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ABSTRACT: 

 

This paper presents a theoretical study of derivation Microwave Vegetation Indices (MVIs) in different pairs of frequencies using 

two methods. In the first method calculating MVI in different frequencies based on Matrix Doubling Model (to take in to account 

multi scattering effects) has been done and analyzed in various soil properties. The second method was based on MVI theoretical 

basis and its independency to underlying soil surface signals. Comparing the results from two methods with vegetation properties 

(single scattering albedo and optical depth) indicated partial correlation between MVI from first method and optical depth, and full 

correlation between MVI from second method and vegetation properties. The second method to derive MVI can be used widely in 

global microwave vegetation monitoring. 

 

 

1. INTRODUCTION 

 

Monitoring vegetation properties by satellites will enhance our 

understanding of vegetation. Remote sensing-based index is the 

most popular used tool in vegetation monitoring. Microwave 

portion of the electromagnetic spectrum (1cm to 1m) are 

effective for composition and structure of the surface or volume 

under observation. Specifically, microwave emissivity varies 

strongly with surface roughness, polarization, look–

angle(England and Johnson 1977) and particularly water 

content due to liquid water’s high permittivity at microwave 

frequencies (Hunt et al. 2018; Miller 2016; Seo et al. 2010). 

Investigating on microwave vegetation indices make it clear that 

they can be influenced by soil emission. This issue can limit 

application of those products in global vegetation 

monitoring(Becker and Choudhury 1988; Shi et al. 2008). Shi 

et al. made a new passive microwave vegetation index (MVI) 

by AMSRE data from zero-order model, which minimized the 

surface emission signal and maximized the vegetation signal. 

The τ−ω model represents a zero-order RT solution that links 

terrain geophysical variables to the observed brightness 

temperature through soil reflectivity and two vegetation 

parameters: optical depth and single-scattering albedo (Kerr and 

Njoku 1990a; Kerr and Njoku 1990b; Mo et al. 1982). As 

mentioned above, MVI is derived from the zeroth-order 

radiative transfer solution. The zero-order solution is only 

applicable at low frequency or for sparse vegetation 

layer(Ferrazzoli et al. 2002; Kurum et al. 2012). But at high 

frequencies or dense vegetation, the contribution of scattering 

within the layer cannot be ignored. This approach will tend to 

underestimate the total emission. So MVI from zero- order 

model works well for grasslands, short agricultural crops, and 

light to moderate vegetation under C-band, otherwise MVIs 

may not correlate well with vegetation parameters (Chai et al. 

2010b). In the present study, MVI in different frequencies based 

on Matrix doubling model calculated (to take in to account 

multi  

scattering effects) and tried to analysis its behavior at different 

soil moisture and roughness in different densities of corn 

canopy (a high crop) to understand how it changes. Here, this 

MVI has been named
P

BMVI . Afterward base on 
P

BMVI  

limitations we tried to derive MVI-A and MVI-B by a new 

method. MVI from new method was named 
T

BMVI and
T

AMVI . 

Then analyzing 
T

BMVI and 
T

AMVI behavior compare to 

vegetation properties (optical depth and single scattering 

albedo) has been done. Analyzing these relationships will 

indicate MVI potential in global vegetation monitoring.  

As well as, water cycle observation mission (WCOM) also is 

designed with new configuration and examine the performance 

of MVI in multi frequency in the context of this new mission is 

necessary, so currently the simulation is the only way to do that.  

 

 

2. DATA AND METHODOLOGY 

 

2.1 Experimental Data 

Detailed vegetation architecture and radiometer data for corn 

canopy to simulate brightness temperature from Matrix 

Doubling Model and validating the results were acquired in 

2014 in Huailai province China on June and July form 

2014.06.22-2014.07.13. Individual plants were defined by 

sampling randomly selected crop. Measurements for corn were 

made of leaf width, length and thickness, stalk diameter and 

length, stalk and leaf moisture, soil and plant temperature, 

canopy height and stalk length, leaf inclination angle (alpha, 

beta, and gamma) and density. The vegetation sampling strategy 

was to choose 5 or 6 moderate ones in growth at different sites 

around the field-of- view. The terminal value of every parameter 

was an average of all the measurement. As to soil parameters, a 

JM624M Platinum resistance thermometer was utilized to 

obtain the temperature of soil profile, vegetation and 

environment. Volumetric soil moisture (SMC) was measured at 
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different depths also (Chai et al. 2010a). Table 1 is experimental 

data of corn in Huailai province.   

