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ABSTRACT:

Microscopic imaging is central to the brain and cognition studies in animals and often requires advanced image processing. In vivo
recordings on awake behaving animals require stabilization of the images as the tissue in the images undergoes non-rigid deformations
due to animal movement, pulse beat and breathing of the animal. Here we propose an approach to compensation for the tissue motion
in calcium imaging data acquired with miniaturized wearable microscopes (miniscopes) from live rodent brains. Our approach includes
preprocessing of the images in which we compensate for non-uniform illumination, remove calcium transients and instrument-specific
noise. For image registration we use the multiscale mutual information based non-rigid algorithm with B-spline transformation model.
We present the preliminary results of such motion compensation approach applied to the real miniscope image stacks.

1. INTRODUCTION

Brain studies heavily rely on imaging applications, placing im-
age processing tools in high demand (Hamel et al., 2015). For
example, fluorescent calcium imaging allows to visualize activ-
ity of large groups of neurons or astrocytes. A currently popular
technique is to use a combination of genetically encoded calcium
reporters and wearable miniaturized micro-endoscopes (minis-
copes). This allows imaging with cellular resolution in freely
behaving animals, with fluctuations of image intensity over time
providing a read-out of undergoing activity of the cells, express-
ing the calcium reporter protein (Fig. 1a).

Reliable analysis of calcium activity in the neural tissue implies
stationary sources of activity. However, in vivo recordings in
awake and moving animals are particularly prone to movement
artifacts — distortions of the brain tissue relative to the GRIN
lens and the light sensor of the miniscope — despite the best
efforts of clamping the miniscope to the skull of the animal.
Thus, the tissue in the recorded image sequence undergoes a non-
rigid motion caused by heart beat, breathing and head movement.
This motion can be compensated by means of image registration,
namely by aligning all the imaged frames to a stationary template,
usually the first image in a series.

Previously, several cell image registration methods have been
presented. In (Ozere et al., 2013) the authors suggested a para-
metric motion model for cell motion compensation. However,
the approach can compensate only affine changes. In (Kim et
al., 2011, Sorokin et al., 2018) the non-rigid cell nuclei registra-
tion methods were proposed. The aim of the algorithm was to
compensate for the cell global motion in order to analize solely
the local motion of subnuclear particles. The registration method
proposed in (Thevenaz et al., 1998) employed multiscale spline-
based approach. In the keypoint-based approach proposed in (Ka-
∗Corresponding author

jihara et al., 2017) the authors perform non-rigid registration by
combination of affine registration of image parts each performed
using a cluster of keypoints. In (Lu et al., 2010) the authors use
the global-to-local approach, where the global rigid transform is
performed using the contours of the object, and the local transfor-
mation is obtained using th SIFT descriptors (Lowe, 1999). One
of the most common approaches to non-rigid intensity-based reg-
istration is to pose image registration as an optimization problem
(Klein et al., 2010). In this case, one has to choose a parametrized
coordinate transformation model to be optimized, a cost function,
an optimization method, and image interpolation method. Such
approaches are usually applied iteratively. A multiscale strategy
(Lester and Arridge, 1999) can be also used to improve the regis-
tration results. In (Klein et al., 2010) the authors present Elastix
framework that has modular design and allows to choose from
different transformation models, cost functions, optimization and
interpolation methods.

In this work, we aim at compensating for the live rodent brain tis-
sue motion in image sequences by means of image registration.
The motion of the animal, slight brain swelling, and changes in
local blood flow lead to the elastic transformation of the brain
tissue. The registration of live rodent brain image sequences is
challenging due to the non-uniform illumination of the image
sequence in space and time and low signal-to-noise ratio. Ad-
ditionally, fluorescence intensity changes with calcium activity,
which makes it impossible to rely on constant brightness mod-
els. First, we preprocess the images to remove the experiment-
specific noise caused by dust on the optics and CCD sensor. Next,
we perform non-uniform illumination correction, and gamma-
correction of the images. We also suppress the calcium activity
affecting the resulting deformation field as the algorithm attempts
to register also the calcium transients in addition to the motion of
the brain tissue (Fig. 1b). Finally, we perform the image regis-
tration using the multiscale B-spline approach with random coor-
dinate sampler, advanced Mattes mutual information as the cost
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function, and stochastic gradient descent as the optimizer. We
used the SimpleElastix library to perform the image registration
(Marstal et al., 2016). We applied our approach for the real image
sequence of the live rodent brain. The preliminary qualitative and
quantitative results look promising.

2. METHODS

In this section, we describe the preprocessing and registration ap-
proaches that we used to compensate for the tissue motion.

