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ABSTRACT: 

 

3D laser technology is widely used to collocate the surface information of object. For various applications, we need to extract a good 

perceptual quality point cloud from the scanned points. To solve the problem, most of existing methods extract important points 

based on a fixed scale. However, geometric features of 3D object come from various geometric scales. We propose a multi-scale 

construction method based on radial basis function. For each scale, important points are extracted from the point cloud based on 

their importance. We apply a perception metric Just-Noticeable-Difference to measure degradation of each geometric scale. Finally, 

scale-adaptive optimal information extraction is realized. Experiments are undertaken to evaluate the effective of the proposed 

method, suggesting a reliable solution for optimal information extraction of object. 

 

 

 

1. INTRODUCITON 

LiDAR technology is highly valuable in many application 

domains such as urban planning, geography, cultural heritage 

protection and others because of its accuracy, speed and 

penetrability. However, the high density of LiDAR data leads to 

an enormous increase in data volume, which brings great 

challenges with respect to data storage, processing, display and 

transmission (Liu and Zhang, 2011). Therefore, it is necessary 

to extract the optimal information from the original points. In 

principle, important points should be kept and points that are 

not important should be reduced. However, as a result of the 

increasing availability of high density data, some relatively 

important points are also eliminated to achieve a higher 

reduction ratio, and some points that are not important should 

also be kept to preserve the geometric information of surface. 

 

Various approaches have been proposed to tackle this issue. 

These algorithms can be classified into three categories: the 

random method, the point subtractive method and the point 

additive method (Chen, et.al., 2015). Immelman et.al. (2011) 

and Anderson et.al. (2005) applied the random extraction 

method. To meet the reduction ratio, a portion of points are 

randomly reduced. This method is simple and fast, but it does 

not consider the point importance so it has low accuracy. 

Oryspayev et.al. (2012) applied the point subtractive method, 

which reduces points with lower errors until a tolerance is 

reached. The error at each point is the distance from the point to 

its corresponding triangle constructed by the new local points 

after removing this point. This method is time consuming that it 

is impractical to reduce huge dataset. Different from that, 

Moenning et.al. (2003) proposed a point additive reduction 

method. Firstly, randomly take a subset from the input point 

cloud to establish the 3D Delaunay triangular mesh. Then 

define a precise distance function on this subset. Finally 

according to the distance from point to its corresponding 

triangle, add points to this subset until the error threshold or the 

desired number of points is reached.  

 

To our knowledge, viewing an object (e.g., tree), we can notice 

geometric features of different spatial scale. For small spatial 

scale feature, leaf features can be noticed. And for large one, 

branch and tree trunk features can also be found. Geometric 

features of multi spatial scales form the complete information of 

the object. However, the above methods are performed at a 

unique spatial scale, which is doomed to be incomplete and 

misleading. 

  

In order to derive and analyse comprehensive information of 

one object, multi-scale scheme is often account for this 

phenomenon. Arefi et.al. (2008) proposed an automatic multi-

scale modeling approach in three scales of detail. This method 

constructs the buildings which are formed by combination of 

flat roof, gabled roof and hipped roof segments. The examples 

illustrate this multi-scale representation of city buildings 

performs quite well. For free-form object, characteristics of 

curve surface are also considered in methods to retain the 

feature information of each scale. Pauly et.al. (2006) applied the 

surface diffusion equation to the discrete multi-scale surface 

representation. The benefit of this hierarchy is the decoupling of 

shape and detail at different scales. Luo et.al. (2011) proposed a 

multi-scale representation approach based on random walks to 

generate archaeological line drawings automatically instead of 

manual drawings. This method reduces redundant lines detected 

on the rough and noise surface. Additionally, some 

constructions of three dimensional scale space (Mokhtarian 

et.al., 2001; Schlattmann et.al., 2006) replace two dimensional 

pixel densities with three dimensional coordinates directly. 

These approaches produce erroneous results since the extrinsic 

geometry of the original data was modified. To solve the above 

problems, Bariya et.al. (2012) put forward a registration and 

recognition method based on scale-dependent features. In this 

method, normal vector map was used instead of the original 
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range image. The Intrinsic Geometric Scale of feature points 

was used to construct scale-dependent features. However, the 

target of this method is range image. For a three dimensional 

object, many projection angles should be considered. Similarly, 

Novatnack et.al., (2007) and Hua et.al., (2008) unwrapped the 

surface of model onto a two dimensional image. The scale space 

was constructed based on the geometric attributes retained on 

the image. However, when a surface patch containing complex 

features is squeezed into a very small domain, problems will 

appear. 