The passive microwave sensor system used in this study was the 

Truck Mounted Microwave Radiometer (TMMR) (Zhao et al. 

2008) which had four-frequency (6.925/10.65/18.7/36.5GHz) 

antenna, dual-polarized (V/H) truck-mounted microwave 

radiometer designed. The receiver modules by the azimuth and 

elevation angle of the viewing direction could be changed at a 

precision of 0.1◦ is fixed on the petitioner. More introductions 

about TMMR can be found in (Rose and Czekala 2006).  

Table1, vegetation parameters for corn 

 Parameters Unit Min Max 

Leaf Radius cm 1 4 
 Thickness mm 0.2 0.4 

 Gravimetric moisture % 0.70 0.90 

 Angle distribution degree 5 85 
 

Stalk Radius cm 0.2 1.2 

 Length 
Gravimetric Moisture 

Angle distribution 

 

cm 
% 

degree 

4 
0.60 

0 

140 
0.85 

0 

Layer Leaf density 

Stalk density 

Layer height  

 

m2 

m2 

m 

 

52 

8 

0. 

11 

110 

8 

2 

 

 1 

In the present study, MVI in different frequencies based on 

Matrix doubling model calculated. The Matrix Doubling Model 

has been validated several times using field data,(Eom and Fung 

1984; Ferrazzoli et al. 1995; Ferrazzoli et al. 2002; Ferrazzoli et 

al. 2000) and here we made an additional comparison with 

TMMR measured brightness temperature. Using the radiometer 

experiment measurements of the vegetation and soil, simulation 

from matrix doubling model under different frequencies has 

been validated. 

Table 2 is the statistical parameters of comparison TMMR 

measured brightness temperature and the matrix doubling model 

simulated for eight days experiment data at vertical and 

horizontal polarization. R value of TMMR observed and 

simulated data shows the correlation coefficient at C band is 

more than X band in both frequencies. Paying attention to p-

value indicated the probability of 95% of the observed 

relationship is not coincidental.   

 

Measured and Simulated BT  R^2 RMSE P-value 

X band V pol 0.80 3.4 0.01 

X band H pol 0.69 1.8 0.00 

C band V pol 0.84 0.8 0.00 

C band H pol 0.81 3.1 0.00 

Table2, the statistical parameters of comparison TMMR 

measured and the matrix doubling simulated brightness 

temperature for corn. 

 

2.2 Methodology 

MVI from Multi-Frequency Observations: In the MVI 

technique the brightness temperature from 0-order model has 

been linearly linked to the soil emissivity by two ingredient 

models (vegetation transmission component as slope and 

vegetation emission component as intercept). Then to minimize 

the effect of ground surface emission signal the characteristics 

of bare surface emission signals at different frequencies are 

evaluated. The bare soil surface emissivity at two frequencies 

extremely correlated and the linear function can display this 

relationship. By eliminating the surface emissivity, brightness 

temperature observations at a given polarization P observed 

with two adjacent frequencies can be describe as a linear 

function. The intercept and slope of this linear function are the 

microwave vegetation indices. More information about MVI 

technique can be found at(Shi et al. 2008).  

 

(1)   2 1 2 1 2 1( ) ( , ) ( , ). ( )Bp p p BpT f A f f B f f T f 
  
 

2( )BpT f  and 1( )BpT f   are the brightness temperature observations 

at a given polarization P in a pair of frequency. 1 2( , )pB f f  and 

1 2( , )pA f f  are MVI-B and MVI-A respectively.  

 

2
1 2 1 2

1

( )
( , ) ( , ).

( )

t
p

t

V f
B f f b f f

V f


    (2) 

1 2 1 2 2 2 1 2 1( , ) ( , ). ( ) ( ) ( , ). ( )p t e p eA f f a f f V f V f B f f V f  
 (3) 

 

   
t

v is vegetation transmission and 
e

v is vegetation emission 

component at the given frequency; a and b are the slope and 

aspect of linear function of bare surface emissivity at a pair of 

frequency. 

