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ABSTRACT: 

 

The classification problem in the image processing field is an important challenge, so that in the process image pixels are separated 

into previously determined classes according to their features. This process provides a meaningful knowledge about an area thanks to 

the satellite images. Satellite images are digital images obtained from a satellite vehicle by the way scanning the interest areas with 

some specified sensors. These sensors provide the specific radiometric and spatial information about the surface of the object. This 

information allows the researchers to obtain reliable classification results to be used to solve some real life problems such as object 

extraction, mapping, recognition, navigation and disaster management. Linear Discriminant Analysis (LDA) is a supervised method 

that reduces the dimensions of data in respect to the maximum discrimination of the elements of the data. This method also transfers 

the data to a new coordinate space in which the discriminant features of the classes are highest using the objection data provided 

manually. In this work, we consider the classes as if the satellite images have two classes; one is foreground and the other is 

background. The true classes such as roofs, roads, buildings, spaces and trees are treated sequentially as the foreground. The area 

outside the foreground class is treated as the background. The one dimensional reduced feature values of pixels, such that each value 

is reduced according to the binary classification of each class, are considered as membership values to the classes. In this way, each 

pixel has membership values for each of the classes. Finally, the pixels are classified according to the membership values. We used 

the ISPRS WG III/4 2D Semantic Labeling Benchmark (Vaihingen) images includes the ground truths and give the accuracy result 

values for each class. 
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1. INTRODUCTION 

Classification of image pixels which are the smallest elements 

of images is an important problem in the satellite image 

processing field as in most computer vision fields, because 

obtaining meaningful information from satellite images is 

essential process for many remote sensing applications. In the 

process of pixel classification, the pixels are assigned to 

previously defined classes (Lu and Weng, 2007; Vailaya et al., 

1998). In image classification methods, the pixels are classified 

according to the some features of the pixels such as colour 

(radiometric), geometric, and pattern features (Wang et al., 

2016).  

 

Appointing the satellite image pixels to land-cover classes is 

also defined as “semantic segmentation” by the remote sensing 

community (‘2D Semantic Labeling Contest’, n.d.; Marmanis et 

al., 2018; Volpi and Tuia, 2017). Semantic segmentation has 

been an essential issue in satellite image processing, because 

this issue provides solutions for many ecological and socio-

economic problems (Vailaya et al., 1998) such as landslide 

monitoring, inferring geographical information, guidance 

information for intelligent military systems, infrastructure 

design, and disaster management (Montoya, 2003; 

Paisitkriangkrai et al., 2015). 

 

In remote sensing semantic segmentation, the pixels in the 

satellite images taken over an urban are generally labelled as 

road, building, tree, and vegetation. This task is a problem due 

to the fact that the pixels belonging to different classes may be 

similar to each other, and in the same way, some pixels 

belonging to the same class may be different from each other 

(Paisitkriangkrai et al., 2015). The main reasons of this case lie 

in that one class may contain too many objects, and there may 

be many redundant objects in the classes (Wang et al., 2017). 

Therefore, it is deduced from this case that if the pixels 

belonging to different classes have more distinguishing features, 

the classification would be better. 

 

In the literature, there are some feature extraction methods that 

transform the data to another feature space providing more 

distinctive features for the data belonging to different classes. 

Linear Discriminant Analysis (LDA) is one of them (Fisher, 

1936). LDA is a supervised method that extracts more 

distinctive features from available features. In image processing, 

the pixels belonging to two different classes can be 

distinguished more accurate using this method. Saglam and 

Baykan (2017) used LDA to define the roof pixels in the 

satellite images taken over from an urban (Saglam and Baykan, 

2017). According to the study, the urban images are considered 

they consist of two classes; the roofs are handled as foreground, 

and the rest of the zone as background. They used only spectral 

(radiometric) features, not spatial or surface features. LDA 

transforms the multiple radiometric values to one distinctive 

feature for two classes. 

