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RESEARCH

Plant breeding is an integrative discipline that requires 
trial design, data analysis, and decisions to be optimized for 

efficiency and effectiveness. Despite the widespread use of compu-
tation in plant breeding, there are few convenient tools that bring 
together the necessary functions of experimental design, data 
analysis, and breeding method optimization in terms of genetic 
gain (DG) and resource factors in a way that is readily accessible 
to the breeder through a single interface.

Choice of an efficient breeding strategy in terms of achievable 
DG per cycle of selection is important. In designing the optimal 
structure of a breeding program with the resources available, 
there are important decisions to be made at the onset of cultivar 
development and revised during the breeding process. These 
decisions will depend on key information such as the genetic 
structure of breeding populations under selection (Moll and 
Stuber, 1974; Milligan et al., 1990). Estimates of genetic param-
eters, such as additive and nonadditive components of variance 
and narrow-sense heritability, enable prediction of expected 
DG using the range of conventional breeding methods available 
(Dudley and Moll, 1969; Falconer, 1989). The basic model used 
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in the prediction of DG or response to selection is R = 
ih2sp, where, i is the intensity of selection, h2 is the appro-
priate estimate of heritability of the phenotypic values of 
individuals or families and sp is the phenotypic standard 
deviation among individuals or families (Falconer, 
1989). Based on the type of selection unit—single plants, 
parental clones, or half-sib (HS) or full-sib (FS) among- 
and within-family progeny—several variations to this 
model are available (Hallauer and Miranda, 1988; Casler 
and Brummer, 2008).

Genotype ´ environment interactions are a funda-
mental problem when breeding for broad adaptation 
(Eisemann et al., 1990) and must be considered when 
planning breeding programs. Thus, the availability of 
estimates of the size and nature of genotype ´ environ-
ment  interactions will influence the design of optimal 
multienvironment testing strategies (Nyquist, 1991; 
Cooper et al., 1993). Cooper et al. (1993) proposed a 
descriptive framework to study the influence of genotype 
´ environment  interactions on the response to selection. 
Three basic components associated with their approach 
were: (i) defining the population of target environ-
ments, (ii) analysis of the variation among genotypes, and 
(iii) prediction of the response to selection in the target 
population of environments.

In forage cultivar development programs, breeding 
material (e.g., HS or FS families and experimental vari-
eties) is generally evaluated across multiple years, seasons, 
and locations. These trials generate large amounts of data 
that are often underused in terms of determining quan-
titative genetic information of value to the enhancement 
of selection and breeding strategy implementation. One 
of the major limitations to generating this informa-
tion and its application in applied breeding programs is 
the lack of availability of user-friendly software to field 
breeders. Although there are robust multifaceted statis-
tical software such as GenStat (Payne et al., 2009) and 
SAS (SAS Institute, 2011) available, these programs do 
not provide direct estimates of information vital to the 
enhancement of applied breeding strategies (e.g., rate of 
DG and associated cost per selection cycle, and summa-
ries of genotype performance across target environments). 
There is often a lack of familiarity with the application 
of basic quantitative genetic theory to analyze field trial 
data, which complicates estimation of genetic param-
eters using analysis outputs from software programs such 
GenStat and SAS. Today, the integration of novel selec-
tion methods such as genomic selection (GS) (Meuwissen 
et al., 2001) into forage cultivar development programs 
further emphasizes the importance of quantitative genetic 
information. The application of this information to assess 
the relative efficiency of new selection techniques in 
comparison with existing breeding practices, in terms of 
rate of DG and associated costs per unit of gain, is crucial 

to planning breeding programs. The ability of breeders 
to make strategic decisions will be improved by the avail-
ability of decision support software that will provide a 
seamless progression from experimental design to analysis 
of field data (i) to generate best linear unbiased predictors 
(BLUPs) (White and Hodge, 1989; Galwey, 2006), (ii) to 
summarize large multilocation breeding trial data, (iii) to 
estimate additive genetic variation and associated interac-
tion effects, and (iv) to compare the relative efficiencies 
among breeding strategies. Information significant to 
the design and implementation of more efficient cultivar 
development programs could be generated by software 
simulation of breeding strategies based on selection among 
and within genetic families, and different combinations 
of year, season, site, replicate, and sample numbers with 
associated costs per selection cycle.

One of the key objectives of any breeder is to increase 
the rate of DG. The development of plant breeding 
software capable of providing decision support (i) to 
improve the efficiency of experimental trial design and 
data analysis of phenotypic data from field trials, and (ii) to 
enable assessment of breeding strategies and implementing 
new selection techniques such as GS in terms of rate of DG 
per cycle of selection and associated cost, will offer value to 
breeders. This paper describes a new and unique decision 
support tool implemented in R (R Core Team, 2016), 
called DeltaGen. The objective of developing DeltaGen 
was to provide breeders with a user-friendly quantitative 
genetic platform that will enable a seamless progression 
through different stages and methods of field data analysis. 
This includes data summary and quality assessment, linear 
mixed model analysis, generation of BLUPs, best linear 
unbiased estimates, and variance-covariance components, 
estimation of quantitative genetic parameters, simulation 
of rate of DG, and calculation of associated cost per cycle 
of selection. DeltaGen also provides multivariate analysis 
methods that include pattern analysis of genotypic perfor-
mance across environments, and index selection based on 
the Smith–Hazel (SH) model (Smith, 1936; Hazel, 1943). 
In making the tool of value to teachers and learners, an 
important feature of DeltaGen is that basic theoretical 
information at each stage of quantitative genetic analysis 
is also provided in the associated “Help” screen.

While most of the components in the tool we report 
on the development of in this paper are of value for plant 
breeding focused on any sexually reproducing species and 
trait or combination of traits, we will focus on examples in 
forage breeding and associated breeding strategies. Forage 
breeding is the domain of what breeders consider to be 
minor crops, and have often lagged behind in terms of 
software tools available to breeders, and realized levels of 
genetic improvement.

In this paper, key components of DeltaGen are demon-
strated by analysis of three different sets of data generated 
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from the linear mixed model  analysis can be uploaded directly 
into the associated pattern analysis component. The link is indi-
cated in Fig. 1. The links between different analysis components 
within DeltaGen provide a complete solution to carrying out 
basic breeding trial data analysis and further quantitative genetic 
and breeding method interrogation, as required.

DeltaGen has two “Help” options: the “Help” option on 
the main tool bar provides access to the “Quick start manual” 
(users guide), and the “Help” option in each of the data analysis 
windows provides information on the quantitative genetic 
models used and key associated references.

In this paper, the key data analytical components in 
DeltaGen are demonstrated using three field trial datasets, 
referred to as case studies.

