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ABSTRACT: 

 

Our work addresses the problem of classifying tree species from mobile LiDAR data. The work is a two step-wise strategy, including 

tree segmentation and tree species classification. In the tree segmentation step, a voxel-based upward growing filtering is proposed to 

remove terrain points from the mobile laser scanning data. Then, individual trees are segmented via a Euclidean distance clustering 

approach and Voxel-based Normalized Cut (VNCut) segmentation approach. In the tree species classification, a voxel-based 3D 

convolutional neural network (3D-CNN) model is developed based on intensity information. A road section data acquired by a 

RIEGL VMX-450 system are selected for evaluating the proposed tree classification method. Qualitative analysis shows that our 

algorithm achieves a good performance. 

 

 

1. INTRODUCTION 

In the case of urban areas, tree species classification is gaining 

increasing attention for safety studies, noise modelling, and 

environmental and ecological analysis because trees play a 

critical role in urban ecosystems for the maintenance of 

environmental quality, aesthetic beauty of urban landscape, and 

social service for inhabitants. As cities grow rapidly, urban 

forests are increasingly displaced by infrastructure. Therefore, 

municipal governments desire to control development near 

greenbelt areas by using land cover maps. Moreover, 

biodiversity parameters such as tree species and age and height 

distributions are primarily chosen for ecosystem analysis.  

 

In the last two decades, light detection and ranging (LiDAR) 

technology has been developed dramatically. Various systems 

have been designed for different applications and purposes, 

such as mobile, terrestrial, and aerial LiDAR systems, as well as 

Unmanned Aerial Vehicles (UAV) LiDAR systems. Mobile 

LiDAR, a widely used technology since year 2003 when the 

first mobile LiDAR system was developed, has attracted much 

attention for mainly transportation-related surveys (Jacobs, 

2005; Toth, 2009). It is a data revolution. With a mobile LiDAR 

system, mobile mapping engineers can drive on a highway, rural 

road, and railroad, or along the shoreline of a river or lake. 

Along the way, the system captures trees, bridges, streetlights, 

buildings, power lines, other street-scene small objects (e.g. 

cracks, road markings). The collected data are a totally 

immersive three-dimensional (3D) view of the objects and 

surroundings (Rybka, 2011).  

 

Due to the superior capabilities of LiDAR systems in collecting 

three-dimensional (3D) georeferenced scene data, algorithms 

and techniques for tree detection and classification using point 

cloud data have been intensively studied in the literature. Li et 

al. (2016) developed a dual growing method for extracting 

individual trees from mobile LiDAR data. Both the trunks and 

crowns were effectively delineated through the dual growing 

process followed by a refining process. 3D segmentation 

methods, such as 3D Hough transform (Rutzinger et al. 2010), 

minimum spanning tree (Shen et al. 2008), and stepwise voxel-

based marked neighborhood searching (Wu et al. 2013), were 

developed for identifying street trees from scattered mobile 

LiDAR points. In addition, algorithms combining mobile 

LiDAR data with digital images or videos captured by onboard 

digital camera(s) or video camera(s) were also exploited for tree 

detection (Zhong et al. 2013).  

 

As for tree species classification in mobile LiDAR data, some 

deep learning methods were used recently. Guan et al. (2014) 

proposed a Deep Boltzmann Machines (DBMs) based tree 

classification method, which classify ten tree species from the 

tree waveform representation, reflecting tree geometric 

structures in mobile LiDAR data. Zou et al. (2017) proposed a 

deep belief network (DBN) model based tree classification 

method, in which the generated high-level features were used in 

a softmax classifier in the tree species classification step. 

However, these methods were applied deep learning algorithms 

to generate low-level or high-level features, which were input 

into a machine learning classifier later. This operation just 

utilizes these deep learning methods as a feature generator, 

leading to not fully reflecting their advantages in object 

recognition and classification.  

