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ABSTRACT: 

 

Pedestrian detection and tracking remains a highlight research topic due to its paramount importance in the fields of video 

surveillance, human-machine interaction, and tracking analysis. At present time, pedestrian detection is still an open problem 

because of many challenges of image representation in the outdoor and indoor scenes. In recent years, deep learning, in particular 

Convolutional Neural Networks (CNNs) became the state-of-the-art in terms of accuracy in many computer vision tasks. The 

unsupervised learning of CNNs is still an open issue. In this paper, we study a matter of feature extraction using a special activation 

function. Most of CNNs share the same architecture, when each convolutional layer is followed by a nonlinear activation layer. The 

activation function Rectified Linear Unit (ReLU) is the most widely used as a fast alternative to sigmoid function. We propose a 

bounded randomized leaky ReLU working in such manner that the angle of linear part with the highest input values is tuned during 

learning stage, and this linear part can be directed not only upward but also downward using a variable bias for its starting point. The 

bounded randomized leaky ReLU was tested on Caltech Pedestrian Dataset with promising results. 

 

 

1. INTRODUCTION 

The issues of pedestrian detection and tracking have become an 

important area in computer vision since 1990s (Girshick et al., 

2014). Various techniques were proposed in each of three main 

application fields of pedestrian detection, i.e. video 

surveillance, human-machine interaction, and analysis of 

captured motion data in different clinical studies. Generally, 

three fundamental steps, such as image acquisition, feature 

extraction, and classification, are involved into a process of 

vision-based human detection. The deep learning architectures 

inspired to the human visual cortex allow to remove the feature 

extraction step (Cao et al., 2016; Jiang et al., 2016). However, 

the extraction of features cannot be completely removed from 

the CNN workflow. These features are computed at different 

layers of abstraction that, on the one hand, revokes a 

handcrafted feature construction but, on the other hand, results 

in a longer training time of the CNN. 

 

A lot of works dealing with pedestrian detection and tracking 

could be found in literature. First of all, a Region Of Interest 

(ROI) ought to be found that reduces the processing volume 

data significantly. The supervised learning of CNN requires a 

manual extraction of ROIs in images of frames. The 

unsupervised learning implies an automatic extraction of the 

ROIs with the required content. Note that ROI extraction 

depends principally from the both shooting (camera resolution, 

field of view) and environmental (luminance, weather) 

conditions. 

 

In recent years, a multiple number of human detection and 

tracking algorithms were developed and the most of them are 

based on the following approaches: 

 

1. Histograms of Oriented Gradients (HOG) is based on 

the idea that the local intensity gradients or edge directions 

distribution are described a local moving object (Dalal and 

Triggs, 2005). Each frame is divided into small regions, 

and the gradient direction based on 1D HOG or edge 

orientation is computed for each region. Numerous 

modifications of basic HOG are available in literature. 

However, in all versions a cascade of classifiers is used to 

discriminate each sub-region. 

2. Haar-like features approach is a wavelet transform of 

the structural similarities between various instances (Zhang 

et al., 2014). The 2D Haar wavelets provide the basic 

functions, which detect changes in intensity along the 

horizontal, vertical, and two diagonals (or corners) 

directions. The obtained representations are utilized as an 

input to a classifier. 

3. Viola–Jones features (Viola et al., 2003) are taken by 

the extended rectangle filters based on Haar wavelets. This 

approach considers both motion and intensity information 

in the consecutive frames. 

4. Combination of low level features, such as texture, 

shape, colour, and contrast, is a quite simple approach 

based on their distributions in an image (Munder et al., 

2008). Sometimes, these studies include additionally 

salient keypoints. 

5. Local Binary Pattern (LBP) technique has become 

very popular due to its robustness respect to luminance and 

human pose variations. The LBP features are often 

combined with the HOG features for higher evaluations of 

pedestrian detection (Wang et al., 2009). 

6. Deep learning is a recent approach, which is 

intensively developed in many issues of computer science 

including pedestrian tracking (Li P. et al., 2018). 

