) can repre-
sent indoor space as the building construction elements, but can
not express the information necessary for route guidance(Li et al.,
2015). It is the reason why we need IndoorGML. However, the
environment supporting IndoorGML is still not enough.

In particular, this paper discusses in detail the environments that
support the generation of IndoorGML data. The generation of
IndoorGML is difficult for the following reasons. First, In-
doorGML is expressed in Extensible Markup Language(XML),
and we need encoding or decoding according to XML schema.
Second, it is not easy to express relationships such as associations
and hierarchical structures that IndoorGML includes. When cre-
ating the IndoorGML data, it is necessary to consider the schema

∗Corresponding author

or requirements of the IndoorGML. To solve these difficulties,
users need a tool to easily generate IndoorGML data.

In this background, we implemented InFactory3 to handle In-
doorGML data. InFactory is a server that supports the generation
of IndoorGML data. It provides the following functions.

• The indoor spatial information of the users or the data cre-
ated by the editing tool can be converted into IndoorGML
and stored in the IndoorGML XML format.

• Provides a Java library that generates and edits IndoorGML
data so that user can use the Java library to construct their
own indoor spatial services.

• Users avoid repeat implementations such as a conversion
tool of IndoorGML for each service by using InFactory as
shown in Figure 1.

Before InFactory was implemented, each system needs to make
its own IndoorGML generator or converter which fits on their
program. However, if users apply InFactory, they can easily
generate IndoorGML data by implementing only the client pro-
gram that communicates with the Representational State Trans-
fer(RESTful)(Richardson, Leonard and Ruby, Sam, 2008) server
of InFactory.

This paper has the following structure. Section 2 introduces
related research. Section 3 explains the basic concepts of In-
doorGML to understand this paper. Section 4 describes the func-
tions which are provided by InFactory. Section 5 describes the
structure of InFactory. Section 6 describes how IndoorGML fea-
tures are represented in InFactory. Section 7 explains the design
of the schema of PostGIS which is used in InFactory. Section 8

1https://www.google.com/maps/about/partners/indoormaps/
2https://www.openstreetmap.org/ 3https://github.com/STEMLab/InFactory

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-77-2018 | © Authors 2018. CC BY 4.0 License.

77

mailto:lik)@pnu.kr
http://www.google.com/maps/about/partners/indoormaps/
http://www.openstreetmap.org/

Figure 1. The systems which can use InFactory

introduces the use cases of InFactory and Section 9 concludes the
paper with future works of this paper.

2. RELATED STUDIES

In order for users to take full adventage of IndoorGML, the Eco-
System for IndoorGML should be implemented as shown in Fig-
ure 2. The eco-system of IndoorGML consists of several steps;
collecting indoor spatial raw data, generating IndoorGML data,
validating the generated data, sharing the data, and building an
application or service using IndoorGML data. In this paper, we
will cover the step to construct IndoorGML.

Figure 2. The Eco-System of IndoorGML

2.1 Previous researches

Before this study, there are i-locate4 and JInEditor5 which are
editing tools that can generate IndoorGML. i-locate is an Euro-
pean project to develop an open geoportal that generates and pro-
vides indoor spatial information based on Location Based Ser-
vices (LBS). i-locate supports the ability to edit IndoorGML’s
navigation network on OpenStreetMap (OSM). However, i-locate
can only create network information and can not edit the geome-
try of interior space which can be expressed by IndoorGML.

JinEdit is a Java-based graphical editor for building IndoorGML.
The user constructs the IndoorGML information by directly
drawing the geometric data of IndoorGML, the positional rela-
tionship between the spaces, and the guidance network through

4http://www.i-locate.eu/
5https://github.com/STEMLab/JIneditor

Type of functionality The kinds of editor
i-locate JInEditor InFactory

Cellular Space x o o
Topology o o o
Geometry x o o

Multi-Layered
Space Model x x o

Table 1. The comparison between IndoorGML editing tools

the graphic UI. However, it is difficult to handle due to the lack
of user-friendly interface and it only supports a subset of the fea-
tures defined in IndoorGML.Table 1 shows a summary on the
previous IndoorGML editing tools.