Datasets
Case Study 1: Identification of Perennial Ryegrass 
Breeding Lines with Broad and Specific Adaptation
Data were generated from perennial ryegrass field trials planted 
to evaluate breeding lines at Palmerston North (40.20237° S, 
175.28220° E), Ruakura (37.78° S, 175.32° E), and Kerikeri 
(35.22° S, 173.94° E), New Zealand, in late winter 2013. At each 
location, 107 entries (83 breeding lines and 24 commercial check 
cultivars) were planted in 1-m rows separated by 30-cm spacing, 
according to a randomized complete block design consisting of 
three replicates. The multilocation trial was conducted for a period 
of 3 yr under rotational sheep grazing, during which seasonal 
(spring, summer, autumn, and winter) growth was visually scored 
using a qualitative scale of 0 (no observed growth) to 9 (very high 
growth). The data analyzed are saved in the file “CaseStudy 1” as 
one of the example datasets provided in DeltaGen.

from forage breeding trials in Australia, New Zealand, and 
the United States. The data are analyzed using DeltaGen 
to show: (i) variance-covariance component analysis, 
(ii) prediction of DG using different breeding methods, 
including GS and its simulation, together with associated 
costs (NZ$) per cycle of selection, (iii) pattern analysis, 
(iv) multivariate analysis, and (v) SH index (Smith, 1936; 
Hazel, 1943) calculation and associated predicted DG. 
These analyses will be associated with three case studies: 
(i) an analysis of multilocation trials of perennial ryegrass 
(Lolium perenne L.) breeding lines for seasonal herbage 
growth across three key grazing environments in New 
Zealand, (ii) a quantitative genetic analysis of peren-
nial ryegrass HS families, evaluated at one location in 
Australia to estimate potential DG in seasonal herbage 
growth using different breeding methods and their asso-
ciated cost estimation, (iii) multivariate analysis of three 
traits—biomass dry matter yield (DMY), cell wall ethanol 
(CWE), and Klason lignin (KL)—in switchgrass (Panicum 
virgatum L.) based on HS family evaluation at two loca-
tions in the United States.

To validate the accuracy of key estimates such as 
variance components and their associated standard errors, 
the estimates from DeltaGen were compared with outputs 
from GenStat 7.1 (VSN International, 2003).

MATERIALS AND METHODS
Software
DeltaGen is a web-based application developed using the 
computer language R (R Core Team, 2016) and its package Shiny 
(Chang et al., 2017). Shiny provides the web framework for all 
the applications in DeltaGen. Using the R–Shiny combination 
has provided the opportunity for developing real-time analyt-
ical solutions and decision support tools for plant breeding in a 
single analytical package. Using this software platform enables 
advanced analytics, complex simulations, routine calculations, 
and interactive visualization to be conducted in DeltaGen.

The framework of DeltaGen is based on a step-by-step 
approach to data analysis (Fig. 1). This will allow users to follow 
an intuitive and logical process from basic analysis of field data 
to more in-depth quantitative genetic parameter estimation 
and simulation of breeding strategies. Once data are uploaded 
into DeltaGen, data quality checks (e.g., data distribution plots, 
pivot tables, and heat maps of field data, which provide graphical 
summaries of information) can be conducted and then progress 
to linear mixed model analysis, multitrait analysis of variance 
(MANOVA), and pattern analysis (a combination of cluster 
and principal component analyses), as required. As indicated in 
Fig. 1, both the linear mixed model  and MANOVA analyses 
components are linked to the quantitative genetic simulation and 
the selection index components of DeltaGen. For analyses that 
require a graphical summary of genotype performance across 
environments, the genotype ´ environment two way BLUP 
data matrix (genotypes, entry numbers, and names shown in 
the first column followed by columns 2, 3, 4…..etc., consisting 
of environment-specific BLUP values for each entry) generated 

Fig. 1. Framework of the integrated data analysis components 
in DeltaGen. LMM, linear mixed models; MANOVA, multivariate 
analysis of variance.
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Case Study 2: Genetic Analysis of 90 Half-Sib 
Families Generated from a Breeding Population 
of Perennial Ryegrass
The field trial was performed at the experimental farm of the 
South West Technical and Further Education (TAFE) campus 
at Glenormiston, VIC (38.860° S, 142.5860° E, 114 m asl) in 
Australia. The trial was planted in spring 2007. The 90 HS 
families of perennial ryegrass containing AR1 endophyte 
(Easton and Fletcher, 2007) were hand sown into 1-m rows. 
The experimental layout was a row column design ( John, 1987) 
with three replicates. The rows were 35 cm apart. The trial was 
conducted for a period of 3 yr. Seasonal growth during spring, 
summer, autumn, and winter was scored on a qualitative scale 
of 1 (poor) to 5 (high). After every growth score, the rows were 
uniformly defoliated using a lawn mower to a height of 4 cm 
above the soil surface to simulate grazing. The harvested foliage 
was removed from the trial area. The data analyzed are saved in 
the file “CaseStudy 2” as one of the example datasets provided 
in DeltaGen.

Case Study 3: Multivariate Analysis of Half-Sib 
Families of Switchgrass.
The data matrix used for multivariate analyses was generated 
from switchgrass HS family evaluation field trials conducted 
at two locations: Arlington (43.30° N, 89.35° W) and Marsh-
field (44.64° N, 90.13° W), WI, USA. A total of 147 HS 
families were sown in spring 2008 using a five-row drill 
planter that placed the seeds at a depth of 5 to 10 mm in the 
soil. The sward plot size was 0.9 × 1.1 m, with 0.9 m between 
rows and the adjoining columns. The data matrix used in the 
analysis presented is based on the traits biomass DMY (Mg 
ha−1), CWE (mg g−1), and KL (mg g−1) measured in Years 1 
and 2 of the trial. Detailed descriptions of the two locations 
and trait measurements are documented in Jahufer and Casler 
(2015), where a similar trial based on a different set of switch-
grass HS families is reported. The data analyzed are saved in 
the file “CaseStudy 3” as one of the example datasets provided 
in DeltaGen. 

Variance Component Analysis
Case Study 1
Variance component analyses of seasonal growth were 
conducted using the residual maximum likelihood (REML) 
(Patterson and Thompson, 1971, 1975; Harville, 1977) proce-
dure in DeltaGen and GenStat 7.1. (VSN International, 2003). 
Linear mixed models were used for analysis of the data within 
individual locations and across all locations.