 

In this paper, we develop an effective processing workflow for 

individual tree detection and species classification using mobile 

LiDAR data. The remainder of this paper is organized as 

follows. Section 2 describes the proposed tree species 

classification method. Section 3 demonstrates the experimental 

results and discussion. Finally, concluding remarks are given.  
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2. METHODOLOGY 

The proposed method is a three step-wise strategy: (1) tree 

segmentation, which includes the separation of terrain points 

and non-terrain points via a voxel-based upward growing 

filtering, individual tree segmentation based on a Euclidean 

distance clustering approach and a voxel-based Normalized Cut 

approach, and (2) tree species classification based on 3D- CNN. 

 

2.1 Tree Segmentation 

In order to reduce the amount of data to be processed, first, we 

filter out the ground points from the entire scene by using the 

voxel-based upward growing method (Yu et al., 2015). For this 

method, first, the entire scene is vertically partitioned into a 

group of data blocks in the XY plane with a block size of  wb. 

These data blocks are processed separately for ground point 

filtering. Then, each data block is voxelized into an octree 

structure with a spacing of  wv, in which a voxel is connected 

with 26 neighbors. Finally, the upward growing scheme, which 

only grows upward to the nine neighbors above a voxel, is 

applied to each of these voxels to label it into the ground or the 

non-ground according to a pre-defined ground threshold,  Hthresh. 

The voxels labeled as non-ground are retained, whereas the 

others are filtered out to narrow the searching regions. 

 

To segment individual trees from the non-ground points, first, 

we adopt a fast Euclidean distance clustering approach, which 

groups unordered points based on their Euclidean distances to 

their neighbors. Specifically, for an unlabeled point, it will be 

grouped into a specific cluster if and only if its shortest 

Euclidean distance to the points within this cluster lies below a 

clustering threshold, dt. After Euclidean distance clustering, the 

isolated individual trees located with a certain spatial distance 

from other trees are well segmented. However, the overlapping 

trees are falsely segmented into the same cluster. Such 

overlapping trees should be further separated. In this paper, we 

propose a voxel-based normalized cut segmentation method to 

perform individual tree segmentation from such clusters. 

 

First, a cluster is divided into a voxel structure using the octree 

partition strategy with a spacing of ws. Then, all the voxels are 

connected and constructed into a weighted graph G={V, E}, 

where the vertices V are composed of the voxels, and the edges 

E are linked between each pair of voxels. The weights on the 

edges evaluate the similarity between the two connected voxels. 

To provide promising segmentation performance and take full 

advantage of the properties of mobile LiDAR data, the weight 

wij on the edge connecting voxels i and j is formulated as 

follows: 
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Where Dij
XY, Dij

Z and Dij
S represent the horizontal, vertical, and 

shortest distance, respectively, between nodes i and j. σXY, σZ 

and σS are coefficients, set to be 0.05 times of the maximum of 

Dij
XY, Dij

Z and Dij
S, for controlling the sensitivity of the impact 

factors, respectively. ΓR represents the maximum horizontal 

distance threshold between nodes. wij = 0, if the horizontal 

distance between nodes {i,j} exceeds the threshold, ΓR. NCut 

aims to divide the graph G into two disjoint voxel groups A and 

B by maximizing the similarity within each voxel group and 

minimizing the similarity between two voxel groups A and B 

(Shi and Malik 2000). 

 

2.2 Tree Species Classification 

To effectively conduct tree species classification on the 

segmented individual trees, we develop a 3D convolutional 

neural network (3D-CNN) model. To this end, first, for each 

segmented tree, we uniformly segment it into a voxel 

representation with a set of W×W × H voxels along the 

horizontal and vertical directions. Then, for each voxel, the 

intensities of the points in this voxel are interpolated to from the 

voxel’s spectral information. In this paper, the inverse distance 

weighted interpolation method (Yu et al., 2014) is adopted to 

interpolate intensities. Finally, such voxel representations of 

trees with interpolated voxel spectral information are fed into 

the 3D-CNN for tree species classification.  