2.2 Motivation of this study

The editing tools mentioned above are limited to express some
parts of IndoorGML elements or are difficult to use due to badly
designed user-interface. In addition, since the constraints of In-
doorGML and the encoding of XML schema are difficult, it is
difficult for user to generate IndoorGML by themselves. There-
fore, we need a tool that users can use to generate IndoorGML
more easily.

Therefore, this study tries to support the following factors
through InFactory. First, development of a tool that includes all
the elements of IndoorGML supporting the latest schema of In-
doorGML. Second, we develop a tool that allows users to easily
generate IndoorGML data without knowing the technical details
related to IndoorGML. Third, we want to provide IndoorGML
creation and management functions in the form of RESTful
Server which can be flexibly used in various IndoorGML build-
ing environments. Table 1 compares the capabilities that InFac-
tory can support with other editing tools. i-locate and JInEdi-
tor support only some of the functionality needed to generate In-
doorGML data, while InFactory supports all of them.

3. INTRODUCTION OF INDOORGML

In order to understand the work presented in this paper, we must
understand the concept of IndoorGML(Kang and Li, 2017). This
chapter briefly describes the concept of IndoorGML. The core
concepts of IndoorGML are based on cellular space model, topol-
ogy, geometry and multi-layered space model. Next we also
introduce the data model that deals the main concepts of In-
doorGML. Finally we explain the XML schema of IndoorGML.

3.1 The basic concepts of IndoorGML

• Cellular Space Model

IndoorGML expresses indoor space as a set of unit spaces.
This approach is called the cellular space model. In this
model, unit space can be determined according to the role
or meaning of space. For example, in the interior space, the
unit space can be defined according to the usage such as the
meeting room, the hall, and the porch.

• Topology
In IndoorGML, the topological relation among unit spaces is
represented by a graph using Poincare duality. A unit space
corresponds to a node of a graph, and a connection or adja-
cency unit spaces corresponds to an edge of the graph. For
example, a space such as a door or a corridor that connects
between shared surfaces or unit spaces can be expressed as
an edge.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-77-2018 | © Authors 2018. CC BY 4.0 License.

78

http://www.i-locate.eu/

• Geometry of Indoor Space
IndoorGML represents the geometry of interior space based
on the geometric model defined in ISO 19107(ISO/TC211,
2007). IndoorGML includes the following interior space ge-
ometry. First, IndoorGML expresses the geometry of each
unit space in three-dimensional or two-dimensional geome-
try. For example, if the unit space is a room, the geometry
of the room can be expressed as a two-dimensional or three-
dimensional geometry. The unit space is represented by a
Solid in three dimensions or a Surface in two dimensions.
Second, we can express the geometry of the elements con-
necting two unit spaces. For example, a door connecting a
room and a hallway can be an element connecting two unit
spaces, and a geometry is expressed as a surface in three di-
mensions or a curve in two dimensions. Third, IndoorGML
expresses the geometry of node and edge which have duality
relation with the unit spaces and the connections by points
and curves, respectively.

• Multi-Layered Space Model
One space can be expressed differently depending on vari-
ous uses in an indoor space. In IndoorGML, this concept
is called the multi-layered space model. The multi-layered
space model can represent one space in several layers. Each
layer can be defined according to various meanings or pur-
poses.

3.2 The data model of IndoorGML

The Figure 3 is the UML model of the IndoorGML core mod-
ule. IndoorGML core module represents the main concept of
IndoorGML. The unit space is represented by CellSpace. The
connection elements between the unit spaces are represented by
CellSpaceBoundary. The set of CellSpace and CellSpaceBound-
ary make up PrimalSpaceFeatures. IndoorGML expresses Multi-
ayered Space Model as a set of SpaceLayer corresponding to one
layer. The SpaceLayer represents not only the graph expressing
topological relationship between the unit space, but also the infor-
mation of the space which can be differ as the usage of the space
in the form of graph. The nodes of the graph represent State, and
the edges represent Transition. A collection of SpaceLayers gath-
ers to create a MultiLayeredGraph. The elements mentioned are
IndoorGML Complex Features.