 Here MVI is derived from two methods. In plenty and 

numerous different types of vegetation canopies with different 

scatter sizes, shapes and orientations, can assume there is no 

considerable impact of the polarization dependence for 

vegetation signals (Paloscia et al. 2006; Shi et al. 2008; Van de 

Griend and Wigneron 2004). The first way to drive MVI here 

was based on this assumption, by measured brightness 

temperature at two frequencies: 

 

2 2 2 2 2 2
1 2 1 2

1 1 1 1 1 1

( ) ( ) ( ( ) ( )). ( ) ( )
( , ) ( , ).

( ) ( ) ( ( ) ( )). ( ) ( )

t s s

Bv Bh v h t t

t s s

Bv Bh v h t t

T f T f f f V f V f
B f f b f f

T f T f f f V f V f

 

 

 
  

 
  (4) 

 

The second method to drive MVI was based on (Eq. 1). At this 

function the slope and intercept of the linear function of 

brightness temperature simulation in two adjacent frequencies 

are 
1 2( , )pB f f    and 

1 2( , )pA f f   respectively. Based on theoretical 

MVI definition 1 2( , )pB f f  or (MVI-B) and 1 2( , )pA f f  or (MVI-

A) are independent of underlying soil surface signals and 

dependent only on vegetation properties (Shi et al. 2008) So, 

calculation of MVI-A and MVI-B are possible in different soil 

parameters, constant canopy properties and constant 

temperature. We named them 
T

BMVI and 
T

AMVI respectively.  

 

Optical depth and single scattering albedo: Optical depth and 

single scattering albedo are two vegetation parameters that 

connect observed brightness temperature from zero order model 

to geophysical variables in Radiative Transfer Model. Also, 

based on MVI technique the brightness temperature from 0-

order model can be expressed as a linear function of soil 

emissivity with a slope of 
t

v  and intercept of 
e

v . Based 

on 1 2( , )pB f f  and 1 2( , )pA f f   definition in Eq. (2) and (3) and their 

dependency on 
t

v  and 
e

v  respectively, here this is desirable to 

understand are 
1 2( , )pB f f      and

1 2( , )pA f f    as a function of 

optical depth and single scattering albedo respectively or not? 

Analyzing MVIs and vegetation properties relationships will 

indicate MVI potential in global vegetation monitoring. 
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To calculate effective optical depth, matrix doubling model is 

used because of taking in to account multi scattering effects 

inside the corn canopy. By this method simulated canopy 

transmissivity of Tor Vergata model is used as a function of the 

extinction cross section averaged among sub layer scatterers. To 

calculate effective optical depth by Matrix Doubling Model we 

used: 

 * ln cosMT  τ
     (5) 

*τ  is effective optical depth,  MT is the transmissivity of 

corn canopy and   is observation angle. Effective albedo 

by matrix doubling model can be derived as: 

1
1

M

i

M

i

e

T
   

      (6) 

    is effective scattering albedo, TM is the emissivity 

simulated by MD model and   is observation angle (Ferrazzoli et 

al. 2002).  

2.3 Result 

First MVI in different frequencies based on Matrix doubling 

model calculated and tried to analysis its behavior in different 

soil moisture and roughness by different densities of corn 

canopy to understand how they change. Figure 1(up) is absolute 

difference of P

BMVI   in 0.1 and 0.3 volumetric soil moisture for 

four types of P

BMVI . According to the corn graphs, sensitivity 

to soil moisture was different in different pair of MVI 

frequencies. As that figure shows MVI-CX, MVI-SL had the 

least sensitivity to soil moisture, especially MVI-CX(Shi et al. 

2008; Zhao et al. 2011). Figure 1(down) is the absolute 

difference of P

BMVI  in two roughness.  As it clears from the 

figure, MVI-CX, MVI-SL and MVI-CL were the most in 

depended and MVI-CS had the most sensitivity to roughness. 

 

 
Figure1, Absolut difference of P

BMVI  for two soil moisture 

conditions (up), two roughness conditions (down) at 45-degree 

incident angle. 

Although by calculating P

BMVI   in different frequencies based 

on Matrix doubling model (to consider multi scattering effects), 

sensitivity to soil parameters were minimum (Figure1) but still 

the MVI’s behavior compare to soil parameters weren’t ideal 

according to its definition. Yunging Li calculated MVI based on 

Matrix Doubling Model and tried to explain its’s sensitivity to 

soil moisture and VWC besides other vegetation indexes. She 

figured out   has more stable and smooth trend compare to other 

microwave vegetation indexes in soil moistures influence but 

not corresponded completely to theoretical meaning. 