 

As shown in Figure 1, the 3D-CNN model consists of four 3D 

convolutional layers (Conv1 to Conv4), a max-pooling layer, 

and three fully connected layers (FC1 to FC3). The four 3D 

convolutional layers function to extract different levels of local 

or partial features of trees through 3D convolution operations. 

The Conv1 layers is performed on the voxel representations of 

trees and only considers the voxel spectral properties as features 

for convolution operations. To perform 3D convolution 

operations, the convolution kernel is designed to be a 3D cubic 

form (e.g., K×K×K×D, where K is the kernel length and D is 

the number of feature maps) sliding across the 3D feature maps. 

The 3D convolution operations provide a horizontal-rotation-

invariant representation. That is, the horizontal rotations of trees 

have no effect on the resultant feature representations. Similar 

to conventional 2D CNNs, the max-pooling layer is used for 

feature selection and reduction. Through max-pooling 

operations, the most salient and representative features are 

selected and the other features are suppressed. In addition, the 

number of network parameters is dramatically reduced after 

max-pooling, which helps to build a lightweight network.  

 

By taking into account and fusing the local features extracted by 

the convolutional layers, the FC1 and FC2 layers are designed 

to extract global features of trees. The features extracted by the 

FC2 layer provide a tree-level feature representation. Such 

features are used for distinguishing different tree species. The 

FC3 layer is a softmax layer for tree species classification, 

where each neuron represents a specific tree species. For an 

input tree, the species label of this tree is determined according 

to the neuron with the maximum output of predication in the 

FC3 layer. It can be deduced as follows: 
* arg max k

k
T h                                 (2) 

where T* is the predicted species and hk is the output of the k-th 

neuron in the FC3 layer. Specifically, for all the convolutional 

layers and fully connected layers, the widely used ReLU is used 

as the activation function to make nonlinear transformations on 

the neuron outputs. In addition, the cross entropy loss is used as 

the loss function for conducting the backpropagation process 

when training the 3D-CNN. After applying the 3D-CNN model 

to the voxelized trees, each tree is assigned to a specific tree 

species. 
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Figure1. Architecture of the 3D-CNN model. 

 

 

 

3. RESULTS AND DISCUSSION 

In this study, the data were acquired by a RIEGL VMX-450 

mobile LiDAR system, which can achieve a maximum effective 

measurement rate of 1.1 million points per second and a scan 

speed of 400 lines per second, according to its specification. 

This survey, at a driving speed of approximately 30 - 50 km/h, 

was carried out along Huandao Road from Xiamen University 

to International Conference and Exhibition Center (ICEC) in 

Xiamen, China. The surveyed area is in a subtropical urban 

environment with high buildings, dense vegetation, and traffic 

signposts on both sides of the road. The point density for 

mobile LiDAR data strongly relies on the nominal distance to 

the target where the point spacing is measured as well as the 

incidence angle. Accordingly, at the vehicle speed of 30 

km/hour, the values of point density are estimated as 286.44 

points/ m2.  

 

For urban landscaping, a total number of ten different species of 

trees are planted along both sides of the road corridor. At 

training stage, 50,000 tree samples from ten different tree 

species, each of which includes 5,000 tree samples, were 

selected for training the 3D-CNN. At test stage, from the 

collected data, a road segment of approximately four kilometers, 

containing 2013 trees from ten species, was selected for 

evaluating the proposed 3D-CNN-based tree species 

classification algorithm. 

 

3.1 Single-tree Segmentation 

In the single-tree segmentation, five parameters were used: 

block size (wb), voxel size (wv), terrain threshold (Hthresh), 

clustering threshold (dt), and NCut voxel size (ws). The block 

size (wb) and voxel size (wv) control the efficiency of data 

processing, and thus were set to 3 m and 5 cm, respectively, 

according to the data to be used in this study. The survey terrain 

is relatively flat, and thus was set to 0.3 m for removing terrain 

points. After the removal of terrain points, the tree segmentation 

was performed on these non-terrain points via the proposed 

Euclidean distance clustering and voxel-based normalized cut. 

The clustering threshold (dt) was set to 0.15 m and the voxel 

size (ws) was set to 5 cm. The thresholds of these parameters 

were empirically determined based on the point density of the 

collected mobile LiDAR data. However, some clusters included 

several trees and other objects such as light poles because the 

trees, particularly planted along the road sides, were very dense 

and even severely overlapped together. Thus, the proposed 

voxel-based normalized cut was performed to obtain the 

individual trees. As shown in Figure 2(b), road points (rendered 

by olive colour) are separated well from non-terrain points. 

Figure 2(c) shows the classified non-terrain points only. The 

segmented trees are shown in Figure 2(d). The visual inspection 

shows that the majority of trees individually segmented and the 

tree segmentation results are satisfactory.  

 

3.2 Tree Classification 

To evaluate the performance of the proposed method, ten 

different tree species were selected from the surveyed area. 

Figure 3 shows some examples of the ten tree species, which 

were termed as T1, T2 …T10. In the selected dataset, there are 

a total number of 2013 trees from ten different tree species. The 

tree species classification results are illustrated in Table 1 by 

using a confusion matrix. In Table 1, each row corresponds to 

the ground truth of each tree species and the classification 

results with regard to different tree species. Each column 

denotes the trees that were classified into a specific tree species. 

The main diagonal reflects the trees that were correctly 

classified as their associated tree species. To quantitatively 

evaluate the tree species classification results, we adopted the 

following two metrics: overall accuracy and kappa coefficient. 

As reflected in Table 1, the overall tree classification accuracy 

is 96.4% and the kappa coefficient is 0.96. To quantitatively 

analyse the classification results of each tree species, we also 

computed and recorded the producer’s and user’s accuracies. 

The user’s accuracy reflects the proportion of correctly 

classified trees with regard to the ground truth. The producer’s 

accuracy reflects the proportion of correctly classified trees with 

regard to trees classified as a specific species. Thus, the higher 

these two accuracies, the better the classification performance. 

Specifically, the producer’s accuracies for all trees are greater 

than 93.4%, and user’s accuracies for all trees are greater than 

94.7%. The misclassification errors were mainly caused by the 

geometry similarities of some trees among different species; 

thus, these trees were falsely classified into other species. For 

example, tree species T6 and T8 are quite similar in geometry 

structures. Therefore, some trees of species T6 were falsely 

classified as species T8. In addition, some trees of species T8 

were falsely classified as species T6. However, for all tree 

species, the misclassification rate is quite low and acceptable. 

 

 

 

75 75 75 75  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W13, 2019 
ISPRS Geospatial Week 2019, 10–14 June 2019, Enschede, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-2-W13-989-2019 | © Authors 2019. CC BY 4.0 License.

 
991



 

(a)                                                   (b)                                             (c)                                           (d) 

Figure 2. A test data selected from Figure 1. (a)  The raw point cloud, (b) the classified terrain points and non-terrain point, (c) the 

classified non-terrain points, and (d) the individual tree segmentation results. 

 

 

Figure 3. Illustration of 10 different tree species (termed as T1, T2, …… , T10) in the study area. 

 

 

 Species 
Validation trees  

Total  
Accuracy 

UA(%) T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 

Classified 

trees 

T1 201 0 0 1 1 4 0 2 0 1 210 95.7 

T2 0 183 3 1 0 0 3 0 0 0 190  96.3 

T3 1 1 182 2 0 0 2 0 1 0 189 96.3 

T4 2 0 1 203 2 1 0 1 0 0 210 96.7 

T5 0 0 1 0 198 0 0 2 2 0 203 97.5 

T6 0 0 0 1 2 200 0 5 2 1 211 94.8 

T7 0 0 3 0 1 0 189 0 0 0 193 97.9 

T8 0 0 0 0 3 5 0 197 2 1 208 94.7 

T9 0 0 1 0 2 0 0 1 182 0 186 97.8 

T10 0 0 0 0 3 0 0 3 2 205 213 96.2 

Total  204 184 191 208 212 210 194 211 191 208 2013  

Accuracy PA(%) 98.5 99.5 95.3 97.6 93.4 95.2 97.4 93.4 95.3 98.6   

 OA(%) = 96.4;  Kappa = 0.96 

Table 1. Overall results of classification accuracies of ten tree species by using confusion matrix, showing the numbers of classified 

vs. validation trees. PA – producer’s accuracy; UA – user’s accuracy; OA – overall accuracy; Kappa – Kappa coefficient 

3.3 Comparative Experiments 

In this study, the 3D-CNN model was used to perform tree 

species classification on the segmented individual trees. A 

promising classification performance was achieved on the test 

LiDAR data. Thus, to further demonstrate the superior 

performance of the 3D-CNN model, we compared it with the 

following two methods: DBM-based method (Guan et al. 2014) 

and DBN-based method (Zou et al. 2017). For the DBM-based 

method, first, a tree point cloud is converted into a waveform 

representation, which well reflects the geometrical properties of 

a tree. Then, DBM is performed on the waveform representation 

to conduct tree species classification. For the DBN-based 

method, first, a tree point cloud is projected and rasterized into 

a set of 2D images from different views. Then, DBN is 

performed on these 2D images to carry out tree specifies 

classification. Table 2 exhibits the results of the comparison. 

Likewise, to quantitatively compare their performances, we 

computed and recorded the overall accuracy and kappa 

coefficient of each method, as well as the user’s and producer’s 

accuracies. In table 2, only the minimum and maximum user’s 

and producer’s accuracies and presented. Comparatively, The 

DBN-based method performed better than the DBM-based 

method with an overall accuracy and kappa coefficient of 95.6 

and 0.9, respectively. However, by using the 3D-CNN model, 

our proposed method achieved the overall accuracy and kappa 

coefficient of 0.8% and 0.06 higher than the DBN-based 

method, and 10.3% and 0.16 higher than the DBM-based 

method, respectively. On the whole, the proposed 3D-CNN 

model worked efficiently and obtained promising performance 

in tree species classification from mobile LiDAR data. 

 

 

Method 
OA 

(%) 

Kappa 

coefficient 

UA (%) PA (%) 

MIN MAX MIN MAX 

DBM-based 86.1 0.8 78.2 96.2 81.3 90.7 

DBN-based 95.6 0.9 93.3 97.1 94.5 96.2 

Proposed 96.4 0.96 94.7 97.9 93.4 99.5 

Table 2. Comparative results of classification accuracies of 

three methods. 

 

4.  CONCLUSION 

This paper has presented a two step-wise tree classification 

method from mobile LiDAR data. To efficiently identify trees, 

in the tree segmentation, the voxel-based upward growing 

filtering method was first presented to classify mobile LiDAR 

data into terrain points and non-terrain points. Next, based on 

the classified non-terrain points, the Euclidean distance 

clustering was performed to obtain a set of clusters and then the 

voxel-based normalized cut method was used to obtain 

individual trees from these clusters. In the tree classification, 

voxel-based 3D-CNN was performed on the segmented 

individual trees to classify them into different tree species. To 

evaluate the performance of the proposed tree classification 

approach, a road section was selected from the mobile LiDAR 

data acquired by a RIEGL VMX-450 system. The road section 
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contains 2013 trees from ten species. Through quantitative 

evaluations, the proposed method achieved an overall tree 

classification accuracy and a kappa coefficient of 96.4% and 

0.96, respectively. Comparative tests also demonstrated the 

feasibility and high performance of the proposed method in tree 

species classification using mobile LiDAR data. 
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