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ABSTRACT:

In this paper, we propose a software architecture for a feature extraction tool which is suitable for automatic extraction of sparse features 
from large remote sensing data capable of using higher order algorithms (computational complexity greater than O(n)). Many features like 
roads, water bodies, buildings etc in remote-sensing data are sparse in nature. Remote-sensing deals with a large volume of data usually 
not manageable fully in the primary memory of typical workstations. For these reason algorithms with higher computational complexity is 
not used for feature extraction from remote sensing images. A good number of remote sensing applications algorithms are based on 
formulating a representative index typically using a kernel function which is having linear or less computational complexity(less than or 
equal to O(n)). This approach makes it possible to complete the operation in deterministic time and memory.
Feature extraction from Synthetic Aparture Radar (SAR) images requires more computationally intensive algorithm due to less spectral 
information and high noise. Higher Order algorithms like Fast Fourier Transform (FFT), Gray Level Co-Occurrence Matrix (GLCM), 
wavelet, curvelet etc based algorithms are not preferred in automatic feature extraction from remote sensing images due to their higher 
order of computational complexity. They are often used in small subsets or in association with a database where location and maximum 
extent of the features are stored beforehand. In this case, only characterization of the feature is carried out in the data.
In this paper, we demonstrate a system architecture that can overcome the shortcomings of both these approaches in a multi-threaded 
platform. The feature extraction problem is divided into a low complexity with less accuracy followed by a computationally complex 
algorithm in an augmented space. The sparse nature of features gives the flexibility to evaluate features in Region Of Interest (ROI)s. 
Each operation is carried out in multiple threads to minimize the latency of the algorithm. The computationally intensive algorithm 
evaluates on a ROI provided by the low complexity operation. The system also decouples complex operations using multi-threading.
The system is a customized solution developed completely in python using different open source software libraries. This approach has
made it possible to carry out automatic feature extraction from Large SAR data. The architecture was tested and found giving promising 
results for extraction of inland water layers and dark features in ocean surface from SAR data.

1  INTRODUCTION

Remote sensing deals with large volume of data. Designing an 
algorithm for feature extraction from remote sensing data 
requires a high level of data planning. The algorithm developer 
needs to foresee the space and time constraints on available 
hardware resources. Microwave Data suffers from large speckle 
noise due to its mode of acquisition. When feature to be 
identified is sparse like water bodies or oil slicks, a lot of 
computation is used unnecessarily by looking at the less likely 
areas.*

Big O is a mathematical notation that describes the limiting 
behavior of a function when the argument tends towards a 
particular value or infinity. Collectively called 
Bachmannâ€“Landau notation or asymptotic notation. In 
computer science, big O notation is used to classify the 
algorithms according to how their running time or space 
requirements grow as the input size grows. In analytic number 
theory, big O notation is often used to express a bound on the 
difference between an arithmetical function and a better 
understood approximation. Big O notation characterizes 
functions according to their growth rates. Different functions 
with the same growth rate may be represented using the same O 
notation. 
                                                                

* Corresponding author

(Lee et al., 2011) describes the high-performance 
computing (HPC) infrastructure such as clusters, distributed 
networks and specialized hardware devices providing important 
architectural developments to accelerate the computations 
related with information extraction in remote sensing.

Convolution based image processing is a major class of 
image operations. Here the required transform is incorporated 
into a convolution kernel. The kernel represents the operations
for the generation of single pixel in the output image. The entire 
output image is formed by convolution operation of the input 
image with the kernel. Convolution based operations are widely 
used due to its scalability and predictable complexity. Many fast
implementation of convolution algorithm are available 
(Stockham, 1966)(Agarwal and Cooley, 1977).

Object Based Image Analysis (OBIA) (Blaschke, 2010) is a 
new emerging method in which the pixels are first segmented to 
form objects and the objects are further analyzed for spectral or 
topological signatures. It has been shown that this method has 
brought in radical changes in image processing for remote 
sensing. Softwares such as Orfeo-toolbox, eCognition,SAGA 
etc gives the support for OBIA are widely used for remote 
sensing applications.

Section 2 gives the details of the methodology used and 
various open source modules used in the design of this tool. 
Section 3 gives an overview of the program layout and their 
features. The results from the tool in two test cases are 
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described in section 4. A performance evaluation of the tool in 
GLCM calculation is discussed in Section 4.1. 