The linear mixed model used for analysis within individual 
locations across seasons and years was
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+ + + + + e

    gs  gy

gsy sy  gb

ijkl i j kij ik

jkl ikjlijk jk il

Y M g s y

b
	

[1]

where Yijkl is the value of an attribute measured from entry i 
in replicate l in season j of year k and i = 1, ..., ng, j = 1, ..., ns, 
k = 1, ..., ny, and l = 1, ..., nb, where g, s, y, and b are entries, 
seasons, years, and replicates, respectively; M is the overall 
mean; gi is the random effect of entry i, N(0, s2

g); sj is the 

fixed effect of season j; yk is the fixed effect of year k; bjkl is 
the random effect of replicate l within season j, within year k, 
N(0,  s2

b); (gs)ij is the random effect of the interaction between 
entry i and season j, N(0, s2

gs); (gy)ik is the random effect of the 
interaction between entry line i and year k, N(0, s2

gy); (gsy)ijk 
is the random effect of the interaction between entry i, season 
j, and year k, N(0, s2

gsy); (sy)jk is the interaction between the 
fixed effects season j and year k; (gb)il is the effect of the inter-
action between entry line i and replicate l, N(0, s2

gb); and eijkl 
is the residual effect for entry i in replicate l in season j, during 
year k, N(0, s2

e).
The linear mixed model used for analysis across locations, 

seasons, and years was
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where Yijklm is the value of an attribute measured from entry i 
in replicate m at location j in season k of year l and i = 1, ..., ng, 
j = 1, ..., nl, k = 1, ..., ns, l = 1, ..., ny, and m = 1, ..., nb, where g, 
s, y, and b, are as described in Eq. [1] and l are locations. For a 
detailed definition of the model effects as in Eq. [2], please refer 
to Supplemental File 1.

An estimate of entry mean broad-sense heritability (h2
b), 

(Falconer, 1989) across years, seasons, and locations was 
calculated by selecting the heritability option provided in 
DeltaGen. The broad-sense heritability (h2

b) calculation was 
based on the equation 

e

s
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s s s s s s s
s + + + + + + +

2
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b 2 2 2 2 2 2 2
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where ny, ns, nl, and nr are the number of years, seasons, locations, 
and replicates, respectively, and s2

g is the estimated genotypic 
variation among the 107 entries of perennial ryegrass.

Case Study 2
A linear mixed model analysis using the REML procedure was 
conducted to estimate additive genetic variance among the 90 
HS families and associated interaction components. The linear 
mixed model used was

( ) ( )= + + + + +

+ + + + e

     fy   fs

    

ijklmn i j jkij ik

jkl jklm jkln ijklmn

Y M f y s

b r c
	

[4]

where Yijklmn is the value of an attribute measured from HS 
family i in row m and column n of replicate l nested in season 
k in year j and i = 1, ..., nf, j = 1, ..., ny, k = 1, ..., ns, l = 1, ..., 
nb, m = 1, ..., nr, and n = 1, ..., nc, where f, y, s, b, r, and c are HS 
families, years, seasons, replicates, rows, and columns, respec-
tively. For a detailed definition of the model effects as in Eq. [4], 
please refer to Supplementary File 1.

Analysis of variation among the 90 HS families (s2
f ) 

provided an estimate of 1/4 additive genetic variation 
(s2

A) (Falconer, 1989). Selecting the heritability option 
provided in DeltaGen generated an estimate of narrow-sense 
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true breeding values (BV) and their associated genomic esti-
mated breeding values(GEBV) (Meuwissen et al., 2001; Heslot 
et al., 2012). This equation is a modification of the equation 
for ∆G resulting from correlated response to selection proposed 
by Falconer (1989), CRY = kchXhYrAsPY. By expanding hY, CRY 
= kchXrA(sAY/sPY)sPY = kchXrAsAY. If we assume that hX = 1 
(Dekkers, 2007a, 2007b), CRY = kcrAsAY (Lorenz, 2013; Desta 
and Ortiz, 2014; Bassi et al., 2015).

In DeltaGen, this equation is also used to predict DG using 
a combination of among-family selection on phenotype and 
within-family selection using GS, based on a modification of the 
equation proposed by Casler and Brummer (2008) for among- 
and within-family selection, where within-family selection 
is conducted on a secondary trait X. Using the approach of a 
correlated response to GS, in the within-HS-family selection 
component, the modified Casler and Brummer (2008) equation 
used in DeltaGen is

- -

s
= + s

s

2
A

p gsy HS f f w w A A
PF

1 4 3
A WF

2
Y

X XY Yk c k c h r 	[6]

where ApWFgsy–HS is the predicted DG for trait Y using a 
combination of phenotypic among-HS-family selection and 
within-HS-family GS; s2

AY is the additive genetic variance 
for the trait Y under selection; sAY is standard deviation of 
additive genetic variance for trait Y, as the within-HS-family 
genetic variance is 3/4s2

A, =3 4 3 2 ; sPF is the among-
family phenotypic standard deviation for trait Y, kf and kw and 
the among- and within-HS-family selection pressure, respec-
tively; cf and cw are the  among- and within-HS-family parental 
controls (for HS family selection, c = 0.5, and for FS family 
selection, c = 1; Casler and Brummer, 2008), respectively; hX is 
the square root of heritability of trait X (GS) and is assumed to 
be 1; and rA–XY is the GS accuracy. Please note that, in practice, 
the hX = 1 assumption could result in overestimation of the 
correlated response in trait Y. There is an option in DeltaGen 
to change hX if an appropriate estimate is available or for the 
purpose of simulation. In DeltaGen, all the breeding equations 
are also available for the analysis of FS family data.

The estimates of additive genetic variance and associated 
interactions from the genetic analysis of seasonal growth data in 
Case Study 2, based on HS families, were used to demonstrate 
the application of DeltaGen to compare predicted DG among 
the breeding strategies HS, HSPT, and ApWFgsy–HS. Simula-
tions based on varying year and or replicate number in the HS 
and ApWFgsy–HS breeding strategies were also performed. For 
simulation using ApWFgsy–HS, an assumed genomic accuracy 
(rA–XY) of 0.25 was used, based on the range rA–XY = 0.010 to 
0.315 for perennial ryegrass growth reported by Grinberg et 
al. (2016). The associated cost per cycle of selection for each 
breeding method was calculated. The inputs used for cost 
calculation are approximate estimates in New Zealand dollars. 
A guide to calculating the cost of GS (the cost of generating a 
single GEBV) is presented in the “Quick start manual” (user’s 
guide) under “Help” in DeltaGen.

Case Study 3
The 147 switchgrass HS family ́  three-trait (DMY, CWE, and 
KL) data matrix was used to demonstrate multivariate analysis 
procedures in DeltaGen. The first step towards generation of 

heritability (h2
n) on a family mean basis across seasons and 

years (Nyquist, 1991):

e

s
=

ss s
s + + +

2
2 f
n 22 2

fy2 fs
f

s y s y r

h

n n n n n

where ns, ny, and nr are the number of seasons, years and repli-
cates, respectively.