 

In this work, LDA is used for acquiring new multiple distinctive 

features for multi class discrimination from available pixel 
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features including radiometric and surface values. According to 

the method presented in this paper, LDA acts each class as 

foreground separately in the satellite images which consist of 

multiple classes such as roads, buildings, vegetation and trees. 

In this way, it extracts a new feature for each class, thence more 

than one feature (multiple LDA values) are obtained. 

Computing the LDA processing for each class, single 

dimensional data spaces are generated as much as the number of 

classes. Each LDA value represents a point in a single 

dimensional space. Finally, each data is assigned to a class in 

respect to the LDA values. In this work, we also developed a 

membership function which generates new membership values 

for each data using their LDA values to assign the elements of 

the data to classes. 

 

In experiments, we used the Vaihingen dataset (‘2D Semantic 

Labeling Contest’, n.d.; Labeling and Vaihingen, 2016) to 

evaluate our method. The success of our method is 

demonstrated in this paper. In the implementation of the 

method, only the spectral features of the image pixels are taken 

into account, not spatial features. The results numerically and 

visually show that our method performs a respectable 

classification considering only the use of spectral properties of 

images and the simplicity of the method. 

 

2. METHODOLOGY 

2.1 Linear Discriminant Analysis (LDA) 

LDA, also known Fisher's Linear Discriminant Analysis, is a 

feature extraction and dimension reduction method (Fisher, 

1936). LDA enhances the inter-class variance while reducing 

the intra-class variance. This operation generates new attributes 

for the data, such that, these attributes provide the highest 

distinctive features for the data to be classified (Duda et al., 

2000; Martis et al., 2013). LDA is a supervised method, 

because it needs a training data set which has to have goal 

ground-truth data. 

 

According to the method, coefficient vector is generated using 

the ground-truth data, such that, the vector must have a number 

of values equals to the number of feature of the data (Lu and 

Weng, 2007). To obtain this vector, firstly, the intra-class 

covariance matrices are computed for each class, after that, the 

covariance matrices are also added together (1). In Eq. (1), 
W

S  

denotes the addition of the intra-covariance matrices of the 

classes. 

 

( )( )
k i k

T

W i k i k

c C c 

   
x

S x μ x μ  
(1) 

 

where  C   = set of classes 

 kc  = k th class 

 
ix   = feature vector of i th element of kc  

 kμ  = mean vector of the feature vectors of kc  

 

 

After the matrix of the intra-class variances 
W

S  is obtained, the 

matrix of the inter-class variances BS  is obtained as in Eq. (2).  

 

1

( )( )S μ μ μ μ
m

T

B k k

k

    (2) 

  

where  m  =  the number of classes 

   = mean vector of the feature vectors of all the 

         data  

 

The next step is figuring out the maximization process which 

seems in Eq. (3). According to Eq. 3, the vector w which makes 

j(w)  at highest.  

( )
T

B

T

W

j 
w S w

w
w S w

 (3) 

 

In our method, LDA is calculated for each class separately as 

foreground. The other class in each LDA calculation is the class 

of background, which refers to the regions except the 

foreground. In the other words, we employee two classes as 

background and foreground for each LDA calculation, such 

that, a LDA calculation is needed one by one for all of the 

classes, for example four classes of foreground ("road", 

"building", "vegetation" and "tree" as the name of the classes)  

as taken into account in this study. If two classes are taken into 

account, Eq. (3) is in the direction of 
1 2( )μ μ  linearly (Duda 

et al., 2000). For this reason, the calculation of the vector w  

can be directly calculated as in Eq. (4) instead of maximizing 

the equation in Eq. (3).  

 
1

1 2( )W

 w S μ μ  (4) 

 

After the weight vector w  is obtained, each value in data x
i
 is 

multiplied by w  as in Eq. (5). 

 
LDA T

i ix  w x  (5) 

 

As a result, each element in the data has one value LDA
x

i
 instead 

of multiple vector values. In this way, a dimension reduction 

process is also performed. However, in this study, each data has 

multiple values, because the LDA calculation is performed for 

each class as foreground. Thence, a weight set of w  is obtained 

as 
1 2

{w ,w , ,w }
m

. 