2  METHODOLOGY

A lot of image processing algorithms are available in open 
source domain which can be used for remote sensing 
applications. Majority of these operations are inclined to a pixel 
based image processing approach where the operators are 
designed to map uniformly and efficiently into the entire image. 
When the feature of interest is small in area but distributed over 
the entire image, a computationally intensive algorithm to 
classify the feature when applied to the entire image brings in 
huge computation overhead. The computation can be optimized 
if a simple operation can select significant areas for analysis. 
The image processing task is split conveniently in a processing 
pipeline. The pipeline is designed to have gradually increasing 
computational complexity from input to the output. Combining 
connected segments into single object gives the opportunity to 
exploit parallel processing. A linear inequality at the input 
selects potential point of interest to start a segmentation 
operation. The segmentation step follows in the pipeline where 
connected pixels satisfying a goal function is grouped into a 
single segment. Computationally intensive algorithms follow in 
the pipeline for accurate classification of the segments. Parallel 
computing may be exploited at this stage of the pipeline and the 
results are gathered at the final stage of the pipeline.  

2.1  FOSS modules used

The system was built completely using open software 
components in python language. The following are the different 
libraries used in the methodology. 

2.1.1  Python

is a widely used open source programing language. Python is an 
interpreted high level programming language for general 
purpose programming. The language is extensively used for 
scientific computations due to its extensive support libraries, 
simple to learn syntax and clean object-oriented design. Python 
was selected for this task due to its support for Geospatial Data 
Abstraction Library (GDAL) libraries, rich set of image 
processing algorithms (Scikit-image) and support for parallel 
processing. 

2.1.2  Parallel Processing

Current computer systems are multiprocessing systems where 
more than one Central Processing Unit (CPU) is present 
enabling executing of concurrent processes. Multiprocessing is 
a python library for process level parallelism in python 
programming. The library provides primitives for parallel 
execution, sharing objects, communication structures, parallel 
synchronization mechanisms etc. This module is the backbone 
of the entire architecture. 

2.1.3  GDAL

A wide range of data formats and coordinate systems are being 
used by remote sensing systems. GDAL is a library for handling 
geospatial data. It has separate single abstract data model for 
handling raster and vector geospatial data for all recognized 
formats. It support over 155 raster drivers and 95 vector drivers. 
They also include utilities for Projections and Spatial Reference 
Systems (GDAL/OGR contributors, 2018).

2.1.4  OGR

Vector data provides a light weight mechanism for storing 
output of feature extraction algorithms especially when the 
output contain sparse spatial data with less information content. 
OGR is the submodule of GDAL for handling vector files. The 
OGR is a Simple Features Library proving read (and sometimes 
write) access to a variety of vector file formats. They have the 
capability to store descriptive information along with spatial 
data in a structured hierarchical database. 

2.1.5  OSR

OGR Spatial Reference (OSR) provide services to represent 
coordinate systems (projections and datums) and to transform 
between them. 

2.1.6  Numpy

Numpy is a fast matrix library package for scientific computing 
with Python. It supports a number of modules for linear algebra, 
Fourier transform, and random number capabilities. It also 
support for large, multi-dimensional arrays and matrices, along 
with a large collection of high-level mathematical functions to 
operate on these arrays. (Jones et al., 2001)

2.1.7  Scikit-image

Set of image processing routines which includes many filtering 
and classification and other image processing routines. The 
library can operate directly on numpy arrays. There is a bunch 
of feature extraction algorithms like GLCM,  Histogram of 
Oriented Gradients (HOG) etc. which we will be considered in 
the tool for performance evaluation. 

2.1.8  Deep Neural Networks

These are the fine class of classifiers with exceptional 
accuracies. Many open source implementations are available 
among which Tensorflow (Abadi et al., 2015) (an open source 
machine learning framework from google), Keras (Chollet et 
al., 2015)( a high-level neural networks API, written in Python 
and capable of running on top of TensorFlow, CNTK, or 
Theano), caffe (Jia et al., 2014) are few notable examples. 

3  SYSTEM ARCHITECTURE

A feature extraction problem assumes that the feature of interest 
have the following characteristics. 

• A simple operation can always detect a part of the 
feature. 

• The feature is contiguous in space. 

• The feature is sparsely distributed. 

• The feature can be more precisely validated with a set 
of complex operations, auxiliary information or both. 

3.1  Processing pipeline

The system is designed in a pipeline architecture where 
different processing elements are connected with queues. The 
input side of the pipeline is narrow with elements performing 
simple task. Towards the output side of the pipeline, the system 
is bulkier with complex algorithms and often work being shared 
with multiple threads for faster computation.
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3.2  System components

A module designed to work with this pipeline should follow the 
principles of the system. Since each module in the pipeline is 
working in a parallel thread, no module should print any 
debugging information directly to the console . The modules 
should use the debug queue to communicate debugging 
information which will be aggregated at one thread and 
displayed in the user console or in a GUI. All communications 
between the modules are through queues. Objects that can can 
be exchanged between processing elements is restricted by the 
queue implementation. 