Significance Testing of Genotypic and Family 
Variance Components
The REML analysis output in DeltaGen included estimates of 
± standard error for all variance components. In addition, 95% 
confidence interval estimates for variance components are also 
provided. To further evaluate results generated from DeltaGen, 
the statistical significance of the variance components was 
further assessed using the likelihood ratio test (Holland et al., 
2002; Galwey, 2006).

Fixed Effects Analysis
Please note that the F ratio values calculated for the fixed 
effects, y, s, l, and y ´ s interactions in Case Studies 1 and 2 
were based on ratios, with the estimated error mean square as 
the denominator. This does not account for the hierarchical 
structure in the data and may result in reduced p values. If a 
complete fixed effects analysis, which also includes entries (g) 
and their interactions with y, s, l, and r, is required for data with 
complex hierarchical structures, as in Case Studies 1 and 2, a 
split-plot or split-split-plot type analysis is recommended (Steel 
and Torrie, 1981; Nyquist, 1991).

Predicting Genetic Gain and Simulation
The genetic analysis component within DeltaGen enables 
prediction of rate of DG, calculation of cost ($) per cycle of 
selection, and the opportunity to conduct associated simulation. 
The simulation option enables manipulation of the number of 
years, seasons, locations, replicates, and samples for GS accuracy. 
Selection intensity can also be varied in any simulation.

Once trial data are uploaded and analyzed using the univar-
iate option, if the data have a HS or FS family structure, clicking 
on the “Simulation” option will open the “Breeding Strategies 
and Simulation” window. This provides access to DG predic-
tion equations for a range of forage breeding strategies proposed 
by Casler and Brummer (2008): HS (half-sib family), HSPT 
(HS with progeny testing) and AWF-HS (among and within 
HS). In addition, the application of strategies based on correla-
tion response to selection is also available: CRY-HS (correlated 
response to selection in primary trait Y while selecting for a 
secondary trait X) and CRYWFX–HS (correlated response to 
selection in a primary trait Y when within-family selection is 
based on a secondary trait X).

In DeltaGen the correlated response of a trait Y resulting 
from GS is estimated using the equation DGY = kchXrAsAY, 
where k is the selection pressure, c is the parental control, hX is 
the square root of heritability of trait X (in this case, GS), rA is 
the GS accuracy, and sAY is the standard deviation of additive 
genetic variance for trait Y that is under selection. The GS 
accuracy is the Pearson’s correlation coefficient between the 
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this two-way matrix was to conduct a variance component 
analysis for each trait separately, based on a completely random 
linear model, using the REML procedure. The linear model 
was

( ) ( )= + + + + +

+ + + + e

     fy   fl

    

ijklmn i j jkij ik

jkl jklm jkln ijklmn

Y M f y l

b r c
	

[7]

where Yijklmn is the value of an attribute measured from HS 
family i in row m and column n of replicate l nested in location 
k in year j and i = 1, ..., nf, j = 1, ..., ny, k = 1, ..., nl, l = 1, ..., 
nb, m = 1, ..., nr, and n = 1, ..., nc, where f, y, l, b, r, and c are 
as described in Eq. [4]. For a detailed definition of the model 
effects as in Eq. [7], please refer to Supplemental File 1.

The estimated variance components for the traits were 
used to calculate h2

n on a family mean basis across locations and 
years (Nyquist, 1991). Predicted DG was also calculated based 
on the HS breeding strategy.

Pattern Analysis
DeltaGen provides an option for graphically summarizing 
large entry ´ trait and entry´ location two-way data matrices 
using a combination of cluster analysis and principal compo-
nent analysis—a method of analysis termed “pattern analysis” 
(Cooper and Hammer, 1996). Cluster analysis of the entry ´ 
multiple trait or location matrix, produced from the analysis of 
variance, is used to generate entry groups. This is followed by 
principal component analysis (ordination) of the same entry´ 
multiple trait or location matrix to generate a biplot. Each of the 
entry groups identified from clustering are assigned a different 
color and superimposed on the biplot. The result is a graphical 
summary of information within the entry ´ multiple trait or 
location matrix.

In DeltaGen, pattern analysis can be conducted within the 
univariate models option to summarize trials across multiple 
years, seasons, and location, and also directly under the 
“Pattern Analysis” option provided on the main control bar. 
The “Pattern Analysis” option is for the analysis of two-way 
entry ´ multiple trait data matrices.

In DeltaGen, cluster analysis is performed using a hier-
archical agglomerative classification procedure with squared 
Euclidean distance as a measure of dissimilarity (Burr, 1968, 
1970; Wishart, 1969), and the Hartigan clustering algorithm 
(Hartigan, 1975) is used as the grouping strategy. Principal 
component analysis is conducted according to Jolliffe (2002).

Before conducting cluster analysis, the data are standard-
ized to remove scaling effects (Cooper and DeLacy, 1994) using 
the “Standardization” option in DeltaGen.

In Case Study 1, pattern analysis was conducted on the 
entry ´ location BLUP matrix to summarize performance of 
the 107 perennial ryegrass entries (83 breeding lines and 24 
commercial check cultivars) across the locations Palmerston 
North, Ruakura, and Kerikeri.

Multivariate Analysis
In Case Study 3, a MANOVA was conducted using a linear 
model similar to Eq. [1], but completely random, which 
included HS families, years, locations, replicates, HS ́  year and 
HS ´ location interactions. The MANOVA output consisted 

of matrices of sums of cross products and sums of mean cross 
products for the different factors in the linear model. Variance-
covariance and genetic correlation matrices for the three traits 
DMY, CWE, and KL were also generated (results are presented 
in Supplemental File 2).

Selection Index
DeltaGen computes a selection index based on the SH model. 
A SH index was computed using the switchgrass multitrait data 
from 147 HS families in Case Study 3. The objective was to 
identify superior HS families on a multitrait scale, showing 
genetic worth (I) associated with the potential to simultane-
ously increase DMY and CWE (strong positive correlation 
with ethanol) and decrease KL, targeting fermentation plat-
forms ( Jahufer and Casler, 2015).

The SH index is used to identify genetic families on their 
individual genetic worth (I) or breeding value, based on a set of 
chosen traits. The SH index equation is

b = P−1Aw	 [8]

where P and A are phenotypic and additive genetic vari-
ance-covariance matrices, respectively, and b and w are 
vectors of index coefficients and economic weightings. Defi-
nition of an economic value for a plant trait and converting 
it to a realistic weighting can be complicated. In DeltaGen, 
a subjective approach (Baker, 1974) based on identifying 
optimum sets of weightings (w) (Christophe and Birot, 1983; 
Dean et al., 1986) is used. In DeltaGen, different sets of w can 
be entered manually, and multiple iterations using the SH 
index equation can be performed. The optimum set of w will 
be associated with index coefficients (b) that will generate 
HS family indices (I ) resulting in the desired predicted DG 
at a specific selection pressure, estimated according to Van 
Vleck et al. (1987) as

D = sf PY IY YG k cr 	
[9]

where ΔGY is the predicted DG for individual trait Y in the 
index; kf is the among-HS-family selection pressure; c is the 
parental control; rIY is the correlation between the calculated 
SH indices I for the individual HS families and their BLUP 
values for trait Y; and sPY is the among-HS-family phenotypic 
standard deviation of the BLUP values for trait Y.