3.3 XML Schema of IndoorGML

IndoorGML is an XML-based schema. The XML schema of In-
doorGML has following characteristics. First, it has hierarchical
structure. Users who read IndoorGML data will retrieve the data
according to this structure. Second, it has several elements which
help to increase the expressiveness of the schema. Figure 4 shows
a part of the XML schema of IndoorGML. PrimalSpaceFeatures
has the attribute whose name is cellspaceMembers. This attribute
is used to express the list of CellSpace under PrimalSpaceFea-
tures in the XML schema. Third, it can express the relationship
among the IndoorGML elements by inserting the data of the ref-
erenced data or using XLink. For example, CellSpace can hold
the whole data of the State for expressing the duality relation-
ship, or just hold the XLink to the State. This way gives users the
various choices of expression.

4. THE FUNCTION OF INFACTORY

4.1 Support for expressing basic concept of IndoorGML

InFactory can create all IndoorGML Complex Features that rep-
resent the core concept of IndoorGML as addressed at Table 1.
InFactory creates IndoorGML Complex Features that represent
them in the Celluar Space, Topology, and Multilayered space
models. Geometry information can be generated by extending
the Simple Feature Geometry model(Open Geospatial Consor-
tium, 2015). It also supports the validation whether the generated
information meet the requirements such as the multiplicity or the
characteristics of the IndoorGML schema.

4.2 CRUD(Create,Read,Update,Delete) API

To manage IndoorGML features in InFactory, you need a func-
tion to enforce CRUD for the IndoorGML Feature. InFactory
implements the CRUD API, which implements CRUD function-
ality for IndoorGML Features. In the case of an attribute ex-
pressing a relationship in the IndoorGML Feature, the identifier
of the referencing element is input as a parameter of the func-
tion. In other words, you can pass only the identifier information
without parameterizing the entire data of the referencing element.
This allows users to easily use the CRUD API in their services or
programs without having to worry about the data types used in
IndoorGML.

4.3 RESTful API

This research supports RESTful API to use InFactory regardless
of user’s environment. Users can create IndoorGML by writing
their own indoor space information according to the predefined
Javascript Object Notation (JSON) based form and transmitting
it to InFactory’s server using HTTP Method (GET, POST, PUT,
DELETE) . Table 2 is an example of requesting information about
the CellSpace among the implemented RESTful API interfaces.

HTTP
verb Path CRUD

Action Purpose

POST /cellspaces/:id create Create one cellspace
object.

PUT

/cellspaces/:id

update

Modify the informa-
tion of the cellspace
object.

GET

/cellspaces

Read

Return the id list
of the already saved
cellspaces object.

GET /cellspaces/:id Read Invoke a CellSpace
object with that id.

DELETE /cellspaces:/ Delete Delete the CellSpace
object with that id.

Table 2. The list of CRUD function related to CellSpace Type

We defined the JSON-based form according to the structure of
the feature class. Figure 5 is an example of JSON data for en-
tering CellSpace. In this case, we use the Well Known Text
(WKT)(Open Geospatial Consortium, 2015) format as the input
form of the geometric information. However, WKT does not sup-
port 3D geometry such as Solid in ISO19107 and we extended
WKT to support the 3D geometry used in IndoorGML. In the fig-
ure below, we can see that the geometry of CellSpace is defined
as a solid type of WKT that is extended in three dimensions.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-77-2018 | © Authors 2018. CC BY 4.0 License.

79

Figure 3. UML of the IndoorGML data model

Figure 4. part of the XML schema of IndoorGML

Figure 5. The JSON format for representing CellSpace

4.4 Unordered creation of IndoorGML Complex Feature

When the user enters the data related IndoorGML to InFactory,
it is not necessary to follow the order of the hierarchical struc-
ture of IndoorGML. InFactory accepts the data that makes up the

IndoorGML in any order. And InFactory loads the necessary In-
doorGML element data in order of hierarchy when it needs to
export IndoorGML as XML data. For example, a user sends a
request to InFactory to generate data representing that a transi-
tion connects two states. If you follow the IndoorGML schema,
you must first transfer the state data and transfer the transition
data. However, you do not need to follow the order when you
send data to InFactory. Thus, using InFactory allows users to
generate IndoorGML documents without deep understanding of
IndoorGML.