3.2.1  Programming guidelines

All modules in the pipeline should consist the following 
structure so as to work in the framework. 

load(config,in_queue,out_queue,)
#setuup variables and load files

work_from_queue()
data = in_queue.get()
while data is valid:

result = process(data)
out_queue.put(result)
data = in_queue.get()

The load function initializes all the resources required for the 
algorithm to run. Which mostly includes opening files for input 
and output operations, initialize data structures and gathering 
configuration for the algorithm.

3.3  Shared objects

Queues from the multithreading module is used for thread-safe 
synchronized communication between processes. Data objects 
exchanged through queues are packed using a class structure or 
a dictionary. The class should not contain objects like opened 
files that cannot be converted to a stream to be communicated 
through the queue. Since each module is initialized in runtime, a 
multiprocessing manager(shared object which make sure that 
reading and writing into this object is safe from all threads) is 
used to exchange run time configurable information between 
the modules. 

3.3.1  Data

This module deals with reading data from data sets. GDAL 
library is used primarily due to its selective reading and writing 
functions. Data module will read a chunk of data into a numpy 
array based on the current area being analyzed. This avoids the 
need of allocating primary memory proportional to the image 
being analyzed The entire data module get initialized with a 
JSON string provided during initialization(load routine) of the 
the program. The module gets initialized with a base directory 
to search for the data file and keywords that can be used to 
locate the file unambiguously. On initialization, the module 
finds the first occurrence of the file that matches the keywords 
and read metadata from the file which includes the coordinate 
reference system used in the image, the transform matrix for 
transforming from map coordinates to the image pixels. In the 
work_fron_queue routine, a point object is received from the 
queue and the corresponding pixel value attribute is 

added/updated in the point class and pushed to the output 
queue. The module also has modules for tightly coupled 
communication without a queue mode which is used in modules 
where a deterministic and fast response is expected. 

3.3.2  Search

Search algorithms are used to retrieve a particular information 
from a given dataset. Based on the information to be retrieved, 
the search can be designed in many configurations. For 
searching a single seed point, it is wise to systematically 
traverse the entire data so that no data is missed. For retrieving 
a connected area for a given point, the search should traverse in 
all directions. 

Linear search

A search operation in the image is a function with linear 
complexity ( number of computation for f(n)=O(n)). The goal 
function could be typically a set of comparison operations on 
the input value to predefined threshold values. on finding a seed 
point, liner search stores the current position and direction of 
travel to the search context and starts another search in from the 
end point of the image. this is to avoid initializing another 
search in the same contiguous region. 

Higher order search

A connected neighbor search can associate an expensive 
algorithm for segmentation of a connected region. This search 
can incorporate Markov random field (MRF) model based 
estimators(Moser et al., 2005) or a set of linear inequality based 
estimators as a goal function that will result in better quality 
segmentation. The search is implemented as a tree search with 
goal function on the immediate neighbor pixels to yield children 
for the next level of search (Black, n.d.).

Context management

As the search can traverse in arbitrary directions depending on 
the data, it is required to track the points a search has traversed. 
Initializing another point in the already searched area will invite 
a lot of computational overhead.

3.3.3  Filter

A set of higher order algorithms that tells accurately whether 
the selected region belongs to the specified class. A large 
number of techniques based on GLCM, FFT can be employed 
in the Area of interest (AOI) selected by search. Each filter 
algorithm adds their result as a labels to the search result. A 
final decision making algorithm aggregates the individual labels 
and give a tag whether the segment needs to to be considered 
for the output. Towards the end of the processing loop, if the tag 
is considered for output, the result is pushed to the out queue. 

3.3.4  Configuration

JavaScript Object Notation (JSON) is a lightweight data-
interchange format. It is easy for humans to read and write as 
well as for machines to parse and generate. The different 
parameters used in the algorithm can be stored as a JSON script 
which initializes from the default settings and can be edited to 
any prior to execution by the user. 
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3.3.5  Initialization

The thread initialization and configuration is the first step in 
execution. Each parallel module should be initialized from a 
corresponding JSON string. An initializer should parse the input 
JSON and configure each module in a separate thread. The 
initialization routine waits for all the threads to complete 
execution. 

3.3.6  Debugging

Errors and debugging is inevitable in the development of 
programs. A scrolling list of information should be displayed in 
a debugging console to know the state of execution of the 
algorithm. Each module at a convenient stage of execution, 
send a text message giving execution state or encountered 
values to the processing engine with a tag indicating the 
source(module name) and urgency of the message. A debugging 
task should reside in the root thread displaying and logging 
messages from every module base. 