With regard to the 147 HS families of switchgrass, expected 
DG for each trait was estimated at 20% selection pressure (k = 1.4).

RESULTS
Case Study 1
Comparison of the variance components estimated 
using DeltaGen and GenStat indicate essentially iden-
tical results (Table 1). There was significant (P < 
0.05) genotypic variation among the 107 entries for 
mean seasonal herbage growth across years within 
each location, and also across all locations, seasons, 
and years. The importance of conducting multiloca-
tion trials across multiple years for perennial ryegrass 
is highlighted by the significant (P < 0.05) genotype ´ 
location (s2

gl) and genotype ´ location ´ year (s2
gly) 
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interaction variance components estimated for seasonal 
herbage growth. These estimates indicated that the 
relative performance of the 107 entries changed across 
the three locations and 3 yr. There was also significant 
(P < 0.05) interaction of the entries with seasons and 
years (Table 1). The significant (P < 0.05) genotypic 
variation for herbage growth among the 107 entries 
across locations, seasons, and years indicated the poten-
tial for selection of lines with broad adaptation across 
the target population of environments represented by 
Palmerston North, Ruakura, and Kerikeri, which are 
key perennial ryegrass evaluation sites in New Zealand. 
The high line mean broad-sense heritability (h2

b) esti-
mates from DeltaGen provide a rough estimate of the 
potential genetic variation available for selecting lines 
for specific or broad adaptation for seasonal herbage 
growth across the three locations.

Pattern analysis of the 107-entry ´ three-location 
BLUP matrix of seasonal herbage growth, generated from 
REML analysis in DeltaGen, was conducted using the 
“Pattern Analysis–Cluster” and “Pattern Analysis–PCA” 
options within the univariate analysis menu. These analyses 
generated dendrograms of location and line grouping (results 
presented in Supplemental File 3) and the biplot presented 
in Fig. 2. This biplot provided a graphical summary of 
seasonal growth performance of the 107 entries across the 

three evaluation sites Palmerston North, Ruakura, and 
Kerikeri. The correlation structure among the three sites, 
based on performance of the 107 entries, was indicated 
by the angles between the directional vectors. The asso-
ciation between Palmerston North, Ruakura, and Kerikeri 
was positive (angles between the directional vectors are 
at <90°). However, Palmerston North and Ruakura had 
a stronger positive correlation (Fig. 2). Of the three entry 
groups generated from cluster analysis, Group 1, with 58 
members, consisted of entries with above-average seasonal 
herbage growth, especially those within the 95% prob-
ability error ellipse (Mandel, 2013). Breeding lines 53, 54, 
81, and 99 in Group 1 showed above-average performance 
for mean seasonal growth across all three sites (Fig. 2). These 
lines showed higher performance than any of the commer-
cial check cultivars. Lines 57 and 58 showed good potential 
specific adaptation to Palmerston North and Ruakura, and 
lines 90 and 92 showed good potential specific adaptation 
to Kerikeri. However, another option would be to combine 
(polycross) elite genotypes from all the eight breeding lines 
and develop a population with improved mean seasonal 
herbage growth across all three locations.

Case Study 2
The mixed model REML analysis of seasonal herbage 
growth data collected across 3 yr at Glenormiston 

Table 1. Case Study 1: genotypic (s2
g), genotype ´ year interaction (s2

gy), genotype ´ season interaction (s2
gs), genotype ´ 

location interaction (s2
gl), genotype ´ season ´ year (s2

gsy) interaction, genotype ´ location ´ year (s2
gly) interaction, genotype 

´ replicate interaction (s2
gb), replicates within seasons and years (s2

y/s/b), replicates within locations, seasons, and years (s2
y/s/l/b), 

and pooled error (s2
e) variance components, their associated standard errors (±SE), and line mean broad-sense heritability 

(h2
b), estimated from seasonal herbage growth (scored on a 0–9 scale) of the 107 perennial ryegrass entries evaluated at 

Palmerston North (PN), Ruakura (RU), and Kerikeri (KE) across seasons and years. The level of significant differences for each 
of the fixed effects terms of year, season, location, and their interaction are also presented.

Source of 
variation

PN across years  
and seasons

RU across years  
and seasons

KE across years  
and seasons

Across years, seasons,  
and locations

DeltaGen GenStat DeltaGen GenStat DeltaGen GenStat DeltaGen GenStat

s2
g 0.464 ± 0.078 0.464 ± 0.078 3.068 ± 0.481 3.068 ± 0.481 0.559 ± 0.131 0.559 ± 0.131 0.932 ± 0.172 0.932 ± 0.172

s2
gy 0.077 ± 0.017 0.077 ± 0.017 0.420 ± 0.066 0.420 ± 0.066 0.408 ± 0.063 0.408 ± 0.063 0.005 ± 0.023 0.005 ± 0.023

s2
gs 0.094 ± 0.018 0.094 ± 0.018 0.007 ± 0.039 0.007 ± 0.039 0.000 0.000 0.077 ± 0.012 0.077 ± 0.012

s2
gl

– – – – – – 0.532 ± 0.068 0.532 ± 0.068

s2
gsy 0.073 ± 0.018 0.074 ± 0.018 0.349 ± 0.045 0.349 ± 0.045 0.266 ± 0.034 0.266 ± 0.034 0.043 ± 0.010 0.043 ± 0.010

s2
gly

– – – – – – 0.407 ± 0.036 0.407 ± 0.036

s2
gb 0.111 ± 0.014 0.111 ± 0.014 1.034 ± 0.088 1.034 ± 0.088 0.667 ± 0.063 0.667 ± 0.063 0.246 ± 0.023 0.246 ± 0.023

s2
y/s/b 0.184 ± 0.043 0.184 ± 0.043 0.012 ± 0.005 0.012 ± 0.005 0.359 ± 0.085 0.359 ± 0.085 – –

s2
y/s/l/b

– – – – – – 0.291 ± 0.041 0.291 ± 0.041

s2
e 0.870 ± 0.017 0.870 ± 0.017 1.403 ± 0.023 1.403 ± 0.023 2.169 ± 0.040 2.169 ± 0.040 1.910 ± 0.019 1.910 ± 0.019

h2
b 0.821 ± 0.025 NA† 0.870 ± 0.030 NA 0.602 ± 0.032 NA 0.743 ± 0.038 NA

Fixed terms F values
Year 21.6*** 21.6 172.9*** 172.8 87*** 26.7 123*** 123

Season 5.1* 5.1 56.9*** 56.8 15*** 3.7 NS‡ NS

Location – – – – – – 15*** 15

Season ´ year 7.5* 7.5 NS NS 30*** 30 10*** 10

*, *** Significant at the 0.05 and 0.001 probability levels, respectively.