5. THE STRUCTURE OF INFACTORY

InFactory has the following structure which is described in Figure
6;RESTful API Servlet,CRUD Java API, IndoorGML Complex
Features, PostGIS(PostGIS Development Team, 2018), Binder,
IndoorJSON Convector, and JAXB Converter.

1. HTTP Request from User : The client program of user sends
the HTTP request to InFactory.

2. RESTful API : The RESTful API handles Http requests sent
by users.

3. CRUD API : This generates, retrieves, modifies, and re-
moves the IndoorGML complex feature data. The RESTful
API calls the appropriate CRUD API according to the type
of request sent by the client program.

4. IndoorGML Complex Feature : InFactory saves the In-
doorGML Complex Feature data in Java Class format.

5. PostGIS : To deal with the big sized data, InFactory stores
the IndoorGML Complex Feature data in PostGIS.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-77-2018 | © Authors 2018. CC BY 4.0 License.

80

6. Binder : Binder converts the IndoorGML data stored in
the Java class to the Java Architecture for XML Bind-
ing(JAXB)(Ort and Mehta, 2003) class. Binder checks the
requirements of the IndoorGML data whether the element
referenced by the Java class of the IndoorGML Complex
Feature actually exists, multiplicity is satisfied,hierarchical
structure can be made by the elements, and so on. This en-
sures that the input IndoorGML data meets the requirements
of the IndoorGML. InFactory only confirms those things at
once when exporting the IndoorGML data as XML. This
prevents the program from repeatedly running to check the
requirements.

7. IndoorJSON Converter : If the user requests the IndoorGML

Complex Feature element data by GET instead of the In-
doorGML document, IndoorJSON Converter converts it to
JSON format and outputs it.

8. JAXB Converter : The Converter converts the JAXB class

to XML. JAXB supports encoding and decoding between
Java class instances and XML Schema components. It was
implemented using open-source ogc-schemas6.

Figure 6. Overall Structure of InFactory

6. REPRESENTATION OF INDOORGML FEATURE

6.1 Geometry

IndoorGML expresses the geometry data as a geometric model of
OGC GML 3.2.1. Because GML is a complex geometry model,
it is difficult and complex to implement all the geometry models
in GML. So we first used the geometry model defined in OGC’s
Simple Feature Geometry (SFG)(Open Geospatial Consortium,
2015). SFG provides the geometry model as Figure 7.

However, since the above geometric model is limited to two di-
mensions, there are the following problems in expressing the
three-dimensional geometry required by the IndoorGML. First,
the SFG uses a two-dimensional (x, y) coordinate system. Sec-
ond, 3D geometry objects - especially Solid - are not included. To
solve these two problems, the coordinates are extended to three
dimensional (x, y, z) coordinates, and Solid is expressed as closed
and oriented given MultiPolygon. In Figure 7, the red box is ex-
tended part for Solid.

Although we used SFG as a simple geometric model in this devel-
opment, IndoorGML will eventually adopt the geometric model

6https://github.com/highsource/ogc-schemas

defined in ISO 19107. In IndoorGML, however, the use of a wide
variety of 3-dimensional geometric elements, such as the Curved
Surface, as defined in ISO 19107, is not useful and is complex to
implement. SFG was used in this development because 3D geom-
etry elements used in IndoorGML can be expressed sufficiently
by SFG and its extension.

6.2 IndoorGML Complex Feature

We implemented the Java Class in consideration of the
characteristics of the IndoorGML Complex Feature to store
the IndoorGML information in the InFactory. IndoorGML
schemas such as various relationship-association, aggregation,
composition- and multiplicity among IndoorGML elements have
been considered. In this study, among the components of In-
doorGML, the elements that inherit the AbstractFeature of GML
are implemented in Java class. The attribute representing the re-
lationship is represented by the object’s Id. Other attributes are
stored according to Java data type. Table 3 defines how relation-
ships related to CellSpace are implemented as attributes of a Java
class. In CellSpace, duality is an attribute that expresses the du-
ality relationship between State and CellSpace.

