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ABSTRACT: 

 

Recent progress in deep learning methods has shown that key steps in object detection and recognition can be performed with 

convolutional neural networks (CNN). In this article, we adapt YOLO (You Only Look Once) to a new approach to perform object 

detection on satellite imagery. This system uses a single convolutional neural network (CNN) to predict classes and bounding boxes. 

The network looks at the entire image at the time of the training and testing, which greatly enhances the differentiation of the 

background since the network encodes the essential information for each object. The high speed of this system combined with its 

ability to detect and classify multiple objects in the same image makes it a compelling argument for use with satellite imagery. 

  

 

1. INTRODUCTION 

Getting a robust and accurate location of any object in a given 

input image, combined with a correct label, is a key element in 

solving many automation tasks. In most cases, the location is 

only a small part of the entire pipeline, which requires very high 

precision, in order to minimize the error propagated through the 

remaining process. 

 

Object detection and recognition is one of the most important 

areas of computer vision because it is a key step for many 

applications including smart city, smart home, surveillance and 

robotics. 

 

In this article, we focus on detecting vehicles from high-

resolution satellite imagery. The detection of this object (the 

vehicles) can be used as part of the modelling and optimization 

of road networks. When cities prosper and begin to exceed their 

infrastructure, traffic often stops. This solution can be used to 

determine the critical density within a city's road network and 

create computer traffic models that can be simplified to the 

point where real-time traffic management becomes feasible. 

 

In this work, we use deep learning methods, based on 

convolutional neural networks (CNN) (Yoon et al., 2015), in 

particular the YOLO model which is a recent fast and open 

source CNN (“Common architectures in convolutional neural 

networks.,” n.d.), which will be modified to improve its 

performance to detect vehicles in satellite imagery. The model 

sees the entire image at the time of the training and test, which 

greatly improves the differentiation of the background since the 

network allows us to detect several objects in a scene. This is 

described in more detail later. 

 

The rest of this article is organized as follows. Section (2) 

provides an overview of Deep Learning and Yolo. Section (3) 

covers the equipment used, and the methodology followed for 

the training and validation of the model. The results obtained 

are then discussed in Section (4), followed by a conclusion in 

Section (5). 

 

2. BACKGROUND 

Deep learning is an automatic learning technique that teaches 

computers to do what comes naturally to humans. In deep 

learning, a computer model learns to perform classification 

tasks directly from images, text, or sound (Goodfellow et al., 

2016). Deep learning models can achieve state of the art 

accuracy, sometimes exceeding human performance. The 

models are formed using a large number of tagged data and 

neural network architectures that contain many layers. Most 

deep learning methods use neural network architectures, which 

is why they are often called deep neural networks. The term 

“deep” usually refers to the number of hidden layers in the 

neural network. Traditional neural networks contain only two or 

three hidden layers, while deep networks can contain up to 150 

hidden layers (Bengio, 2009). Deep learning models are formed 

using large sets of tagged data and neural network architectures 

that learn features directly from the data without the need to 

manually extract the features. 

 

 
Figure 1: Neural networks, which are organized in layers 

consisting of a set of interconnected nodes. 

Convolutional neural networks (CNN or ConvNet) One of the 

most popular types of deep neural networks (Khan et al., 2018). 

CNN convolves learned functions with input data and uses 2D 

convolutional layers, which makes this Figure (2) architecture 

well suited for processing 2D data, such as images. CNN 

contains four components: 

 a) Convolutional layers: Apply a specified number of 

convolution filters to the image. For each subregion, the layer 

performs a set of mathematical operations to produce a unique 

value in the output feature map. The convolutional layers then 

apply a ReLU activation function to the output to introduce 

nonlinearities into the model. 

b) Rectified linear unit layer (ReLU) applies an activation 

function per element, such as the maximum threshold (0, x) to 

zero, where x is the input of a neuron (Nair and Hinton, 2010). 

ReLU layers don't change the volume size as convolutional 

layers do. 
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c) Pooling layers: Sub-sample the image data extracted by the 

convolutional layers to reduce the dimensionality of the feature 

map and processing times.  

A commonly used grouping algorithm is maximum grouping, 

which extracts sub-regions from the map (for example, 2x2 

pixel tiles), retains its maximum value, and rejects all other 

values 

d) Dense layers (fully connected): Perform a classification on 

the entities extracted by the convolutional and subsampled 

layers by the grouping layers. In a dense layer, each node of the 

layer is connected to each node of the previous layer. Typically, 

a CNN consists of a stack of convolutional modules that 

perform feature extraction. Each module consists of a 

convolutional layer followed by a grouping layer. The last 

convolutional module is followed by one or more dense layers 

that perform the classification. The final dense layer in a CNN 

contains a single node for each target class in the model (all 

possible classes that the model can predict), with a softmax 

activation function (Pancioni, 2018) to generate a value 

between 0 and 1 for each node (the sum of all these softmax 

values are equal to 1).  