2.1 Preprocessing

As the first step of preprocessing we remove the data-specific
noise from each image of the rodent brain tissue image sequence
{In(x)}. This noise is probably associated with dust and other
artifacts on the CCD matrix and optics. To this end, we calculate
the residue image

rn(x) = In(x)− Fmedian [In(x), 5] ,

where n is the image index, and Fmedian [., r] is the median filter
with radius r. The average residue image corresponds to the non-
moving structures like dust, so we subtract it from each image of
the sequence to remove such noise

Ī(x) = In(x)− 1

N

∑
n

rn(x) .

Next, we perform the illumination correction. To obtain the illu-
mination patterns of the image on different scales we blur it with
a bank of Gaussian filters with different σ (Jobson et al., 1997).
Then the image with the corrected illumination is computed as

¯̄I(x) =
1

Nσ

Nσ∑
i=1

log
Ī(x)

Gσi
[
Ī(x)

] ,
where Gσi [.] is the Gaussian filter with sigma σi, and Nσ is the
number of scales. Applying it to each image of the sequence we
suppress the non-uniform illumination, however the average in-
tensity can still vary between the frames. To correct it, we modify
the intensity in every frame as

Ĩn(x) = ( ¯̄In(x)−mn)
s1

sn
+m1 , (1)

where n is the frame number, mn is the mean of the n-th frame
intensity, and sn is the standard deviation of the n-th frame inten-
sity. Finally, we perform gamma-correction for every frame with
γ = 0.65.

The last step of the image preprocessing is the suppression of
calcium activity as the changes of intensities across the images
caused by the calcium activity significantly decrease the image
registration performance. For this, we calculate the median value
over time for each pixel of the image and replace pixel intensity
with its median if its value is greater then the median:

În(x) =

{
Ĩn(x), Ĩn(x) ≤ Imedian(x)

Imedian(x), otherwise

where Imedian(x) is the median over time image. The results of
the preprocessing are presented in Fig. 1b.

2.2 Registration

The compensation for the tissue motion in the image sequence is
performed by means of pairwise image registration. The goal is
to obtain a non-rigid coordinate transform Tn(x) for each pair of
consequent frames In(x) and In+1(x) that registers the image
In+1(x) to In(x). We perform the registration for the prepro-
cessed images Î(x) and consequently apply the obtained trans-
formations to register the initial image In(x) to the first image
of the sequence I1(x). To obtain the transformations Tn(x) we
use elastix framework (Klein et al., 2010). First, we compensate
for the affine part of the transformation. Then the non-rigid part
is obtained using the multiscale B-spline approach with 4 scales
and a random coordinate sampler. We use advanced Mattes mu-
tual information with bending energy penalty as the registration
cost function and stochastic gradient descent as the optimizer.

Below we describe the registration process in detail. Two images
are involved: let us denote the fixed template image as IF (x) and
the moving image as IM (x). The moving image is deformed to fit
the template. The quality of alignment is defined by the distance
in the mutual information (MI) metric. Because the problem is
ill-posed for nonrigid transformations T, a regularisation term P
that constrains T is often introduced. The registration problem is
formulated as an optimisation problem in which the cost function
C is minimised:

Treg = arg minT C(T; IF , IM ),

C(T; IF , IM ) = MI(T; IF , IM ) + αP (T),
(2)

whereα is the regularization parameter. If the minimization prob-
lem is solved for a parametrized transform T = Tµµµ the equation
(2) is formed as

µµµreg = arg minµµµ C(Tµµµ; IF , IM ),

where µµµ is a vector of transform parameters.

In this work, we use the combination of affine and B-spline trans-
forms for Tµ:

Tµµµ = Aµµµ + Bµµµ,

AµµµA(x) = M(x− c) + t + c,

BµµµB (x) = x +
∑

xk∈Nx

pkβ
3
(x− xk

σ

)
,

where AµµµA is the affine transform with matrix M, c is the centre
of rotation, and t is the translation vector. The second term Bµµµ
is the B-spline transform with the control points xk defined on a
regular grid, β3(x) is the cubic multidimensional B-spline poly-
nomial, pk are the B-spline coefficient vectors, σ is the B-spline
control point spacing, and Nx the set of all control points within
the compact support of the B-spline at x. Thus, the parameter
vector µµµ consists of affine parameters µµµA and B-spline transform
parameters µµµB . The affine parameter vector µµµA contains matrix
M elements and translation vector t. The B-spline parameter
vector µB contains the coefficients {pk}.