Attribute Type Description

id string id of this instance

parentId

string
id of the instance which
is PrimalSpaceFeature Type
and refers this instance

duality

string

id of the instance of State
Type which has duality rela-
tionship with this instance

geometry

string

id of the instance which hold
the geometric data of this in-
stance

patialboundedBy

string[]

the list of id of CellSpace-
Boundary Type which is the
boundary of this instance

Table 3. The main attributes in the Java class of CellSpace Type

7. THE SCHEMA DESIGN OF POSTGIS

In order to handle a large amount of data, it is effective to store
the feature of the IndoorGML in the database rather than to use
a simple file system. InFactory stores IndoorGML Features in
PostGIS. In this study, the schema of PostGIS was created con-
sidering the following factors. First, the schema should be able
to express various relations of IndoorGML. Second, it must be
able to avoid excessive join operations that can occur depending
on the expression of the relationship.

Accordingly, the database schema is designed as follows. First,
we classify the relationships among the elements in the In-
doorGML according to the relationship of the schema. Table 4
summarized the classification of the relationship and the imple-
mentation of the schema accordingly.

In Table 4, the some relationships are 1:1 or 1:N type so there
will be few join operations. But the relationship between State
and Transition is N:M relationship. So many joins occur in this
relationship. Because State and Transition are components of a
graph that shows the topology relation between CellSpace. We
need to continue join operation to obtain connection information
among Transitions and States when searching graph. This leads

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-77-2018 | © Authors 2018. CC BY 4.0 License.

81

Figure 7. The extended model of Simple Feature Geometry

Relationship in IndoorGML Type
PrimalSpaceFeatures-CellSpace

1:N

PrimalSpaceFeatures-CellSpaceBoundary
SpaceLayer-State

SpaceLayer-Transition
CellSpace-CellSpaceBoundary

CellSpace-State 1:1 CellSpaceBoundary-Transition
State-Transition N:M

Table 4. The categories of relationships in IndoorGML

to excessive joins and overhead. In order to avoid this, we can
save the connection between state and transition in a separate join
table so that the graph can be searched with only the join table.
Figure 8 shows the database schema that designed the join table.
The join table is named Network. Network table only contain
connection information between State and Transition.

8. USE CASE

8.1 Sample program

We implemented a simple Web client program to check the
server communication capabilities of InFactory. This program is
JavaScript-based and sends requests that follow the Http method
to InFactory. Figure 9 shows the process of creating an In-
doorGML XML document and the Http method request for it.
It first sends a POST request to the InFactory’s RESTful server
to generate a document, and then repeatedly sends Http method-
based requests to CRUD on the IndoorGML Feature. After send-

Figure 8. The part of the schema in PostGIS

ing all the requests for document creation and sending a GET re-
quest, InFactory generates the IndoorGML document and sends
it to the client program. Figure 10 shows the IndoorGML data
received as a result of a GET request.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-77-2018 | © Authors 2018. CC BY 4.0 License.

82

Figure 9. The process of sample program

Figure 10. The data created by sample program

8.2 Practical Usecase : InEditor

This chapter describes applications that use InFactory. Currently,
InEditor7 is an application that uses InFactory. InEditor is a web
program that edits IndoorGML data graphically based on We-
bGL. Figure 11 is the user interface of InEditor. InEditor uses
InFactory as following processes. First, InEditer edits the In-
doorGML data and sends a request to the InFactory server in the
defined JSON format. Next, InFactory parses the input JSON
data, converts it into IndoorGML data in xml format, and sends
XML data to InEditor. If the data sent by InEditor does not meet
the requirements of IndoorGML, it sends an error message in-
forming the contents of the unsatisfied requirement instead of the
XML data.

If InEditor generated IndoorGML information, it would be dif-
ficult to bind the generated indoor information data to the In-
doorGML XML element. And it also would be difficult for InEd-
itor to process large amount of data. However, InEditor can easily
generate IndoorGML data by simply requesting InFactory to gen-
erate data based on RESTful API.

9. CONCLUSION

IndoorGML was selected as the standard in OGC for data ex-
change between various systems dealing with indoor spatial in-
formation. However, few applications have been able to gener-
ate IndoorGML data. In order to generate IndoorGML data di-
rectly, it is necessary to consider the schema of IndoorGML and
to encode XML format data. Therefore, it is difficult to generate

7https://github.com/STEMLab/InEditor

Figure 11. InEditor

IndoorGML data. Therefore, this study has implemented InFac-
tory, a RESTful Server that generates and manages IndoorGML
data. Users can easily manage indoor space information between
various platforms in IndoorGML format using InFactory. This
enabled InFactory to provide the support for a standard called In-
doorGML.