 

We can interpret the softmax values for a given image as 

relative measures of the probability that the image falls into 

each target class. 

 

Yolo: (you only look once) is a state of the art real-time object 

detection system (Redmon and Farhadi, 2017a) that uses neural 

networks to detect objects in images. 

Earlier detection systems convert classifiers or locators to 

perform the detection. They apply the model to an image at 

multiple locations and scales. High-scoring regions of the image 

are considered detections. 

 

YOLO uses a different approach by applying a single neural 

network to the complete image. The network divides the image 

into regions and predicts the boundaries and probabilities for 

each region.  

 

 
 

Figure 2: YOLO image processing overview (Redmon and 

Farhadi, 2017a) 

 

3. DATA AND MATERIELS 

 

We propose the YOLO approach for the detection of objects 

from aerial images. We choose cars as a target because vehicles 

are ubiquitous and automatic recognition of vehicle models is 

very useful for monitoring and analysis. Our method uses 

tagged detection images to learn how to precisely locate 

vehicles. The images are extracted from the VEDAI dataset 

(Popov, 2018). This dataset contains the largest number of 

tagged aerial images and is the one commonly used in detection 

work similar to our project. We improve the algorithm of 

YOLO basic detection system to form a fast and robust detector, 

capable of recognizing fine objects on high-resolution images. 

 

3.1 Dataset  

To form a deep neural network object detector requires a large 

amount of data; hence the coupling of deep learning with big 

data. 

Since there are no large sets of standardized public data 

containing many car collections on high-resolution satellite 

images, it has been difficult to find a dataset that meets the 

criteria of our project: 

• The images must be copyright free or at least freely 

usable within the computer vision community, which is 

a strong criterion because the production of aerial 

images is usually expensive. 

• The number of images should be large enough to 

represent the needs of the model, 

• High-resolution images. 

 

After reviewing all possible sources of images that would meet 

the previous requirements, we decided to retain the satellite 

imagery of VEDAI (Vehicle Detection in Aerial Imagery), a 

new database to evaluate the detection of small vehicles in 

aerial images. The dataset includes different categories of 

vehicles for a total of more than 1500 images. The images are 

divided into two different categories, one for training and the 

other for the test, corresponding to two different sizes of images 

(1024×1024 and 256×256). The dataset is published with 

precisely defined divisions and image metrics, allowing for 

reliable evaluation. The dataset and annotations are publicly 

available. 

For convenience, annotations are provided as a set of 

independent files, one per image, with each file named 

according to the name of the image (for example, the image 

annotation file 00000010.png is named 00000010.txt). They 

contain exactly the same information as the main annotation 

file. A set of annotations is provided for the 256×256 images 

contains 2000 images for the training and 120 images for the 

test, and another for the 1024×1024 images contains 190 

images for the training and 37 images for the test. An example 

of an annotated image is given in Figure (3). 

 
 

Figure 3: Illustration of the annotation 
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3.2 Ground truth 

Ground Truth is factual data that has been observed or 

measured, can be analysed objectively and has not been 

deduced (Baier and Wernecke, 2006). Indeed, in image 

recognition technologies, field truth is information obtained by 

direct visual examination, especially when used to verify or 

calibrate an automatic recognition system (Redmon and 

Farhadi, 2017a). 

In our case, for object detection, Ground Truth is a dataset 

describing the position, size, and class of objects in our VEDAI 

dataset. With position and size information, we can generate 

what's called a bounding box.  

An enclosing box is an area defined by two points plus a width 

and height or four points generating a rectangle. 

The shape of the rectangle is somewhat of a limitation for the 

YOLO detection model because most real objects don't usually 

have a rectangle shape, but it simplifies the calculation and 

detection. 

 

3.3 Material descriptions 

The YOLO model requires an important computing power. 

High performance GPUs have an efficient parallel architecture 

for model learning, combined with clusters or cloud computing, 

it allows us to reduce network-training time from a few weeks 

to a few hours, the reason why I opted for the AMAZON AWS 

service and with a very specific configuration: 

• Environnement : Amazon AWS 

• Instance type : p2.xlarge 

• System : Windows Server 2016 – X64 

• Processor : 4 CPU Intel Xeon E5-2686 V4 2.30Ghz  

• RAM : 61Go 

• GPU : 1 GPU NVIDIA TESLA K80 with 12Go in 

memory 

• HDD : 100Go 

 

The training framework we used to train YOLO is Darknet 

(Redmon and Farhadi, 2017b) which is an open source neural 

network framework written in C and CUDA that supports CPU 

and GPU computation. 

 

3.4 Methods 

a. Dataset training 

The YOLO training algorithm is configured in this way, for 

each subdivision output the model calculates: 

• ‘Avg IOU’ is a great metric to determine how 

accurately our model detected a certain object. 