3.3.7  Output generation

Vector files are a convenient form of output when the results 
are sparse. spatial information is stored as polygons, lines or 
points in vector formats. It is required to convert the image data 
which is structured in systematic grid to be converted to lines or 
polygons. Delaunay Triangulation is structure to hold spatial 
dataset on arbitrary dimension and can be used efficiently for 
vector operations. Shapely (Gillies et al., 2007) is a Python 
package for set-theoretic analysis and manipulation of planar 
features.

When results needs to be in raster format, gdal libraries are 
used. The coordinate reference system and transform vector for 
defining Geo-transform is gathered from input file if not given 
explicitly.

3.4  System topology

Figure 1 gives a minimal setup for feature extraction using the 
proposed tool. the different components of the proposed system 
and their dependence are shown. Figure 2 shows a typical 
network using queue. The less latent modules are connected is 
series and the modules with high latency(Filters) are connected 
in parallel to achieve better perfomance.

Figure 1: An architecture of the processing pipeline

Figure 2: Interconnection of different modules with queues 

4 RESULTS
This tool is used to extract water bodies from Sentinel-1A data 
using a level based segmentation followed by a series of GLCM 
shape based filters. A subset of the result is shown in figure 3 
the various parameters estimated by the different filters is 
summarized in Table 1. The scene also includes a linear feature 
(stream) which is detected with discontinuity . A water 
extraction algorithm was tested with the proposed tool and 
validated against water bodies delineated from LISS-IV
multispectral data. The algorithm was able to detect water 
bodies with commission and omission errors less than 15%.

The results of dark region extraction in RISAT-1 A data for 
oil spill on ocean surface is shown in figure 4. The tool was 
effectively used for segmentation followed by evaluation of 
GLCM and shape parameters for characterizing the detected 
segment.

Figure 3: Output vector overlaid on input for a dark feature 
extraction over land using the proposed tool
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Figure 4: Output vector overlaid on input for dark region 
extraction from ocean using the proposed tool

4.1  Performance test

A simple task is designed to evaluate the performance of the 
algorithm. Calculating the GLCM matrix and find the 
dissimilarity along four directions at distances upto five in a 5x5 
sliding window over the image where pixel value is less than 
700 in RISAT 1A image. For the normal operation mode, we 
calculated GLCM matrix in 5x5 sliding window over the entire 
image and computed similarity from the GLCM matrix. The 
mask is calculated by comparing the dn values to a threshold. 
The mask is multiplied by the similarity matrix to give the 
required output. In the proposed pipeline, input is filtered by a 
comparison operation to which is send as seed points to the 

segmentation algorithm. A connected neighbor search collects 
all connected pixels satisfying the selection criteria giving the 
whole connected segmented region to the filter. The filter 
calculates the GLCM matrix and similarity measure for the 
input segments and writes to the output file. 

The results are shown in figure 5 and the processing time 
for the test is shown th the table 2. It is evident that the 
proposed algorithm gives results in less time for the 
computation of the GLCM. 

100x100 image output1 output2

150x150 image output 1 output2

120x120 image output1 output2

200x200 image output1 output2

Figure 5: Output of GLCM computations, output1 is from 
normal matrix based operation and output2 is from the proposed 

tool

5  CONCLUSIONS

This approach allows to evaluate algorithms of arbitrary 
complexity in very large data effectively. It is giving better 
performance in detecting sparse features by using algorithms of 
high complexity in like GLCM in large data. It also helps to 
make algorithm execution time sensitive to valid output rather 

ID Area Perimeter Mean Dissimalirity
(hectare) (dam) VV VH VV VH

96 419.860 1591.46 66.41 45.96 12.56 8.71
93 340.010 2082.57 68.08 45.71 16.12 10.83
93 340.010 2082.57 68.08 45.71 16.12 10.83
85 209.190 1060.73 63.79 45.19 17.60 12.26
74 155.645 933.97 65.61 48.46 17.19 12.80
86 97.775 2266.69 61.73 47.83 1.54 1.18
97 77.110 501.42 64.89 47.12 14.87 10.96

1Table 1: Area, Perimeter, Mean and GLCM based dissimilarity 
measured over dark regions for significant polygons

Table 2: Comparison of algorithm performance for 
calculation of GLCM parameters for images at different sizes

Algorithm Image size Execution time (s) Output points

Normal Proposed
GLCM 100x100 82.014 3.057 369
GLCM 150x150 180.149 6.754 837
GLCM 200x200 320.939 16.083 1907
GLCM 250x250 500.714 21.543 2642
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than the input data size. 
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