 

In this paper, we propose a multi-scale extraction method to 

describe geometric features of different spatial scales. The small 

scale points describe the small features while large scale points 

focus on the features of larger spatial scale and ignore the small 

ones. If the geometric scale selected is smaller, data 

redundancies may exist; if the geometric scale selected is larger, 

many meaningful information may be lost. To extract optimal 

information of point cloud, we measure the visual degradation 

of point cloud of each scale. Unnecessary and unnoticeable 

geometric features are reduced as much as possible to provide a 

good quality data for further applications.  

 

The rest of the paper is structured as follows: Section 2 and 

Section 3 describes our proposed method to construct the 

geometric multi-scales based on radial basis function model, 

and select optimal scale based on a perceptual metric. We report 

the outcomes of a number of experiments undertaken to 

demonstrate the validities of the proposed method in Section 4. 

Finally, in Section 5 we draw our conclusions. 

 

2. SURFACE VARIATION AND IMPORTANCE 

MEASUREMENT 

2.1 Surface Variation 

Apply PCA and local covariance statistics to estimate the 

normal vector of each point based on its neighbourhood points 

(Nurunnabi et al., 2015). The calculated normal vectors of two 

adjacent points may have opposite directions. To ensure the 

accuracy of surface variation, consistent propagation of normal 

vectors is realized by traversing minimum cost spanning tree 

(König et al., 2009). For a local area, calculate the cosine value 

between normal vectors of current point and one neighbour by: 

 

                                    01i iC n n                                    (1) 

 

The upper value is between 0 and 2. The surface variation of 

current point is evaluated by the mean error of neighbourhood 

cosine values, as: 
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Here n is the number of neighbours, mean is the mean value of 

neighbourhood C values. This value describes the surface 

variation since the value is larger when local surface has larger 

variation. 

 

 

2.2 Importance Measurement 

The key to construct multi-scales is to determine whether one 

point is important at a given scale. In this section, we propose 

an effective important metric based on radial basis function. 

This function considers the influence of neighbourhood point 

distribution on the current point, it is a successful tool for the 

approximation. The function is assumed to have the form: 
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Where  is the Euclidean norm on Rd, c(p) is the polynomial 

part and Sd denotes the linear space containing polynomials in d 

variables. Many classical choices for radial basis functions have 

been proposed (e.g. Gaussian, multi-quadric and cubic). To 

reduce the calculation complexity of RBF, Wendland (1995) 

put forward unified formula of basic function, defined as: 
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Various forms of ( )r with continuity of C0, C2, C4 was given. 

Here C2 continuity:      
4
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popularly. If the distance from one neighbour to current point 

is smaller than support radius r, then   0r  . This local 

supporting property reduce the calculation complexity. 

 

We evaluate the importance of one point by two aspects: surface 

variation and the distribution of neighbourhood points. The 

Importance metric is defined as: 
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Here
0S is the surface variation of current point P0,  is the 

support radius factor, Pi is one point from the valid supporting 

region, w  is the weight coefficient, deciding the degree of 

influence of neighbours on current point, mi is the proportion of 

neighbourhood surface variation. In the formula (5), RBF is 

used to measure the contribution of neighbourhood point to 

current point. This contribution depends on the number and 

spatial distribution of neighbour points. When the neighbour 

points distribute densely, the contribution is large, importance 

will decrease, vice versa. This characteristic of the formula 

suggest that the influence of neighbourhood distribution can be 

described well. 
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3. MULTI-SCALE CONSTRUCITON AND OPTIMAL 

SELECTION 

3.1 Edge Points Detection 

Surface variation outlier values will appear in the edge areas, 

we apply an angle criterion method to detect the edge points. 

The spatial distribution characteristics of local points is used to 

detect the edge points. If the neighbours of one point distribute 

on one side, this point is regarded as edge point; if the 

neighbours distribute around this point uniformly, it is regarded 

as internal point, as shown in Figure 1. 

 

The specific procedures are: Firstly, local tangent planes are 

constructed by one point and its neighbours, and project 

neighbours to this plane to get a 2D point set; Then calculate 

angles formed by two consecutive projected neighbours to the 

current point, and sort all the angles in decreased order; Finally, 

get the largest gap to judge whether it is edge point. 

 

 
Figure 1. Neighbourhood distribution of one inner point and 

one edge point 

 

3.2 Extraction of multi-scale Points 

Based on importance metric and the detected edge points, we 

apply the following procedures to extract points of one scale: 

a. Suppose the Final Point Set of current scale is empty. Surface 

variation of each point is calculated based on the 

neighbourhood size of current scale. 

b. Sort original points by their surface variation values in 

decreasing order, and select the variation value of the point at 

90% as the Importance threshold. 

c. Take one point (non-edge point) from the sorted point set 

successively to the Final Point Set. Calculate the Importance of 

this point based on the new neighbours in Final Point Set by 

Formula 5. If I value is larger than threshold, keep it, or remove 

it from Final Point Set. 

d. Repeat step c until all the points of original point set is 

considered. Take the Final Point Set together with the smaller 

scales as current scale points. 

 

3.3 Optimal Scale Selection 

For a surface, removing a point will generate a stimulus to 

human vision. To measure the perceptual impact, Just-

Noticeable-Difference (JND) is used (Xu et al., 2014). However, 

the application of JND is limited since it needs complex 

skeleton extraction. In this section, we improve JND 

measurement by replacing the skeleton with 3D smoothed 

surface. 

 

When a point is removed, its local geometric information is 

represented by its closest remaining point. We use  to 

describe the change when point A is removed from the mesh (as 

show in Figure 2), point B is the nearest remaining point of A. 

 is defined as the perception distance from the closest 

remaining point to the smoothed surface. The stimulus variation 

is defined as: 
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Here rA and rB are the distances from point A and B to the 

smoothed surface. K is the JND threshold. According to the 

Formula, removing point A has less stimulus than removing 

point C. Due to Webber’s equation, the stimulus value less than 

K is not perceptible to human vision. The degradation will be 

recorded if the stimulus is larger than K. In this paper, 

experiments suggest K = 0.8.  

 

To generate the 3D smoothed surface, we extend the 2D 

Gaussian kernel. The 3D Gaussian kernel is defined as: 
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Here is the mean square root of Gaussian kernel function, dij 

is the distance from neighbourhood point j to current point i. 

This process is repeated for each point, and the new points 

define the smoothed surface. Similar to 2D smoothing, the 

larger mean square root is, the larger geometric features will be 

smoothed out. Larger mean square root is selected in this paper. 

 

Based on JND model, we apply salient information distortion 

metric (Shi et al., 2010) to measure the degradation of each 

scale. According to the degradation value, we select the optimal 

scale with least points to reserve the most perceptual 

information. 

 
Figure 2. Stimulus variations generated by removing points 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

   
(a)General points                 (b) Base points 

Figure 3. Experimental point clouds. 

 

To evaluate the efficency of proposed method, General and 

Base are selected for experiment. They are scanned by 

Handyscan 3D scanner with the average span of point clouds 

about 1.0mm and 0.2mm, respectively. Both of them have 

multi-scale of geometric details and rich redundancies. 
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4.1 Detection of Edge Points 

    
Figure 4. Edge points detected 

 

Some outlier edge points may be introduced by surface 

variation. They will affect the construction of multi-scale. From 

Figure 4 we can see that the edge points of two point clouds can 

be detected effectively (red dots indicate the detected edge 

points). This insures the validity of extraction of multi-scale 

points. 

 

4.2 Extraction of Multi-scale Points 

Extracted points of scale 3,4,5,6 are  shown in Figure 5. It 

suggests that important points of different scales can be well 

reserved with a suitable point span; And in smooth areas, local 

maximum feature points can also be reserved so that no obvious 

holes can be found. In addition, points of different scales 

reflecting different scale features can well represent the 

geometric information of object.  

 

     

     
(a) General Points of Scale 3,4,5,6  

     

     
(b) Base points of Scale 3,4,5,6 

Figure 5. Multi-scale of points extracted 

 

4.3 Optimal Scale Selection  

    
Figure 6. Smoothed surface of two datasets 

 

The smoothed surfaces of two point clouds are shown in Figure 

6. It suggests that the smoothed surfaces are basically the base 

planes of objects, and it is beneficial to use the smoothed 

surface instead of skeleton. 

 

Based on the stimulus value in Formula 6, we calculate SIDM 

value of each scale to measure its perceptual degradation. In 

Figure 7, there is a step change in SIDM values of multi-scales 

(e.g., between scale 4 and scale 5). This suggests that the 

stimulus variations caused by deleting small scale features (e.g., 

scale 2, 3, 4) are not enough be noticeable for human vision. 

This is in accord with the visual characteristics. The objective of 

the paper is to extract least points to describe the most 

perceptual information. Hence we select scale 4 of General and 

Base datasets as the optimal scales. 
 

 
(a) General data  

 
(b) Base data 

Figure 7. Optimal scale selection 

 

5. CONCLUSIONS 

Optimal information extraction of 3D point clouds is an 

inevitable process in various applications. This paper proposes 
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an effective method to extract optimal points from point cloud 

based on scale-adaptive reduction. The method introduces an 

importance metric by combining the surface variation and radial 

basis function. And then detect the edge outliers and extract 

points of multi-scale. Lastly, we propose a new stimulus 

variation measurement to evaluate degeneration of each scale 

for optimal selection, leading to a good perceptual quality. 
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