 

In the method used in this paper, it must be known that which 

class (foreground or background) represents minimum or 

maximum LDA values. Therefore, Eq. (4) must be used for the 

proposed method instead of Eq. (3). In Eq. (4), if 
1

μ  is the 

mean of the foreground, the elements which have highest LDA 

values belong to foreground, otherwise they belong to 

background. This case gives information about the direction of 

distribution between two classes (foreground and background). 

 

2.2 Threshold value calculation for two-class labelling 

As a result of the calculations of LDAs for each class, each data 

element has as a number of feature values equals to the number 

of classes. Each feature value obtained with LDA represents a 

point in a different single dimensional space, because each LDA 

value of an element obtained with the binary discrimination of 

the related class as foreground ("road", "building", "vegetation" 

or "tree" in this study) and remaining data as background. In 

each space, the distribution of all the data labelled as 

foreground or background is located as one of the four classes is 

foreground and the others are background. Namely, there would 

be four single dimensional spaces if four classes are handled as 
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foreground one by one. Therefore, if a threshold can be 

determined in a single dimensional space, the data would be 

separated into two classes. In the LDA calculations, if the 

foreground is specified as 2th class (
2c foreground ), meanly 

if 
2

μ  refers to the mean foreground in Eq. (4), the data 

belonging to the foreground would have smaller values in the 

space. Thus, separating the data into two classes in the space 

can be actualized as Eq. (6) and Eq. (7) using a threshold value 

t . 

 

1

label

if( =mean foreground) in Eq. (4)

foreground <=

background >

μ

k k

i

i k k

i

x t
x

x t

 




 (6) 

 

2

label

if( =mean foreground) in Eq. (4)

foreground <=

background >

μ

k k

i

i k k

i

x t
x

x t

 




 (7) 

 

In the equations (6) and (7), label

ix  is the label value which class 

i th data is assigned to, for example "1" for background and "2" 

for foreground. If 
1

μ  in Eq. 4 refers the mean foreground, 

highest LDA values belong to the foreground. If 
2

μ  refers the 

mean foreground, smallest LDA values belong to the 

foreground. The value k  refers the single space number, which 

represents the distribution of a real class, in which the data is 

separated into two classes as "foreground" and "background" 

for k th real class such as "road", "building", "vegetation", or 

tree". 

 

In this case, the problem of specifying the threshold values for 

the spaces emerges. In this study, we first normalized the LDA 

values to integers in the range (0 to 255 in this study). After 

that, we test all of the integers in the range for the best 

classification success on the training data. The value which 

gives the best score is selected as threshold for that single 

dimensional space. For the score measurement for every integer, 

we use the evaluation of F1-score (8), which is also used for the 

success of the final classification results in this paper.  

 

1 2
precision recall

F
precision recall


 


 (8) 

 

tp
precision

tp fp



 (9) 

 

tp
recall

tp fn



 (10) 

 

In the equations (9) and (10), tp  defines the size of the true 

detected data for a class (true positives), fp  defines the size of 

the false pair of the detected data for the class (false positives), 

and fn  defines the size of the false pair of the outside the 

detected data for the class (false negatives). In the other words, 

it can be said that tp fp  is the size of the detected data for a 

class, and tp fn  is the size of the true data for the class (Wang 

et al., 2017). 

 

The process of obtaining the threshold t  is performed for each 

class separately. In a result, a threshold set 
1 2

{ , , , }
m

t t t  is 

obtained. After obtaining the LDA values and the threshold 

value for each class, the data can be classified into two classes 

as foreground and background according to be separated class, 

using the related threshold values and the LDA values. But, the 

goal of the study is to separate all classes from each other in the 

data. In this paper, we classified all the data simultaneously 

using the LDA values and the threshold values. 