The mutual Information (Mattes et al., 2003, Thévenaz and
Unser, 2000) is defined as

MI(Tµµµ;IF ,IM )=
∑

m∈LM

∑
f∈LF

p(f,m;µµµ)×

× log2

(
p(f,m;µµµ)

pF (f)pM (m;µµµ)

)
,
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where LF and LM are sets of regularly spaced intensity bin cen-
tres, p is the discrete joint probability, and pF and pM are the
marginal discrete probabilities of the fixed and moving image,
obtained by summing p over m and f , respectively. The joint
probabilities are estimated using B-spline Parzen windows:

p(f,m;µµµ)=
1

|ΩF |
∑

xi∈ΩF

ωF

(
f−IF (xi)

σF

)
×

× ωM
(
m− IM (Tµµµ(xi))

σM

)
,

where xi are the points of the the fixed image domain ΩF , ωF
and ωM represent the fixed and moving B-spline Parzen win-
dows. The scaling constants σF and σM must equal the inten-
sity bin widths defined by LF and LM . These follow directly
from the grey-value ranges of IF and IM and the user-specified
number of histogram bins |LF | and |LM |.

For regularization term P (Tµµµ) in (2) we used the bending energy
penalty (Rueckert et al., 1999):

P (Tµµµ) =
1

K

∑
xi

∥∥∥∥ ∂2Tµµµ
∂x∂xT

(xi)

∥∥∥∥2

F

=

=
1

K

∑
xi

(
2∑
j=1

(
∂2Tµµµj
∂2x1

(xi)

)2

+

+2

(
∂2Tµµµj
∂x1∂x2

(xi)

)2

+

(
∂2Tµµµj
∂2x2

(xi)

)2)
,

where xi are the points where P (Tµµµ) is computed, and K is the
number of such points. In this work, we used a random subset of
image points xi which is updated every iteration. Such approach
significantly reduces the computation time (Staring et al., 2007).

To solve the optimisation problem (2) to obtain the optimal trans-
formation parameter vector µµµreg we use an iterative optimisation
strategy with gradient descent

µµµk+1 = µµµk − ηk
∂C

∂µµµ

∣∣∣∣
µµµ=µµµk

, k = 0, 1, 2, ...

where ηk is the gradient descent step size. The optimization
process stops when the difference between the C(Tµµµ; IF , IM )
between the iterations reaches some predefined threshold or the
number of iterations exceeds the predefined limit.

During the optimization the value of IM (T(x)) needs to be com-
puted not at the pixel positions. For this, we used bilinear inter-
polation method.

We used the multiscale version of the described approach when
fixed and moving images were represented as Gaussian scale-
space (Lester and Arridge, 1999) and the transformation T(x)
was found iteratively from coarse to fine scales.

3. RESULTS AND CONCLUSIONS

We applied our motion compensation approach to miniscope
imaging data of live rodent cerebellum, with Purkinje cells ex-
pressing a genetically encoded calcium indicator, kindly provided
by Dr. Tycho Hoogland (Netherlands Institute for Neuroscience).
We used five 2D fluorescence image sequences acquired in sin-
gle channel consisting of 1000 images with the resolution of
752× 480.

The results of the global motion compensation approach are pre-
sented in Fig. 1c. In addition, we calculated the difference be-
tween the first frame and the n-th frame of the initial and regis-
tered sequences (Fig. 1d,e). The difference images for the initial
image sequence (Fig. 1d) contain bright and dark structures in-
dicating significant motion in the sequence. In contrast, the dif-
ference images for the registered sequence (Fig. 1e) show that
most of the tissue motion has been eliminated as only the bright
structures representing the calcium signaling are retained.

To evaluate the registration performance quantitatively we calcu-
lated the mean square error (MSE) between the first Î1(x) and the
n-th În(x) preprocessed images. To demonstrate the variation of
the registration quality in time, the graph of the MSE as a func-
tion of frame number is shown in Fig. 2. It can be seen that the
MSE curve becomes more flat after for the registered sequence
which reflects the lack of motion in the sequence. The remaining
level of MSE after the registration is the subject of noise in the
images. The average over sequences MSE values for the unregis-
tered and registered image sequences were 0.25 and 0.18 which
demonstrates the 26% decrease of the error.

4. CONCLUSIONS

In this work we present a practical approach to correct tissue mo-
tion artifacts in the live rodent brain imaging data. We describe
the key points of the the image preprocessing steps and the reg-
istration approach. The preliminary qualitative results show that
the motion of the tissue is successfully eliminated retaining only
the calcium signaling events which are the subject of the study.
Further analysis of the algorithm, optimization of the registration
parameters and quantitative evaluation of the results are intended
for future work.
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