• ‘Avg recall’ is defined in the code as recall/count, 

and therefore a metric for how many positives 

(objects to be detected) YOLO has detected on the 

total amount of positives in this subdivision. 

• ‘Count’ is the quantity of positives present in the 

current subdivision of the images. 

• The number of iterations 

• The total loss. 

• The average loss (error), which should be as low as 

possible. As a rule of thumb, once this reaches below 

0.060730 avg, we can stop the training. 

• The total time spent processing this batch. 

• The number of iterations 

• The total loss. 

• The average loss (error), which should be as low as 

possible. As a rule of thumb, once this reaches below 

0.060730 avg, we can stop the training. 

• The total time spent processing this batch. 

 

YOLO saves the weights in the backup file for every 100 

iterations.  

b. Test 

The test part consists of choosing some images from the test file 

that has already been prepared; images that have not been used 

in the training part, to highlight the performance of our 

detection configuration 

 

4. RESULTS AND DISCUSSION 

In this article, we create a robust and fast detector capable of 

recognizing fine grain vehicles, from aerial imagery, using the 

YOLO model architecture. 

To study the performance of our detector, we trained and tested 

the model on two resolutions of different images (256×256) and 

(1024×1024). 

The dataset used contains more than three thousand images 

divided as follows: 70% of the images as training data and the 

remaining 30% as test data. An exact number of images of the 

training and test data for each resolution of the images. 

We have made changes to the YOLO template configuration 

settings, namely, the correct setting of the input size of the 

images in the first convolution layer; the number of classes, as 

well as the output dimension of the last fully connected layer 

that has also been modified according to the number of classes. 

To simplify the task, each size of the dataset is formed 

independently. 

In the training section, the performance of the YOLO model is 

evaluated from the value of the (Avg loss). Once the average 

loss no longer decreases, at many iterations the training can be 

stopped.  

During the training process, we find that for images with 

(256×256) resolution, the network begins to converge after 

3208 iterations and we report the accuracy of the average loss at 

20,000 iterations with a value of 0.22 avg, and training lasted 

three days for the two thousand images; however, for images 

with (1024×1024) resolution, network convergence started after 

802 iterations and accuracy of average loss was reported after 

22.000 iterations with values of 0.05 avg, and training lasted 

one week for the one thousand two hundred images, This may 

be due to the large size of the images. The evolution of the 

average loss during the iterations of the learning process, for the 

two sizes of imageries given in Figure (4). 

We can see that the union intersection is better for both imagery 

sizes since it is greater than 50%, as well as the positive object 

detection rate for each subdivision exceeds 50%; therefore, 

the performance of the system in terms of object detection is 

acceptable. 

The Figures (5) and (6) show the results of vehicle detection. In 

figures (5) left and (6) left, we present the results of the images 

with resolution (1024×1204), the model seems very powerful 

since 91% of test vehicles are detected without any ambiguity. 
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The figures (5) right and (6) right show the detection of images 

with resolution (256×256). We notice that the model detects 

only about 75% of test vehicles. We think that is due the fact 

that YOLO was not able to extract and learn enough features 

from low resolution as it did for higher resolution images. 

The figure (7) shows the accuracy of the detection in terms of 

true positive rate (TPR), false positive rate (FPR) and false 

negative rate (FNR). From this figure, we can see that the 

proposed algorithm can work well in this dataset providing 

more than 75% of TPR and about 5% of FNR whatever the size 

of the satellite images. 

Figure 1 : Left: The evolution of the average loss related to the number of iterations, for the images with resolution (1024 × 1024). 

Right: The evolution of the average loss related to the number of iterations, for the images with resolution (256 × 256) 

 

 

 

Figure 5: Left: Yolo test for Imagery with resolution (1024 × 1024). Right: Yolo test for Imagery with resolution (256 × 256) 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W12, 2019 
5th International Conference on Geoinformation Science – GeoAdvances 2018, 10–11 October 2018, Casablanca, Morocco

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W12-121-2019 | © Authors 2019. CC BY 4.0 License.

 
124



 

 
 

Figure 6: Left: Yolo test for Imagery with resolution (1024 × 1024). Right: Yolo test for Imagery with resolution (256 × 256) 

 

Figure 7:  Statistical evolution of the results obtained 

 

 

5. CONCLUSION  

In this article, we present YOLOv2 as a new state of the art 

detection system, fast compared to other detection systems, it 

can be run at a variety of image sizes to provide a compromise 

between speed and precision. 

The YOLO model algorithm has been trained and refined for 

each step so that they are robust under different conditions (e.g, 

variety of imaging resolution). 

The results show that the trained system is capable of detecting 

very fine objects in challenging environments such as partial 

occlusion and low illumination, which is a practical candidate 

for many applications in the field of artificial intelligence. 
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