The second method to drive MVI was based on the linear 

function of brightness temperature at two adjacent frequencies 

(Eq. 1). The slope and intercept of this linear function are   and   

respectively. Figure 2 is 
T

AMVI  and
T

BMVI   in four pairs of 

frequencies. By increasing canopy height 
T

AMVI
 were increased 

and 
T

BMVI
were decreased in all MVIs(Shi et al. 2008). 

 

Figure 2, 
T

AMVI (up) and
T

BMVI  (down) in four pairs of 

frequencies 

 

In this study comparing MVI from two methods to optical depth 

and single scattering albedo has been done. BMVIP
 and T

BMVI
 

index in multi frequency (SL, CL, CS and CX) was compared to 

optical depth at vertical and horizontal polarization and table 3 

is the correlation coefficient of comparing them at 45-degree 

incident angle. The most correlation between BMVIP
 and optical 

depth in V and H polarization (second column) were for MVI-

CX and MVI-SL and they could work well at dense corn (up 2-

meter). P-values for MVI-CS were more than 0.05 and the 

correlation of MVI-CL with optical depth in both polarizations 

were low. The coefficient of determination between optical 

depth and all four T

BMVI
 in both polarizations (third column) 

generally were more than 90 percent. The important point was 

higher R2 values in 
T

BMVI compare to BMVIP
. Paying attention to 

canopy height shows 
T

BMVI  can work well at dense corn (up 2-

meter). P-values in all cases were less than 0.05. 
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Comparison type R2 R2  

MVI-SL, opacity S Band V pol 0.75 0.95  

MVI-CL, opacity C Band V pol 0.13 0.95  

MVI-CS, opacity C Band V pol - 0.98  

MVI-CX, opacity C Band V pol 0.84 0.90  

MVI-SL, opacity S Band H pol 0.75 0.90  

MVI-CL, opacity C Band H pol 0.15 0.89  

MVI-CS, opacity C Band H pol - 0.92  

MVI-CX, opacity C Band H pol 0.82 0.93 
 

Table 3, the statistical parameters of comparison optical depth 

and four 
BMVIP  at 45-degree incident angle for V and H 

 

Table 4 is coefficient determination of scattering albedo and 

four 
T

AMVI  at 45-degree incident angle in two polarizations for 

corn from 5-200 centimeter. The correlation coefficients 

between all
T

AMVI s and scattering albedo were high.  R2 values 

in MVI-Cl and MVI-CS comparison with effective scattering 

were higher than MVI-SL and MVI-CX. Also, here all four 

types of 
T

AMVI  were acceptable at dense corn. P-value in all 

cases was less than 0.01. 

The same as what has been done all in above, carried out at 5, 

15, 25 and 35 incident angels and the same result were 

obtained. 

 

Comparison type R2  P-value  

    MVI-SL, scattering albedo S Band V pol 0.88 3.0596E-107  

MVI-CL, scattering albedo C Band V pol 0.99 5.3108E-107  

MVI-CS, scattering albedo C Band V pol 0.99 1.11618E-98  

MVI-CX, scattering albedo C Band V pol 0.78 1.38042E-98  

MVI-SL, scattering albedo S Band H pol 0.75 1.1719E-101  

MVI-CL, scattering albedo C Band H pol 0.98 1.085E-101  

MVI-CS, scattering albedo C Band H pol 0.99 2.09137E-97  

MVI-CX, scattering albedo C Band H pol 0.78 2.15016E-97  
Table4, the statistical parameters of comparison scattering 

albedo and four 
T

AMVI  at 45-degree incident angle for V and H 

polarization 

 

 

3. CONCLUSIONS 

 

In this paper, we calculated MVI with different assumption by 

two methods. The characteristic of second method may make it 

suitable to apply in real satellite images. AMSRE, SMAP and 

WCOM (in near future) can widely use to apply second method 

in satellite data. Using second method in different types of 

vegetation especially for forest and stalk domain canopies can 

give us significant information in behavior of MVI in different 

canopy structures and high to study vegetation seasonal 

changes, phenology and soil moisture retrieval. 
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