 

2.3 Class selection functions for multi-class labelling 

2.3.1 Min-Max selection function: Using only the obtained 

LDA values, firstly normalizing each in its related class in a 

range (e.g. 0 to 1), the data elements can be assigned to classes 

by the way selecting the index of the smallest LDA value (11) if 

1=mean foregroundμ  in Eq. (4) or the highest value (12) if 

2=mean foregroundμ  in Eq. (4) for each data. This way is 

called as "Min-Max function" in this paper. Each value in a 

LDA vector of an element was obtained for a different class (for 

one of the four classes in this study) in the LDA calculation in 

previous steps. In other words, for the LDA value 
LDA

,"road"ix  was 

calculated handling the class "road" as foreground and the 

others as background in binary discrimination. The normalized 

LDA value 
n LDA

,"road"ix  is calculated by normalizing all the 

LDA

,"road"ix  in a certain range for each i  among themselves 

1

label n LDA n LDA n LDA n LDA

,"road" "build." "veg." "tree"

if( =mean foreground) in Eq. (4)

=ind(max( , , , ))

μ

i i i, i, i,x x x x x
 (11) 

 

 

2

label n LDA n LDA n LDA n LDA

,"road" "building" "veg." "tree"

if( =mean foreground) in Eq. (4)

=ind(min( , , , ))

μ

i i i, i, i,x x x x x
 (12) 

 

 

2.3.2 Max-membership selection function: The other way of 

selecting the class, is to applying a membership function. In this 

study, we assign membership values to pixels for each class. A 

membership value is the degree of an element in the data to 

assigning a class; such that it denotes the proximity of an 

element to the related class. A membership function transforms 

the current values to membership values. The membership 

function denoted for the class "road" (as an example) in the 

equations (13) and (14) is improved in the scope of this work. 

Eq. (13) defines the membership value mem

,"road"ix for the class 

"road" of i th element of the data if the foreground was 

considered as 
1

c  in the LDA calculation in previous steps 

( 1=mean foregroundμ  in Eq. (4)), and  Eq. (14) if the 

foreground was considered as 
2

c  ( 2=mean foregroundμ  in Eq. 

(4)). In the equations, "road"t  refers the threshold value for the 

class "road" determined in previous steps. 
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1

LDA

,"road" "road" LDA

,"road" "road"

"road"
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,"road"

LDA
LDA,"road" "road"
,"road" "road"

"road"

if( =mean foreground) in Eq. (4)
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2
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"road" ,"road" LDA

,"road" "road"

"road"
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,"road"
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LDA"road" ,"road"
,"road" "road"

"road"
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t

x

t - x
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




 




 (14) 

 

The membership function is operated for each class using the 

related LDA value. In conclusion of the membership calculation 

process, each value has membership values instead of the LDA 

values. Each membership value is in the range [-1,1]. The 

higher the membership value is the greater the membership 

degree for the related class. Finally, the index of the highest 

membership value of an element is selected, and the element is 

assigned to the class labelling with this index (15). This way is 

called as "Max-membership function" in this paper 

label

,"road" "build." "veg." "tree"=ind(max( , , , ))mem mem mem mem

i i i, i, i,x x x x x  (15) 

 

3. EXPERIMENTAL RESULTS 

We applied the developed method on the Vaihingen dataset 

provided by the ISPRS Commission III (‘2D Semantic Labeling 

Contest’, n.d.; Karakoyun et al., 2017; Labeling and Vaihingen, 

2016). The dataset includes 33 satellite images; the size of each 

is about 2500×200 pixels. The ground-truth of 16 of them is 

shared for training and validation to researcher, and that of 17 

of them is saved for centrally benchmarking by the commission. 

In this paper, we used the 16 images whose ground truths are 

shared. We used 12 of them for obtaining the weight vector set 

1 2
{w ,w , ,w }

m
 (for LDA values) and the threshold set 

1 2
{ , , , }

m
t t t  as training data. We used 4 of them (area5, area7, 

area23, and area30) (Wang et al., 2017) as validation data to 

present the accuracy results of the method. 