† NA not applicable.

‡ NS, not significant.
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indicated significant (P < 0.05) additive genetic varia-
tion (s2

f) among the 90 HS families of perennial ryegrass 
(Table 2). There was also significant (P < 0.05) HS family 
´ season (s2

fs) and HS family ´ year (s2
fy) interaction. 

Although the magnitude of additive variation indicated 
the potential for selection among the HS families for the 
genetic improvement of seasonal herbage growth, the 
significant interactions (s2

fs and s2
fy) suggest a change in 

the relative performance of the 90 families across both 
seasons and years. The estimated narrow-sense heritability 
on a HS-family-mean basis was intermediate. It should 
be noted that all the genetic estimates were based on data 

collected at a single location, not permitting the estima-
tion of possible family ´ location interaction if the trial 
was performed across multiple locations. All the variance 
component estimates from DeltaGen were the same as 
those derived using GenStat (Table 2).

The estimates of significant additive genetic, family 
´ season, and family ´ year interaction variance compo-
nents from the perennial ryegrass HS family analysis were 
applied in the simulation component of DeltaGen to 
predict DG using equations for three breeding methods 
(Table 3). The numbers of seasons and years were not 
changed. The costs for both the field trial and GS are 

Fig. 2. Case Study 1: biplot generated from pattern analysis of the standardized 107 perennial ryegrass entries (83 breeding lines and 
24 commercial check cultivars) ´ location best linear unbiased predictor (BLUP) matrix for seasonal herbage growth scores, evaluated 
under grazing for 3 yr at Kerikeri, Palmerston North, and Ruakura. Princiapal components 1 and 2 (PC1 and PC2) account for 94% of 
the total variation. The three groups from cluster analysis are indicated by different colors. The breeding lines are indicated by numbers, 
and the commercial checks from C1 to C24. The error ellipses for each of the three groups indicate a 95% confidence level. Of the 24 
commercial check cultivars, 15 are in Groups 2 and 3. Dotted circles indicate specific adaptation; solid circles indicate broad adaptation.
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shown at the bottom of Table 3. Applying a selection 
pressure of 20% resulted in predicted DG of 5.21 and 
10.42% for the HS and HSPT breeding methods, respec-
tively. This is not surprising, as in the HSPT method, we 
go back to saved clones of the original parents to combine 
individuals with good combining ability, and the parental 
control is 1, in comparison with 0.5 for the HS breeding 
method. However, progeny from the cross resulting from 
HSPT is one generation behind the progeny from the 

HS breeding method. It will require another polycross, 
which also makes it more expensive (Table 3). The addi-
tional polycross may be conducted using glasshouses or 
off-season nurseries (Casler and Brummer, 2008). The 
breeding method APWFgs–HS using the combination of 
among-HS-family phenotypic selection and within-
family GS, although more expensive than the HS method 
by $92,500, would provide an extra 4.39% gain in seasonal 
herbage growth, based on the assumed accuracy (rA-HS) 
of 0.25. Genomic selection enabled use of the within-
family 3/4 additive genetic variation. In addition a higher 
within-family selection pressure of 5% was applied, as 
each of the selected 18 HS families were represented by a 
random sample of 100 seedlings (Table 3).

After estimation of DG for the three breeding 
methods and their associated costs per selection cycle, 
a set of simulations was conducted using the HS and 
APWFgs–HS strategies. The objective was to examine the 
effect of reducing the number of years and replicates on 
the efficiency of the two breeding methods in terms of 
predicted DG and cost ($). Simulation based on altering 
the number of replicates and years was performed for 
both HS and APWFgs–HS breeding methods. Two simu-
lations were conducted for each breeding method. For 
both breeding methods, reducing the number of years 
and replicates by one had a similar reduction in DG: 
0.69% for HS and 0.70% for APWFgs–HS (Table 3). For 
both breeding methods, by reducing the number of 
years and replicates, the cost per selection cycle was 
reduced by $28,400 each.

Case Study 3
The analysis of variance using both DeltaGen and GenStat 
programs generated the same estimates of variance 

Table 2. Case Study 2: among-half-sib (HS)-family (s2
f), family 

´ season (s2
fs) interaction, family ´ year (s2

fy) interaction, 
replicates within seasons within years (s2

y/s/b), rows within 
replicates within seasons within years (s2

y/s/b/r), columns 
within replicates within seasons within years (s2

y/s/b/c), and 
experimental error (s2

e) variance components, associated 
standard errors (±SE), and narrow-sense heritability (h2

n), 
estimated from data of the 90 half-sib families of perennial 
ryegrass evaluated at Glenormiston for seasonal herbage 
growth (scored on a 1–5 scale) across 3 yr. The level of 
significant (P < 0.05) differences for each of the fixed effects 
terms of year and season within year are also presented.

Sources of variation DeltaGen GenStat

s2
f 0.064 ± 0.020 0.064 ± 0.019

s2
fs 0.022 ± 0.009 0.022 ± 0.008

s2
fy 0.063 ± 0.014 0.063 ± 0.013

s2
y/s/b 0.013 ± 0.030 0.013 ± 0.030

s2
y/s/b/r 0.084 ± 0.013 0.084 ± 0.013

s2
y/s/b/c 0.111 ± 0.016 0.111 ± 0.017

s2
e 0.763 ± 0.018 0.763 ± 0.019

h2
n 0.573 ± 0.087 NA†

Fixed term F value
Year 7.33* 7.33
Season within year 3.86* 3.87

* Significant at the 0.05 probability level.

† NA, not applicable.

Table 3. Case Study 2: predicted rates of genetic gain (DG) per selection cycle and associated costs for mean seasonal herbage 
growth based on data from the evaluation of 90 half-sib families of perennial ryegrass evaluated across 3 yr at Glenormiston. 
Selection intensity = 1.40 (20%) and 2.06 (5%). Parental control 0.5 for half-sib families and 1 as both parents are selected.

Breeding 
method†

No. of  
replicates

No. of  
years

Selection pressure Assumed selection 
accuracy based on HS 

families
DG per selection  

cycle
Cost per selection  

cycle
Among-
family

Within-
family

—————  % ————— % NZ$

HS 3 3 20 – – 5.21 91,120‡

HSPT 3 3 20 – – 10.42 101,120‡

APWFgs–HS 3 3 20 5 0.25 9.60 183,620‡§

Simulation
HS 3 2 20 – – 4.78 64,080

HS 2 2 20 – – 4.52 62,720

APWFgs–HS 3 2 20 5 0.25 9.17 156,580

APWFgs–HS 2 2 20 5 0.25 8.90 155,220

† HS, half-sib family selection; HSPT, HS with progeny testing; APWFgs–HS, among-HS-family phenotypic selection and within-family genomic selection.