 

In this paper, we consider a video surveillance through 

achievements of the deep learning methodologies, including 

CNNs. 
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The rest of the paper is organized as follows. Section 2 

discusses the related work. Section 3 introduces the existing 

ReLU activation functions. Section 4 shows our modification of 

randomized ReLU activation function in order to decide two 

problems – the robustness to noise and overfitting of the CNN. 

Section 5 covers the experimental results and Section 6 

concludes this paper. 

 

2. RELATED WORK 

Since the pedestrian detection and tracking have a high 

computational cost, the classifier models with low complexity, 

such as linear SVM or weak decision trees with low depths, are 

often employed. A deep learning framework for these tasks 

expends the classifiers to boosting, naive Bayes, multiple 

instance learning, metric learning, structured learning, latent 

variable learning, and correlation filter. The existing CNN 

trackers are categorized into generative and discriminative 

methods (Tian et al., 2015; Tomè et al., 2016; Xue et.al., 2016; 

Raza et al., 2018). Generative methods focus on searching for 

the ROI using handcrafted features, while discriminative 

methods interpret a tracking as a classification problem in a 

local surrounding background. According to this classification, 

deep networks are named as Feature Extraction Network (FEN), 

which extracts deep features and adopts the conventional 

method for learning, and End to End Network (EEN), which 

uses not only feature extraction but also a candidate evaluation. 

The outputs of the ENN can be probability map, heat map, 

candidate’s score, object position, and even bounding box. Note 

that attempts are being taken to a fusion between both 

discriminative and generative models (Pang et al., 2017). 

 

Popular generative methods include kernel-based tracker, 

Gaussian mixture model-based tracker, subspace-based tracker, 

covariance-based tracker, low-rank and sparse representation-

based trackers, and visual tracking decomposition. However, 

the most of publications in scope of pedestrian detection and 

tracking are devoted to the discriminative models. The proposed 

by Li H. et al. (Li H. et al., 2018) tracker was composed of two 

major components. A deep correlation filter adopted CNN to 

generate a robust representation of the context around the 

target. The online discriminative learning method trained the 

translating and scaling models to refine the coarse predictions 

of deep correlation filter. A combination of these two 

components allowed to create a precise tracker. Instead of using 

pre-trained VGG-19 Network (network invented by Visual 

Geometry Group from University of Oxford) directly, the 

authors modified its architecture and enhanced its 

representation ability via an offline learning strategy using 

ReLU layer. 

 

Firstly, Tomè et al. (Tomè et al., 2016) trained ImageNet, which 

is successfully employed for object detection. Then, these 

authors exploited an annotated training dataset of positive and 

negative regions in order to fine tune the weights of the CNN 

and the classifier. An ad-hoc pedestrian detection algorithm 

called as Locally Decorrelated Channel Features (LDCF) was 

implemented (Nam et al., 2014). The output of LDCF included 

a large set of regions with the confidence scores. The higher the 

confidence score of a region, more likely such region contained 

a pedestrian. Threshold values of the confidence score allowed 

a trade-off-between precision and recall. 

 

The advantages of deep learning and particle filtering were 

demonstrated by Qian et al. (Qian et al., 2018). They designed a 

substantially smaller CNN with two convolutional layers, two 

pooling operations, and one fully connected layer. For 

convolutional layers, the sigmoid activation function was 

adopted. The authors achieved good results by pre-training a 

simplified CNN using a large set of videos with tracking ground 

truths. Particle propagation was employed by a dynamic model 

considering the velocity and acceleration. The algorithm 

updated the tracking model from time to time in order to avoid 

shift and expensive computation. 

 

In recent years, an aim of faster performance comparing to deep 

learning networks leads to lightweight solutions, for example 

SqueezeNet or MobieNet. Thus, inspired by the depthwise 

separable convolution and Single Shot multi-box Detector 

(SSD), a Lightweight CNN (L-CNN) was designed by Nikouei 

et al. (Nikouei et al., 2018). The SSD designed for object 

detection in real-time is faster than Region CNN (R-CNN), Fast 

R-CNN, and even Faster R-CNN (Liu et al., 2016). The L-CNN 

network architecture had 26 layers considering depthwise and 

pointwise convolutions as separate layers. The final classifier, 

softmax, and regression layers provided a bounding box around 

the detected object. A simple fully connected neural network 

classifier took the prior probabilities of each window of objects, 

identified the objects within the proposed window, and added 

the label for output bounding boxes at the end of the network. 

 

The main idea of fusion both discriminative and generative 

models is to combine the motion object location with target 

verification. For this purpose, Pang et al. (Pang et al., 2017) 

proposed a Deep Framer Network (DFN) architecture initially 

based on AlexNet deep model because it was trained on small 

size images (227 × 227) concerted with the size of image 

patches in target tracking. First, a deep learning network was 

used to obtain a discriminative object location model in a 

keyframe. Second, the authors constructed a matching score 

function to verify, which object in the current frame matched 

the target object set in a keyframe. The ReLU activation 

function was implied due to its possibility to improve the 

learning speed and classification accuracy regarding the 

conventional sigmoid and tangent functions. 

 

The CNN may be used not only as a tracker but also for 

automated pedestrian intention and behavior analysis (Raza et 

al., 2018). A supervised CNN was designed aiming a prediction 

of appearance-based pedestrian head-pose and full-body 

orientation under assumption that the head-pose and the 

direction of pedestrian’s movement are occasionally weakly 

correlated. Two CNN models, which included convolution, 

down-sampling, regularization, dropout, fully connected, and 

softmax layers, predicted the head position and full body 

orientation. The final step of the training phase consisted in a 

trained CNN classifier. Conventional ReLU function was 

applied in these CNNs. 

 

3. ACTIVATION FUNCTIONS 

The CNN mainly consists of three basic components: 

convolutional, pooling, and fully-connected layers, among 

which the convolutional layers have a significant influence on 

feature extraction. The activation functions introduce 

nonlinearities to the CNN, which are desirable to detect 

nonlinear features. Among the non-linear functions, ReLU is a 

popular activation function used in CNNs (LeCun et al., 2015). 

Since it is often rare to have the cortical neurons in their 

maximum saturation regime, it was argued that the ReLU is 

more biologically plausible than the standard sigmoid function 

(Glorot et al., 2011). Due to its faster learning speed, the ReLU 
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is often employed, more than the smooth non-linear activation 

functions – sigmoid, hyperbolic tangent function, and logistic 

function. The definition of ReLU is given by equation 1: 
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where  xk = input of ReLU on kth channel 

 f(xk) = output of ReLU on kth channel 

 

Equation 1 can be rewritten as: 

 

     0,max kk xxf      

 

As follows from equation 1, a non-linearity of ReLU is 

achieved by the hard threshold zero. Generally, the ReLU 

function is computed efficiently because it compares only two 

values. The ReLU has a sparse activation probability that 

creates sparse representation of data useful for classification. 

Also, the ReLU does not suffer from the gradient diffusion 

problem as much as sigmoid functions do. It is differentiable at 

any point except at the origin (piecewise differentiable). 

 

A potential disadvantage of the ReLU is that it has zero 

gradients whenever the unit is not active. This may cause that 

some units, which were not active initially, will be never active 

as the gradient-based optimization will not adjust their weights. 

Additionally, a training process may slow down due to the 

constant zero gradients. To alleviate these problems, a Leaky 

ReLU (LReLU) function was proposed to allow a small, non-

zero gradient value whenever the neuron is inactive (Maas et 

al., 2013). Thus, the LReLU obtained a small non-zero slope to 

the negative parts: 
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where   = predefined parameter in range [0...1], usually 

 = 0.01 

 

Equation 2 can be rewritten as 

 

       0,min0,max kkk xxxf     

 

Compared with ReLU, the LReLU compresses the negative part 

that provides a small, non-zero gradient when the unit is not 

active. 

 

Afterwards, He et al. (He et al., 2015) proposed so called 

Parametric ReLU (PReLU) aiming to learn the slope of the 

negative parts during the training stage: 
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where  k = the learned parameter for the kth channel 

 

As the PReLU introduces a very small number of parameters, 

e.g. equaled to the number of channels of the whole network, 

there is no risk of overfitting and additional computational cost. 

The PReLU can be simultaneously trained with other 

parameters by back propagation algorithm. 

 

Another variant of Leaky ReLU is Randomized Leaky ReLU 

(RReLU) (Xu et al., 2015). The RReLU can reduce overfitting 

due to its randomized nature. Formally, RReLU is defined as: 
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where  n = nth example in training 

 

Randomly Translational ReLU (RT-ReLU) has another 

meaning (Cao et al., 2018). It is found that the distribution of 

the ReLU inputs has a form of Gaussian distribution, and the 

most of the ReLU inputs are near zero. This makes the ReLU 

input very sensitive to the small jitter or the noise near zero. 

The ReLU and PReLU can be written in a view of randomly 

translation using equations 5 and 6: 
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where  ak = the shift of RT-ReLU along OX-axis 

 

Clevert et al. (Clevert et al., 2016) introduced Exponential 

Linear Unit (ELU), which enabled faster learning of CNN and 

led to higher classification accuracies: 

 

   
 










0if1

0if

k
x

kk

k
xe

xx
xf

k
    (7) 

 

where  = predefined parameter for controlling the value, to 

which the ELU saturates for negative inputs,  > 0 

 

Equation 7 can be rewritten as: 
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kk exxf   

 

Also the basic ReLU was modified in the sense of the CNN 

robustness: Noisy ReLU (NReLU) (Nair and Hinton, 2010), 

Randomized ReLU (RReLU) (Xu et al., 2016), Noisy 

Activation Function (NAF) (Gulcehre et al., 2016). 

 

In order to improve classification performances and training 

stability, Liew et al. (Liew et al., 2016) proposed the bounded 

variants of some ReLU functions. Thus, equations 1 and 2 have 

a view: 
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where  A = the maximum output value the function can 

produce 
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Figure 1. The ReLU activation functions: a ReLU, b LReLU/PReLU, c RReLU, d ELU e RT-ReLU, f RT-PReLU, g bounded ReLU, 

h bounded LReLU 

 

A view of mentioned above ReLU activation functions are 

depicted in Figure 1. Note that a list of ReLU modifications can 

be further extended. 

 

4. PROPOSED RELU MODIFICATION 

As well-known, the CNN topology is the trade-off between the 

classification performance and training time. We try to enforce 

a classification performance using other components of CNN’s 

structure, particularly a view of activation functions. In Section 

3, we examine the basic ReLU and its main modifications. 

However, the problem of overfitting, to which any deep 

architecture is easily prone, remains. In this study, we pay 

attention for two problems – the robustness to noise and 

overfitting. In this sense, we have proposed a bounded 

Randomized Leaky ReLU called as bounded RL-ReLU with a 

piecewise-linear structure described by equation 10: 

 

  
 


















0if

0if

if1

)()()(

)()(

)()()()(

)(

n
k

n
k

n
k

n
k

n
k

n
k

n
k

n
k

n
k

n
k

xx

Axx

AxAx

xf  (10) 

 

The bounded RL-ReLUs are depicted in Figure 2. 

 

 

Figure 2. The bounded RL-ReLU with: a )()( n
k

n
k x , b 

)()( n
k

n
k x  

We modify RReLU in such manner that the angle of linear part 

with the highest input values is tuned during learning stage, and 

this linear part can be directed not only upward but also 

downward using a variable bias for its starting point. Such 

modification allows to avoid an overfitting. 

 

Noise adds nonlinearity in neural networks that may hide non-

visible dependencies due to saturation of the activation 

function. One way is to inject noise into activation functions in 

their saturated regime (Gulcehre et al., 2016). We used another 

way, when a level of noise is adapted for each sample (see 

superscripts in equation 10) during a training mode. Then an 

averaged value of a level of noise is calculated and adopted with 

each sample during a recognizing mode. As a matter of fact, the 

nonlinearity improves the recognition results but makes the 

CNN more complicated. Thus, adding nonlinearity into the 

CNN linear layers ought to be reasonable and carefully done 

(Zhang and Wu, 2019). 

 

5. EXPERIMENTAL RESULTS 

Our proposition is verified by experiments with pedestrian 

detection and tracking in outdoor environment. In order to 

gauge performances, we used the public Caltech Pedestrian 

Dataset (Caltech Pedestrian Detection Benchmark, 2019). This 

dataset includes approximately 10 hours of 640  480 30Hz 

videos taken from a vehicle driving in an urban environment. 

About 250,000 annotated frames with pedestrians were divided 

into 137 approximately minute long segments. In total, 350,000 

bounding boxes and 2,300 unique pedestrians were annotated. 

Each annotation includes temporal correspondence between 

bounding boxes and detailed occlusion labels. 

 

The most popular architectures of CNN applied for pedestrian 

detection are the following: AlexNet (Tian et al., 2015), Multi-

scale CNN (MS-CNN) (Cai et al., 2016), and Scale-Aware Fast 

Region CNN (SAF R-CNN) (Li et al., 2015). The architectures 

of these three CNN are represented in Tables 1-3. Architecture 
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includes convolutional layers (Conv), polling layers (Pool and 

Max pool), fully-connected layers (FullyCon), Soft-max layer, 

and Region Of Interest (ROI) pooling (ROI Pool). The 

convolutional and fully-connected layers involve ReLU 

activation function. 

 

The MS-CNN architecture contains the main branch and three 

additional branches with layer types Det-8, Det-16, Det-32, and 

Det-64 marked by Italic in Table 2.The layer Conv4-3 is 

connected with the layer Det-conv. The layer Conv5-3 is 

connected with the layer Det-16. The layer Conv6 is connected 

with the layer Det-32. The output maps from the layers Det-8, 

Det-16, Det-32, and Det-64 are combined in the layer ROI 

Pool. 

 

The SAF R-CNN architecture represented in Table 3 uses the 

first seven convolutional layers and three max pooling layers of 

the VGG16 network and then is divided into Large-size sub-

network and Small-size sub-network with following shared 

features. 

 

 

Note that the AlexNet provides a class probability, while the 

MS-CNN and SAF R-CNN give Class probability and 

Bounding box. 

 

Layer type Kernel/Stride/ReLU/ 

Features 

Output map size 

Conv1 1111/4/ReLU/96 5555 

Conv2 55/2/ReLU/256 2727 

Pool1 55/1 2727 

Conv3 33/2/ReLU/384 1313 

Pool2 33/1 1313 

Conv4 33/1/ReLU/384 1313 

Conv5 33/1/ReLU/256 1313 

Pool3 33/2 66 

FullyCon1 66/1/ReLU/4096 11 

FullyCon2 11/1/ReLU/4096 11 

FullyCon3 11/1/ReLU/1000 11 

Soft-max   

Output: Class probability 

Table 1. Architecture of AlexNet 

 

Layer 

type 

Kernel/Stride/ 

ReLU/Features 

Layer type Kernel/Stride/ 

ReLU/Features 

Layer 

type 

Kernel/Stride/ 

ReLU/Features 

Layer 

type 

Kernel/Stride/ 

ReLU/Features 

                    

  Conv4-3 77/2/ReLU     

  Max pool1 77/1   Det-conv 33/1/ReLU/512 

  Conv5-1 55/1/ReLU   Det-8 53/1/ReLU/512 

  Conv5-2 55/1/ReLU     

  Conv5-3 55/1/ReLU     

Det-16 53/1/ReLU/512 Max pool2 55/1     

  Conv6 33/1/ReLU     

  Max pool3 33/1 Det-32 53/1/ReLU/512   

  Det-64 53/1/ReLU/512     

  ROI Pool 77/1     

  Conv 55/1/ReLU/512     

  FullyCon 11/1/ReLU/512     

Output: Class probability and Bounding box 

Table 2. Architecture of MS-CNN 

 

Layer 

type 

Kernel/Stride/ 

ReLU/Features 

Layer type Kernel/Stride/ 

ReLU/Features 

Layer 

type 

Kernel/Stride/ 

ReLU/Features 

  Conv1 33/1/ReLU/64   

  Conv2 33/1/ReLU/64   

  Max pool1 33/1   

  Conv3 33/1/ReLU/128   

  Conv4 33/1/ReLU/128   

  Max pool2 33/1   

  Conv5 33/1/ReLU/256   

  Conv6 33/1/ReLU/256   

  Conv7 33/1/ReLU/256   

  Max pool3 33/1   

Conv 33/1/ReLU/512   Conv 33/1/ReLU/512 

Conv 33/1/ReLU/512   Conv 33/1/ReLU/512 

  ROI Pool 33/1   

  ROI Pool 33/1   

  FullyCon 11/1/ReLU/4096   

  FullyCon 11/1/ReLU/4096   

Output: Class probability and Bounding box 

Table 3. Architecture of SAF R-CNN 
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CNN architecture Distance Bounded LReLU Proposed bounded RL-ReLU 

mAP (%) MR (%) FP (%) mAP (%) MR (%) FP (%) 

AlevNet far 44.36 18.60 37.77 46.81 12.92 40.91 

MS-CNN far 51.01 17.36 34.38 52.69 14.74 30.86 

SAF R-CNN far 48.53 13.95 37.73 46.78 14.06 33.99 

AlevNet middle 89.03 3.54 7.99 90.82 3.27 6.30 

MS-CNN middle 91.49 3.15 6.70 91.12 2.61 6.12 

SAF R-CNN middle 90.74 3.59 6.32 90.24 3.40 6.01 

AlevNet close 95.59 1.26 3.67 95.20 1.16 3.25 

MS-CNN close 97.02 0.97 1.64 97.38 0.76 1.75 

SAF R-CNN close 100.00 0.00 0.00 100.00 0.00 0.00 

Table 4. Efficiency of CNNs with different types of ReLU activation functions 

 

Since the training of CNN is very time consuming, two different 

approaches based on Transfer Learning and Feature Extractors 

are utilized in many applications. Feature extraction is more 

justified and perspective regarding promising results. Therefore, 

this approach was chosen during experiments. The conventional 

features for pedestrian detection and tracking, such as Haar 

features and AdaBoost classifiers, were tested using adaptive 

RReLU in the non-linear activation layers. Experiments were 

conducted in such manner that, first, the learning and testing 

processes were implemented with bounded LReLU activation 

function, which is the most close to the proposed bounded RL-

ReLU, and, second, learning and testing processes were 

executed with the proposed bounded RL-ReLU. 

 

The obtained results in the terms of mean Average Precision 

(mAP), Miss Rate (MR), and False Positives (FP) are grouped 

in Table 4. Values of average precision of pedestrian 

recognition for three distances (far, middle, and close) are very 

close for AlexNet, MS-CNN, and SAF R-CNN. The best 

coincidences achieved for MS-CNN and SAF R-CNN due to 

multiple use of ReLU activation function. As one can see from 

Table 4, the proposed bounded RL-ReLU has lesser values of 

errors for all CNN applications with far, middle, and close 

distances between camera and pedestrians. Some visual results 

are depicted in Figure 3. The green rectangle means the true 

positive example, the blue rectangle means the missing positive 

example, and the red rectangle means the false positive 

example. 

 

 

Figure 3. The obtained detection results using Caltech 

Pedestrian Detection dataset: a far distance, b middle distance,  

c close distance, d middle and far distances 

Also, the bounded RL-ReLU was tested on noisy videos 

obtained by manual shooting. Our videos represent an urban 

environment with pedestrians. Pedestrian detection was 

executed using AlexNet, MS-CNN, and SAF R-CNN. In this 

case, the mAP, MR, and FP values using the proposed bounded 

RL-ReLU degraded on 10-15% respect to values from Table 4. 

At the same time, the mAP, MR, and FP values using the 

bounded L-ReLU showed worse results relative to the proposed 

bounded RL-ReLU on 24-30%. Experiments show that the 

overfitting became less sense problem. 

 

6. CONCLUTIONS 

In this paper, we have proposed a special ReLU activation 

function called as bounded RL-ReLU. The proposition was 

tested on the task of pedestrian detection in outdoor 

environment using the public Caltech Pedestrian Dataset. To 

this end, three architectures of CNN, such as AlexNet, MS-

CNN, and SAF R-CNN, were employed. The proposed 

bounded RL-ReLU demonstrates lesser values of errors for all 

CNN applications with far, middle, and close distances between 

camera and pedestrians. However, the tested CNN architectures 

provide worse results with occlusions of visual objects due to 

their failure to consider the overlapping ROIs. 
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