 

The images in the dataset consist of NIR (Near Infrared), R 

(Red), and G (Green) channels. The DSMs (Digital Surface 

Maps) and nDSMs (Normalized DSMs) are also provided by 

the commission. In Fig. 1, the image "area30" in the data set 

and its nDSM projection is showed as an example. The 

MATLAB program is used in this study for the method and 

image presentations. We use the values of NIR-R-G_DSM-

nDSM as the feature vectors of the data. 

 

The ground truth includes 6 class; those are "road", "building", 

"vegetation", "tree", "car", and "clutter". The classes "car" and 

"clutter" occupy a small area in the dataset; so we ignored these 

classes because of similarity of their radiometric features to the 

other large classes and misdirecting the general classification. 

 

At first, we calculated the LDA values and obtained the 

threshold values for each class on the training data. For 

computing the LDA values and determining the threshold 

values, the binary ground-truths are needed for each class. For 

example, for the class "road", the binary ground-truth of the 

class is set as "road" as foreground and "not road" as 

background. But, in the data set, the truths of all the classes are 

in the same data together. Therefore, we firstly extracted the 

truth class separately for LDA calculation and threshold 

specifying. The threshold values obtained and their F1-scores 

for the related classes are given in the Table 1. In Fig. 2, the 

binary classification ground-truth and the results of the binary 

classification of the sample image are presented according to 

the obtained threshold values from training data. 

 

It should be noted that the binary classification in the training 

images for only obtaining the threshold values, and the binary 

classification in the sample image which is one of the validation 

images is only for the presentation here. The binary 

classification results are not used for the actual classification. 

 

After the LDA weight vectors and the threshold values for every 

class are obtained, the LDA values of the validation data are 

computed using the LDA vectors, and the LDA values are 

normalized to LDA integers. As the next step, the membership 

values are computed using the LDA integers of the validation 

and the threshold values obtained using the training data 

previously. 

 

Class 
Threshold 

{0,1,2, ..., 255} 

Best Binary 

Classification Score 

"Road" 127 0.7984 

"Building" 152 0.7447 

"Vegetation" 107 0.6438 

"Tree" 88 0.8009 
 

Table 1. The threshold values and their binary classification 

results on the training data 

 

Here, we tested two labelling methods that are "Min-Max 

function" and "Max-membership function" mentioned in 

previous section. "Min-max functions" only uses the LDA  

(a) (b) 

  

Figure 1.  The sample image "area30" in the dataset (a) and the 

projection of its normalized DSM (b) 
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values, and "Max-membership function" uses the membership 

values to assign the pixels to the classes. In the Table 2, the two  

labelling methods are compared on the validation data. In Fig. 

3, the classification results of the validation images are also 

presented visually.  

 

Classes 
Min-Max 

F1-score 

Max-membership 

F1-core 

"Road" 0.7074 0.6913 

"Building" 0.2907 0.6635 

"Vegetation" 0.5252 0.5659 

"Tree" 0.5382 0.5486 

Overall 0.5154 0.6173 

Table 2. F1-score validation results of the methods with the 

functions of "Min-Max" and "Max-membership" 

 

4. CONCLUSION 

In this paper, the classifications of some satellite images 

obtained from a benchmark dataset are intended using one 

dimensional LDAs. For this purpose, the binary distributions of 

LDA is used, and applied the binary classification for each class 

as if they are foreground for obtaining a threshold value for 

each. Two labelling functions which assign the pixels to the 

classes is presented; one uses the LDA values and the other uses 

the membership values generated from the LDA values and the 

threshold values. In result, the two methods are compared to 

each other. The results show that the function that uses 

membership values is better than the other. Max-membership 

method is practical to put into practice for supervising 

classification for large size images. We offer a new approach in 

this paper using the spectral features of images, not using the 

spatial features. For further studies, this method can be 

developed incorporating the spatial features. 
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Figure 3. Visual classification results of the validation images  with  "Min-Max function" and "Max-membership function" 
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