‡ Field trial costs: cost of scoring one row per growth assessment = $0.50 replicate−1 = $500 yr−1 location−1 = $25,000 yr−1, other (seedling establishment, polycrossing, etc.) 
= $10,000.

§ Costs associated with genomic selection based on a cost of $50 for generating each genomic estimated breeding values ; total number of seedlings for genotyping by 
sequencing was 18 (20% of 90 HS) by 100 (number of seedlings sampled per selected HS); $2500 for other associated costs. The cost for one cycle of APWFgs–HS was the 
sum of the field trial costs to select the top 20% of HS families, plus the genomic selection costs for selecting the top 5% of individuals within each selected family.
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components for all sources of variation for the traits DMY, 
CWE, and KL (Table 4). There was significant (P < 0.05) 
additive genetic variation among the 147 HS families for all 
three traits. There was no significant (P > 0.05) variation 
for family ´ year or family ´ location interaction for any of 
the traits, indicating that the relative performance of 147 HS 
families was stable across the 2 yr, and also across the two 
locations, Arlington and Marshfield (Table 4). The narrow-
sense heritability (h2

n) estimates for the traits were below 
intermediate levels. However, the estimates indicated the 
potential for the genetic improvement of all three traits. The 
breeding strategy simulation option in DeltaGen was used 
to calculate DG (%) for each trait using the HS family selec-
tion breeding strategy equation. Selection of the top 10% 
HS families as parents would result in predicted DG (%) of 
2.25, 0.56, and −1.29 for the traits DMY, CWE, and KL, 
respectively (Table 4). The negative is associated with selec-
tion to decrease KL, selection of the bottom 10% families.

Estimates of phenotypic correlation between DMY 
and CWE, DMY and KL, and CWE and KL were 0.25, 
−0.19, and −0.26, respectively (for all estimates, P < 0.05). 
Both DeltaGen and GenStat generated similar values 
(results not presented). Genetic correlation for the traits 
were estimated using the MANOVA option in DeltaGen, 
which provided a complete analysis that included results 
of sums of cross products, mean cross products, variance-
covariance, and finally the HS family genetic correlation 
matrix; DMY and CWE, DMY and KL, and CWE and 
KL were 0.11, −0.32, and −0.15, respectively.

Smith–Hazel Index
As part of the computation of index coefficients in b 
using the SH index, DeltaGen provides detailed output 

of the associated components—P−1 (inverse of phenotypic 
variance-covariance) and A (additive genetic variance-
covariance) matrices—for the SH equation (Table 5). 
Changing the w values will change the index coefficients 
in b. The final w values after multiple iterations using the 
SH index, to identify a set associated with the desired DG 
(%), were 2, 2, and −1 (Table 5).

The comparison of the selection differentials (S) 
resulting from single- and multi-trait selection is presented 
in Table 6. As would be expected, the single-trait (indi-
vidual) selection approach resulted with the highest S for 
all three traits: DMY, CWE, and KL. However, for each 
individual trait selection, the selection gains for the other 
associated traits in the top 10% of the selected HS families 
were much lower in comparison with their individual S 
values. In comparison, the S values for DMY, CWE, and 
KL in the top 10% HS families selected using the SH index 
were relatively higher. This indicated that the individual 
HS families within the SH selected families had higher 
breeding values across all three traits. Estimates of predicted 
DG (Table 6) show that if selection is focused on improving 
only a specific trait such as DMY, individual trait selec-
tion would be the preferred method. However, using a 
multitrait approach, such as the SH index, will result in 
concurrent genetic improvement of all traits, increasing 
DMY and CWE and, as required, reducing KL expression.

DISCUSSION
Analysis of data from the three case studies has demon-
strated key analysis procedures that can be successfully 
performed using DeltaGen. Comparison of the results of 
REML analysis of data from the three case studies using 

Table 4. Case Study 3: among-half-sib (HS)-family (s2
f), among years (s2

y), family ´ location (s2
fl) interaction, family ´ year 

interaction, (s2
fy), locations within years (s2

y/l), replicates (b) within locations within years (s2
y/l/b), rows within replicates within 

locations within years (s2
y/l/b/r), columns within replicates within locations within years (s2

y/l/b/c), and experimental error (s2
e) 

variance components, their associated standard errors (±SE), and narrow-sense heritability (h2
n), estimated from data of the 

147 half-sib families of switchgrass evaluated at Arlington and Marshfield for the three traits biomass dry matter yield (DMY, 
Mg ha−1), cell wall ethanol (CWE, mg g−1) and Klason lignin (KL, mg g−1), measured in 2011 and 2012. Predicted genetic gains 
(DG) in absolute values and percentages are also given. Selection intensity = 1.76 (10%) and parental control = 0.5. Means of 
the 147 HS families for the traits DMY, CWE, and KL, were 10.06 Mg ha−1, 56.80 mg g−1, and 98.77 mg g−1, respectively.

DMY CWE KL
Sources of variation DeltaGen GenStat DeltaGen GenStat DeltaGen GenStat

s2
f 0.207 ± 0.098 0.207 ± 0.099 0.428 ± 0.185 0.428 ± 0.186 5.744 ± 2.450 5.744 ± 2.451

s2
y

0 0 0 0 0 0

s2
fl 0.171 ± 0.116 0.171 ± 0.117 0 0 0 0

s2
fy

0 0 0 0 0.344 ± 2.819 0.344 ± 2.820

s2
y/l 6.942 ± 4.367 6.942 ± 4.368 17.871 ± 12.047 17.871 ± 12.048 97.477 ± 65.625 97.477 ± 65.625

s2
y/l/b 0.335 ± 0.237 0.335 ± 0.238 3.522 ± 2.200 3.522 ± 2.201 15.530 ± 11.92 15.530 ± 11.92

s2
y/l/b/r 0.045 ± 0.058 0.045 ± 0.059 4.848 ± 0.678 4.848 ± 0.679 52.992 ± 7.345 52.992 ± 7.346

s2
y/l/b/c 1.147 ± 0.194 1.147 ± 0.195 4.890 ± 0.746 4.890 ± 0.747 40.451 ± 6.417 40.451 ± 6.417

s2
e 4.363 ± 0.177 4.363 ± 0.178 11.420 ± 0.443 11.420 ± 0.444 117.530 ± 4.781 117.530 ± 4.782

h2
n 0.316 ± 0.120 NA† 0.310 ± 0.095 NA 0.366 ± 0.118 NA

DG (%) 0.225 (2.24) NA 0.321 (0.56) NA −1.275 (−1.29) NA

† NA, not applicable.
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DeltaGen and GenStat indicated essentially identical 
outputs from both software programs.