The contribution of this study is summarized as follows.

• InFactory contributes to the step of generating IndoorGML
data in the Eco-System of IndoorGML.

• Users can easily create IndoorGML without knowing the re-
quirements of IndoorGML through InFactory.

• In the indoor spatial information service, using the InFac-
tory’s RESTful API and the CRUD API can save the effort
of creating the IndoorGML generation tool.

The current development of InFactory is uploaded to the Github
repository (https://github.com/STEMLab/InFactory). Users who
wish to contribute to the Eco-system or IndoorGML spread of
IndoorGML uses InFactory at any time via the repository or may
contribute to the development of InFactory.

ACKNOWLEDGEMENTS

This work was partially supported by BK21PLUS, Creative Hu-
man Resource Development Program for IT Convergence and
also supported by a grant(18NSIP-B135746-02) from National
Spatial Information Research Program (NSIP) funded by Min-
istry of Land, Infrastructure and Transport of Korean govern-
ment.

REFERENCES

ISO/TC211, 2007. ISO/TS 19139: 2007 Geographic
information–Metadata–XML Schema Implementation.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-77-2018 | © Authors 2018. CC BY 4.0 License.

83

Kang, H.-K. and Li, K.-J., 2017. A Standard Indoor Spatial Data
ModelOGC IndoorGML and Implementation Approaches. IS-
PRS International Journal of Geo-Information 6(4), pp. 116.

Li, K.-J., Kim, T.-H., Ryu, H.-G. and Kang, H.-K., 2015. Com-
parison of CityGML and IndoorGML-A Use-Case Study on In-
door Spatial Information Construction at Real Sites. Journal of
Korea Spatial Information Society 23(4), pp. 91–101.

Liebich, T., 2013. IFC4-The new buildingSMART standard.
BuildingSMART International.

Open Geospatial Consortium, 1994. Open Geospa-
tial Consortium. Open Geospatial Consortium
http://www.opengeospatial.org/.

Open Geospatial Consortium, 2008. OpenGIS City Geography
Markup Language (CityGML) Encoding Standard. Document
Number 12-019 OGC.

Open Geospatial Consortium, 2014. OGCQR

ument Number 14-005r5 OGC.
IndoorGML. Doc-

Open Geospatial Consortium, 2015. Geographic information–
Well- known text representation of coordinate reference systems.
Document Number 12-063r5 OGC.

Open Geospatial Consortium, n.d. OGC KML. Document Num-
ber 12-007r2 OGC.

Ort, E. and Mehta, B., 2003. Java architecture for xml binding
(jaxb). Sun Developer Network.

PostGIS Development Team, 2018. PostGIS 2.4.4. PostGIS
https://postgis.net/ (5 Apr 2018). Accessed on 2018-05-08.

Richardson, Leonard and Ruby, Sam, 2008. RESTful web ser-
vices. O’Reilly Media, Inc.

Revised May 2018

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-77-2018 | © Authors 2018. CC BY 4.0 License.

84

http://www.opengeospatial.org/
http://www.opengeospatial.org/

	Commission IV, WG IV/4
	ABSTRACT:
	1. INTRODUCTION
	2. RELATED STUDIES
	2.1 Previous researches
	2.2 Motivation of this study
	3. INTRODUCTION OF INDOORGML
	3.1 The basic concepts of IndoorGML
	3.2 The data model of IndoorGML
	3.3 XML Schema of IndoorGML
	4. THE FUNCTION OF INFACTORY
	4.2 CRUD(Create,Read,Update,Delete) API
	4.3 RESTful API
	4.4 Unordered creation of IndoorGML Complex Feature
	5. THE STRUCTURE OF INFACTORY
	6. REPRESENTATION OF INDOORGML FEATURE
	6.2 IndoorGML Complex Feature
	7. THE SCHEMA DESIGN OF POSTGIS
	8. USE CASE
	8.2 Practical Usecase : InEditor
	9. CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES

