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ABSTRACT: 

 

In this investigation a comparison between two machine learning (ML) models for semantic classification of an aerial laser scanner 

point cloud is presented. One model is Random Forest (RF), the other is a multi-layer neural network, TensorFlow (TF). Accuracy 

results were compared over a growing set of training data, using a stratified independent sampling over classes from 5% to 50% of the 

total dataset. Results show RF to have average F1=0.823 for the 9 classes considered, whereas TF had average F1=0.450. F1 values 

where higher for RF than TF, due to complexity in the determination of a suitable composition of the hidden layers of the neural 

network in TF, and this can likely be improved to reach higher accuracy values. Further study in this sense is planned.  

 

 

 

1. INTRODUCTION 

Machine Learning (ML) is the branch of Artificial Intelligence 

(AI) that concerns the automated detection of meaningful 

patterns in data (Shalev-Shwartz and Ben-David, 2014). The ML 

approach to data analysis was born in the second half of 20th 

century, when mathematical theories (such as Least Square 

Method, Bayes theorem and Markov Chains) met the growth of 

modern informatics.  Starting from the last decade ML techniques 

were adopted in complex data intensive field such as astronomy, 

biology, climatology, finance and economy (Is et al., 2015).  

Thanks to a large number of algorithms, today ML find 

application in a lot of fields related to ever day human life 

(internet, industrial production, medicine..ecc).  

 

In general modern ML algorithms allow to use different kind of 

learning methods from data. In particular it is possible to 

distinguish the following kind of learning approaches: 

  

• Unsupervised. When unknown patterns and structures 

are uncovered within the dataset (no a priori knowledge). 

• Supervised. When it is defined a model capable to 

connect explanatory variables to the responsive one (a 

priori knowledge). 

• Semi supervised learning. When there is no training 

dataset and model is refined basing on the experience 

acquired.  

 

The use of the supervised approach is common for classification 

problems. Two well known and common classifiers are Random 

Forest (RF) and Tensorflow (TF);  these algorithms are non 

parametric and provide excellent results with multi modal data 

distribution.  

 

The RF model is based on an ensemble of decision trees (forest) 

that grows through training towards best combinations. In fact an 

ensemble consist of a set of individual trained classifier (decision 

trees), which are combined for classify new instances (Kulkarni, 

2013).  The RF model requires the definition of two parameters, 

that are the number of trees to generate (Ntree) and the number 

of variable (Mtry) to be selected and tested for the best split when 

growing trees (Belgiu and Drăgu, 2016).  

The number of trees can be different and depends on the 

computational efficiency and the overfitting risk; for example the 

default number of trees value in R package “Random Forest” is 

500. Once all parameters are defined the model builds all the 

trees. About variable selection the following approaches are used 

(for more info see the work by Abellán et al., 2017): 

• Random Forest Using Random Input Selection (Random 

Forest- RI): It is the most common. In this approach m 

variables are selected at random out of the available attributes 

and the best split on these m is used. The number of attributes 

used in random selection by the author were 1 and the first 

integer less than log 2 (M) + 1 . 

• Random Forest Using Linear Combination of Inputs 

(Random Forest RC): Before the selection of the best variable 

to split, more attributes are created by taking random linear 

combinations of L variables (using L = 3 ). 

 

However during the building of the forest, the number of 

variables is held constant. Before running the model the dataset 

is divided into two part: a training set, which can reach two third 

of the initial dataset, and the other part that is the validation one 

(or Out Of Bag – OOB). During the training phase the dataset is 

run down by each tree. Each tree perform a classification of the 

features of dataset, which is counted as a vote. The final 

classification is assumed with the majority vote criterion. The 

OOB features are used for error estimation. Moreover RF 

algorithm can also compute Variable Importance (VI) and 

proximity, which are important for understanding the behaviour 

of the features in the model (Breiman, 2001).  

 

The TF is a framework created by Google’s artificial intelligence 

team and released in 2015 with an open source license. TF uses 

graph to represent both the computation in an algorithm and the 

state on which the algorithm operates (Abadi et al., 2016). TF is 

based on Convolutional Neural Network (CNN); this kind of 

approach is similar to Neural Network (NN) one,  but it uses 
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convolutions and pooling to reduce the number of trainable 

parameters. Reducing parameters reduces computation cost and 

improves the ability to generalize (Hemmes, 2018). 

 

A typical TF application is divided into the following two phases:  

• Program definition. In this phase a CNN to be trained is defined 

and represented as graphical dataflow.  

• Optimization. In the second phase the Neural Network defined 

is executed and optimized basing on the data available. 

In general these classification techniques can found interesting 

application in point cloud classification. In fact Laser Scanning 

techniques allows to acquire spatial information as 3D point 

clouds.  Before performing the classification of points cloud  it is 

possible to do a “segmentation” of 3D points. This process 

groups points into different cluster, using different approaches, 

such as Edge Segmentation, Regional Growing Segmentation, 

Segmentation by Model Fitting, Hybrid Techniques 

Segmentation and Machine Learning Segmentation (Grilli et al., 

2017). 

 

The result of the Segmentation phase (the cluster) can be used as 

variable for points cloud classification  phase.  The classification 

process involves initially the features extraction phase. Initially 

this process involves the recovery of a local neighbourhood for 

each 3D point, and then  the extraction of geometric features 

based on all 3D points within the local neighbourhood.  

The radius of neighbourhood analysis can be different for shape 

(spherical, cylindrical..) and for length (fixed or variable) 

(Weinmann et al., 2015).  Basing on these analysis, features are 

extracted. Finally the classification is performed using a classifier 

(RF, ANN, TF… etc). The multitude of applications for machine 

learning approaches for spatial data is shown in the recent 

numerous publications that focus on using these algorithms for 

image analysis (Pirotti et al., 2016) and also support raster-based 

spatial predictions (Piragnolo et al., 2019). In this work we 

compared point clouds classification accuracy of Random Forest 

and Tensorflow.  

 

  

2. MATERIALS AND METHODS 

2.1 Datasets 

The data used for testing and validation in this investigation is 

the benchmark dataset from the ISPRS benchmark on urban 

object detection and 3D building reconstruction (Rottensteiner et 

al., 2014b). The labelled laser scanner dataset of the city of 

Vaihingen (Germany) was used. Points in this dataset are labelled 

with eight classes, indexed respectively from 0 to 8 as in figure 

1. The number of points in the dataset used is not balanced (Table 

1); as can be expected, power-lines, cars and fences are 

represented by ~100x less points. 

 

Label Class N. points 

0 Powerline 600 

1 Low vegetation 98690 

2 Impervious surfaces 101986 

3 Car 3708 

4 Fence/Hedge 7422 

5 Roof 109048 

6 Facade 11224 

7 Shrub 24818 

8 Tree 54226 

Table 1. Number of points per class.  

 

 

Figure 1. Colour legend for labelled classes in dataset. 

 

2.2 Methods  

The objective of this investigation is to test RF and TF methods 

over a set of observations (points) using a feature vector where 

features are predictors. Predictors here are derived not only from 

data present as point attribute (e.g. intensity of laser backscatter), 

but also from geometric characteristics extracted by analysis of 

neighbouring points. The set of vectors with features is then used 

as input to RF and TF. 

 

2.2.1 Feature extraction. Feature vector with predictors are 

calculated by considering spatial context. Context has to be 

defined by evaluating a number of nearest neighbours (nn) that is 

large enough to represent a class, but also small enough to avoid 

including points that belong to other classes.  Therefore the 

cardinality of nn is not fixed, but determined with a method that 

maximizes geometric consistency. This is done  by selecting the 

number of nn which result in the lowest Shannon entropy index 

value, as in (Weinmann et al., 2015, 2017), calculated using 

normalized eigenvalues of the 3D  covariance matrix:   

 

   𝑚𝑖𝑛{∑ 𝜆𝑖(𝑛𝑛) ⋅ ln⁡[𝜆𝑖(𝑛𝑛)]
3
𝑖 }   (1) 

 

where nnmin = 15 and nnmax = 100 and λi are the normalized 

eigenvalues of the 3D tensor tensor matrix and i = {1,2,3}. 

Twenty-three predictors are extracted this way using 3D, 2D 

features.  Similar work using these features has been done by 

(Thomas et al., 2018; Weinmann et al., 2015). Below the list and 

description of these predictors. 

 

 

Feature 3D 2D Feature 3D 2D 

nnn x x Verticality (V) x  

radius x x Omnivariance (O) x x 

density x x Anisotropy (A) x x 

dz x  eigenvaluesSum (ES) x x 

stddevz x  curvatureChange (CC) x  

Linearity (L) x x Eigenentropy (EE) x x 

Planarity (P) x  Dimensionality (D) x  

Scattering (S) x     

Table 2. List of features extracted from a context of nn nearest 

neighbours. 

 

The value of nnn represents the  number of nearest neighbours 

that can range from 15 to 100.  The 3D structure tensor Cnn- 3D 

covariance matrix - is calculated from the nn points.  
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 ⁡𝐶𝑛𝑛 ∈ ℝ3𝑥3 (3) 

 

Radius and density are respectively the radius of the minimum-

bounding sphere (3D) and circle (2D) of the point set. Dz and 

Stddevz are respectively range and standard deviation of height 

values (Z).  
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Dimensionality:  Di = - Li ln(Li) - Pi ln(Pi) - Si ln(Si).  (5) 

 

Intensity of return pulse was added to the above 23 features 

providing a total of 24 descriptors.  

 

2.2.2 Random forest (RF). Random forest (Breiman, 2001) 

is a widely used method for data mining in many disciplines, and 

has recently been often tested on classification of imagery 

(Piragnolo et al., 2017; Pirotti et al., 2016) and point clouds (Guo 

et al., 2011; Thomas et al., 2018; Weinmann et al., 2015). 

 

The RF classifier is an ensemble of decision trees created through 

a bagging approach. The set of trees is referred to as a forest. 

Bagging implies selecting samples from the training subset and 

train the trees. Internal cross-validation technique, e.g. using Gini 

index, measures the performance of RF and selects the best 

ensemble. Two parameters require tuning for best results in RF: 

the number of trees (Nt) and the number of features (Nf). Iterative  

methods to find best Nt and Nf combinations were applied using 

K-fold cross-validation over a subset of 20% of the data and 

testing 3x3 combinations of Nf∈{4,8,12} and Nt 

∈{50,100,200,500}.  Best combination resulted in Nf=8 and 

Nt=200. Each node in a tree is split by randomly selecting Nf 

features from the d-dimensional input feature space. The splitting 

function in this case uses Gini index as a measure node purity. In 

the prediction step, class probability is voted by each tree – 

maximum probability determines the class given to the point. 

 

2.2.3 TensorFlow (TF). The TF classifier is a convolutional 

neural network (CNN), thus uses a deep learning approach that 

can consider spatial context. A set of hidden layers process input 

vectors of predictors. The model is trained by feeding training 

data with multiple samples of each class. The model learns by 

going through all samples and updates node weights after each 

iteration. Best weight combination is defined with an accuracy 

metric calculated from training data. Predictor vectors are 

converted to tensors before being used as input in the neural 

network. Input is then passed sequentially to a number of hidden 

layers with user-defined number of nodes.  

 

Hidden layers can be customized depending on the data. Many 

applications use TF over feature vectors represented by semantics 

(text pool) or reflectance values (images). Some implementations 

of TF for point clouds have been developed recently, such as 

PointNet (Qi et al., 2017). 

 

2.2.4 Accuracy metrics. Accuracy assessment was carried 

out by providing fundamental accuracy metrics for each class. 

Precision, recall and the Jaccard index i.e. intersection of union 

and F1 overall index. 
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  (6) 

 

Where A is the error matrix, TP=true positives, FN=false 

negatives, FP=false negatives, Pr=precision, Re=recall, 

Ji=Jackard index, F1=F1 score. 

 

The two machine learning models, TF and RF, are trained over a 

stratified sample of the total point cloud grouping by class. To 

assess accuracy over different sizes of training samples, 10 runs, 

using from 5% to 50% of the total number of points for training,   

where used.  

 

All the functions used for applying the methods were 

implemented using modules in R-cran framework, with rminer 

and Keras package. 

 

 

3. RESULTS AND DISCUSSION 

In the next sections insights on neighbourhood size and features 

extracted are presented. Then accuracy of TF and RF are 

compared and the effect of training set size is evaluated. As stated 

in materials’ section, the data used are from the city of Vaihingen, 

Germany, and belong to the ISPRS Benchmark on urban 

classification and 3D reconstruction. The benchmark ended in 

2018 and results are available in the webpage and discussed in a 

special issue (Rottensteiner et al., 2014b). Results will be 

discussed comparing also results from that benchmark. 

 

3.1 Neighbourhood size 

Result of optimal neighbourhood size selection as described in 

(Weinmann et al., 2015) is described in Figure 2. The histogram 

distribution is very similar to results in (Weinmann et al., 2015). 
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Distribution of all 9 classes sees a bimodal distribution, with most 

values in the lower part, from 10 to 25, and the second mode in 

the higher part, between 90 to 100.  

 

 
 

 
Figure 2.  Frequency distribution (top) and box plot (bottom) of 

nnn values, found with minimum entropy, for each 

class (see Table 1 for class labels). 

 

3.2 Feature vector of predictors 

The features used, listed in Table 2 ideally have to provide 

significant information to separate required classes. The resulting 

frequency distribution of values for each feature can give an 

initial idea of the power that each feature has to separate classes. 

The training data provides this information and the distribution 

of values for three most important features is shown in Figure 3 , 

which are eigenentropy and two shape indices, linearity and 

planarity.  

 

 

 
Figure 3. Frequency distribution of the three features that have 

most importance for both RF and TF methods (see 

Table 1 for class labels). 

 

Finding ideal predictors is an important step; relevance of each 

feature is also defined in the training step of RF or TF, and is 

discussed in the next sections. Interest in segmentation and 

classification of irregular point clouds has gained much attention 

lately, resulting in many investigations.  Features can be implicit, 

as point characteristics (e.g. intensity of reflected pulse, return 

number ratio), extracted from neighbours in the 3D context (e.g. 

index of linearity, planarity, scattering – see methods section) and 

also be assigned from segment-based characteristics (Vosselman, 

2013). In this work only the first two types are used, but further 

work must include also segment-based features. 

 

3.3 Results of RF classification 

Table 3 shows commission and omission errors for best RF 

classification, with the four accuracy metrics reported in equation 

6. Visual representation of misclassified points from RF is 

presented at top figure in Figure 7. The table provides insight on 

what classes are hard to unmix and which are more easily 

separated from the others. 
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0 419 7 1 1 2 23 9 11 127 

1 6 86728 4720 25 77 2542 84 711 3797 

2 0 3544 97229 45 13 780 11 53 311 

3 0 580 123 2316 14 195 4 93 383 

4 0 1140 64 9 4588 205 34 243 1139 

5 3 4849 2216 10 20 98685 95 272 2898 

6 7 608 82 6 25 267 8383 115 1731 

7 2 2929 256 8 43 731 99 15302 5448 

8 12 2179 139 9 53 1255 288 856 49435 

F1 0.799 0.862 0.940 0.755 0.749 0.924 0.829 0.721 0.827 

Re 0.698 0.879 0.953 0.625 0.618 0.905 0.747 0.617 0.912 

Pr 0.933 0.846 0.927 0.953 0.949 0.943 0.931 0.867 0.757 

Ji 0.285 0.301 0.320 0.274 0.272 0.316 0.293 0.265 0.293 

Table 3. Error matrix for best RF and accuracy indices (eq. 6). 

column headers are class labels, row names are 

respective class indices. 

 

Random forest can be tuned by setting the number of features 

(Nf) selected for each ensemble and number of trees, (Nt). 

Optimal parameters resulted in Nf=8 and Nt=200.This resulted 

from a limited choice of of Nf∈{4,8,12} and Nt 

∈{50,100,200,500}, due to time limitations those 3x3 

combination grid was tested, and further tuning is possible, but 

the differences in accuracy between the best combination and the 

second best combination was not particularly high (0.911 and 

0.892 respectively), leading to the conclusion that further tuning 

does not provide significant advantage.  

 

3.4 Results of TF classification 

Table 4 shows commission and omission errors for best TF 

classification, with the four accuracy metrics reported in equation 

6. Classes “powerline”, “impervious surfaces”, “low vegetation”, 

“roof” and “tree” had F1 index above 0.5, whereas classes “car”, 

“fence”, “shrub” had very low F1 values. The latter three classes 

were not able to be detected well by TF. More discussion is 

presented in the next section, which compares results between the 

two methods tested. 
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0 265 12 1 1 0 29 42 0 250 