Using DeltaGen to analyze data from Case Study 1 
enabled the combination of REML analysis and pattern 
analysis to be conducted and generate a graphical summary 
of the performance of perennial ryegrass entries across 
the locations Palmerston North, Ruakura, and Kerikeri. 
The biplot showing three entry clusters and the associa-
tion among the locations (directional vectors) enabled 
identification of entries with specific and broad adapta-
tion. A clear picture of the relative performance of the 
83 breeding lines and 24 check cultivars was presented in 
the biplot. This demonstrated the value of DeltaGen when 
applied to an analysis of forage breeding line evaluation 
trials conducted across years, seasons, and locations.

Analysis of HS family data of perennial ryegrass from 
Case Study 2 tested the key quantitative genetic analysis 
procedures in DeltaGen. Although the basic REML 
analysis generated estimates of additive, genetic, and 
associated interaction components, automatic transfer of 
these estimates into the breeding simulation component 
of DeltaGen provided the option of using this information 
in any of the breeding equations available in the program. 
Based on the estimates of narrow-sense heritability (h2

n) 
and associated variance components, predicted DG and 
associated costs ($) per selection cycle were calculated and 
compared among three breeding strategies: HS, HSPT, 
and APWFgs–HS. Simulation of HS and APWFgs–HS was also 
performed by varying year and replicate numbers. The 

ability to evaluate GS-based breeding strategies against 
conventional methods in DeltaGen, in terms of predicted 
DG and associated costs, using actual field trial generated 
data from training populations and associated estimates of 
GS accuracy, will be valuable to plant breeders.

The data from Case Study 3 were analyzed to inves-
tigate a multivariate approach to identify HS families 
of switchgrass with breeding values that would enable 
increasing the traits DMY and CWE and decreasing 
KL. The SH index constructed enabled identification 
of HS families that would result in simultaneous genetic 
improvement in all three traits, in contrast with individual 
selection. In a similar study, Jahufer and Casler (2015) used 
the SH index to identify HS families of switchgrass with 
a combination of high DMY and CWE and decreased 
KL. The SH index in DeltaGen will be a useful selection 
tool for perennial ryegrass breeders using the forage value 
index (Chapman et. al., 2017) based on yield, persistence, 
and quality traits to develop cultivars optimized for the 
New Zealand dairy industry.

Another significant component in DeltaGen, not 
described in this paper, is experimental trial design. 
DeltaGen generates a range of field trial designs: completely 
randomized, randomized complete block, factorial, and 
row-column (repeated check plots can also be included). 
Details of this component are included in the program 
help menu “Quick start manual.”

Analysis of the datasets in the three case studies 
provided a snapshot of the key analyses available within 
DeltaGen. The aim of developing DeltaGen is to provide 
plant breeders with a single integrated solution for experi-
mental design generation, data quality control, statistical 
and quantitative genetic analyses, breeding strategy evalu-
ation, index selection, and underlying basic information 
on quantitative genetics. It should be noted that although 
default options are provided for fixed and random effects 
in the linear mixed model analysis option, there are no 
constraints to entering alternative models, by using the 
“Add” option, based on the factors within the uploaded 

Table 5. Case Study 3 components: inverse of phenotypic 
variance-covariance matrix (P−1), additive genetic variance-
covariance matrix (A), weighting coefficients (w) used in the 
Smith–Hazel index model to calculate the index coefficients 
(b) for the traits dry matter yield (1.247), cell wall ethanol 
(−0.006), and Klason lignin (−0.266).

b P−1 A w

1.247
0.006
0.266
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Table 6. Case Study 3: selection differentials based on the difference between the mean of the 10% selected half-sib families 
and the mean of the total 147 families for each trait: biomass dry matter yield (DMY, Mg ha−1), cell wall ethanol (CWE, mg g−1) and 
Klason lignin (KL, mg g−1). The bolded values indicate selection differential values for the primary traits. Selection differential 
values for individual traits based on Smith–Hazel (SH) index selection are also presented. The predicted genetic gain (DG) is 
on individual trait and multitrait selection (SH index).

Selection differential
Selection of the top 10% HS families based on individual traits and the SH index DMY CWE KL

———————————— % ————————————

Selection on DMY only 4.33 −0.06 0.31
Selection on CWC only −0.13 0.96 −1.17
Selection on KL only 0.27 0.54 −2.16
Selection on SH index 2.84 0.51 −1.69

Predicted DG
———————————— % ————————————

On individual trait selection 2.24 0.57 −1.29

Response of individual traits based on SH index 1.42 0.22 −0.91
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data. This augments the flexibility of mixed linear model 
analysis in DeltaGen. Another valuable component in 
DeltaGen is the option to evaluate the relative efficiencies 
of different breeding strategies on rate of estimated DG and 
associated costs on an annual and per-selection-cycle basis.

The availability of decision support software to field 
breeders as tactical tools will help enhance the efficiency of 
cultivar development programs, especially with the integra-
tion of marker-assisted selection technology such as GS. A 
number of software tools for quantitative genetics and plant 
breeding research have been developed (Podlich and Cooper, 
1998; Wang and Pfeifferz, 2007; Iwata and Jannink, 2011; Mi 
et al., 2014; Lin et al., 2016; Faux et al., 2016; Yabe et al., 
2017). Sun et al. (2011) discussed the importance of computer 
simulation to provide decision support to plant breeding 
programs and reviewed a range of software applications. 
Direct application of these software to applied field breeding 
programs as tactical tools would be challenging, as they are 
mostly simulation based and often require specialist knowl-
edge to operate. Software platforms such as QU-GENE” 
(Podlich and Cooper, 1998) and Selectiongain (Mi et al., 
2014) will be valuable as strategic breeding tools. However, 
their application and effectiveness in breeding programs for 
perennial cross-pollinating species is yet to be determined. 
Programming of the breeding strategy application modules 
within QU-GENE to simulate breeding methods for peren-
nial cross-pollinating species (Casler and Brummer, 2008) 
will make this software an effective strategic tool to enhance 
the efficiency of forage cultivar development programs. Inte-
gration of the quantitative genetic estimates generated from 
software such as DeltaGen into QU-GENE will enhance 
the precision and applicability of prediction outputs to field 
breeding programs.

In addition to using DeltaGen as a decision support 
tool, the software also has applicability as a teaching 
resource in plant breeding courses, as the “Help” windows 
provide associated theory and important references.

DeltaGen is available as freeware at the URL 
http://agrubuntu.cloudapp.net/PlantBreedingTool/. The 
program will continue to be updated and improved. All 
additions and updates will be uploaded to this link. We 
recommend that the link is used through Google Chrome.
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