1 2 63634 13124 26 74 8806 247 342 12435 

2 1 7294 87276 22 11 5889 18 9 1466 

3 3 1345 421 219 7 742 33 56 882 

4 3 2784 232 5 119 519 246 115 3399 

5 19 14350 6927 19 11 77313 238 122 10049 

6 18 1051 230 9 28 812 4612 60 4404 

7 15 5866 602 20 43 2174 319 391 15388 

8 21 4065 457 30 30 3631 1033 258 44701 

F1 0.560 0.639 0.827 0.108 0.031 0.740 0.512 0.030 0.607 

Re 0.442 0.645 0.856 0.059 0.016 0.709 0.411 0.016 0.824 

Pr 0.764 0.634 0.799 0.624 0.368 0.774 0.679 0.289 0.481 

Ji 0.219 0.242 0.292 0.051 0.015 0.270 0.204 0.015 0.233 

Table 4.  Error matrix for best TF and accuracy indices (eq. 6) 

– column headers are class labels, row names are 

respective class indices. 

 

 

3.5 Comparison between TF and RF results 

Figure 5 shows accuracy metrics (recall and precision) for each 

class and method in function of percentage of data used for 

training. It can be seen that RF increases steadily for some 

classes, for example Fences/Hedge Recall metric grows from 

0.121 to 0.618 for RF, whereas TF has very low Recall for that 

class. For both TF and RF Recall was higher than Precision or 

close to it, except for shrub class which had better Precision than 

Recall. Shrub is very much misclassified by committing to low 

vegetation and tree classes, which is quite obvious. TF method 

results in much lower accuracy for shrub class than RF. In this 

investigation we did not create a specific feature containing 

height above ground, which could help discriminating these three 

vegetation classes. It is a trivial task to add such feature, and 

future work will take this into account. 

 

 
Figure 4.    Comparison of best F1 values between classes and 

methods used. 

 

 

 

 
Figure 5.    Comparison of accuracy metrics (recall and 

precision) for each class and method in function of 

percentage of data used for training. 

 

 

It is worth noting that misclassified points are on the edges of the 

roof as can be seen in Figure 7, and on points with peculiar 

characteristics. Classes with omission/commission errors are 

Shrub and Tree, which can be expected considering that height 

above ground is the only difference that separates the two classes.   

 

3.6 Variable importance 

Variable importance is an interesting aspect to assess when 

applying data mining techniques (Cortez and Embrechts, 2013). 

In this case the predictors were many, but some had similar and 

likely collinear information. To see which variable had more 

weight importance can be computed based on corresponding 

reduction of predictive accuracy when that variable is not used. 

Using permutation, the decrease of node impurity can be 

assessed. In RF the Gini importance index is defined as the 

averaged Gini decrease in node impurities over all trees in the 

forest. Results showing most important and least important input 

variables is shown in Figure 6 below. The most important 

variables for prediction are the CC (curvature change), the eigen-

entropy in 2D and the height differences – standard deviation and 
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range - in the cluster of neighbours used to calculate the 

predictors. 

 

 

Figure 6.    Variable importance for RF. 

 

       

           

 
Figure 7.   Top and bottom are misclassified points in RF and TF 

respectively: Middle is the final product from TF. 

 

 

4. CONCLUSIONS 

In this investigation a comparison between two machine learning 

(ML) models for semantic classification of an aerial laser scanner 

point cloud is presented. One model is Random Forest (RF), the 

other is a multi-layer neural network, TensorFlow (TF). 

Accuracy results were compared over a growing set of training 

data, using a stratified independent sampling over classes from 

5% to 50% of the total dataset. Results show RF to have average 

F1=0.823 for the 9 classes considered, whereas TF had average 

F1=0.450. F1 values where higher for RF than TF, due to 

complexity in the determination of a suitable composition of the 

hidden layers of the neural network in TF, and this can likely be 

improved to reach higher accuracy values. Further study in this 

sense is planned.  

 

The results from the ISPRS benchmark regarding this dataset are 

all from supervised approaches (Rottensteiner et al., 2014b, 

2014a). The F1 scores are similar, sometimes higher, then the 

ones found in this work. Similarity of results are found also in the 

fact that car and trees have lower accuracies than roofs and 

facades. Also other CNN achieve comparable accuracies. 

PointNet achieves 48% average class accuracy on the indoor 

benchmark dataset S3DIS with 13 classes in tests by Charles et 

al. (2017).  

 

Work in the direction of using advanced methods for 

classification of unstructured point clouds is giving promising 

results. It will also benefit from faster processors that can provide 

faster results also in big datasets. Understanding the composition 

of elements in point clouds automatically can lead to further 

applications in the realm of using point  cloud data for multiple 

uses. 
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