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ABSTRACT:

With the increasing number and usage of mobile devices in people’s daily life, indoor positioning has attracted a lot attention from
both academia and industry for the purpose of providing location-aware services. This work proposes an indoor positioning system,
primarily based on WLAN fingerprint matching, that includes various minor improvements to improve the positioning accuracy of
the algorithm, as well as improve the quality and reduce the collection time of the reference fingerprints. In addition, a novel Path
Evaluation and Retroactive Adjustment module is employed; it intends to improve the positioning accuracy of the system in a similar
fashion to a Pedestrian Dead Reckoning implemented along with WLAN Fingerprint Matching in a Sensor Fusion system. The benefit
of this approach being that it avoids the requirement of inertial sensor data, as well as its intensive computation and power use, while
providing a similar accuracy improvement to Pedestrian Dead Reckoning. Our experimental results demonstrate that this may be a
viable approach for positioning using mobile devices in an indoor environment.

1. INTRODUCTION

1.1 Introduction

Indoor positioning and navigation is a burgeoning field in the
greater umbrella of location-based services that has hit its stride
in recent years along with and primarily because of the ubiquity
of smartphones. The major area of interest in the last few years
has been the application of different indoor positioning methods
on the smartphone (and tablet) platform. In addition, GPS po-
sitioning and navigation has been very successful and dominant
in the context of outdoor positioning on mobile devices. This, in
turn, has resulted in users demanding the same level of service in
the indoor space.

Due to the inherently smaller indoor spaces in relation to outdoor
spaces, acceptable accuracy in indoors is 1 – 5 m, as opposed to
the 5 – 15 m acceptable accuracy in outdoors. In addition, there
is no set-up cost for GPS, just a receiver and positioning soft-
ware built into the mobile device. This results in very high ex-
pectations set for indoor positioning solutions; an ideal solution
should be sufficiently accurate, have low or no setup and mainte-
nance costs, and should be a universal solution that can be used
by most people (i.e. anyone with a smartphone) in most places.
This research looks to build on previous work and approaches to
advance towards an ideal solution.

We consider the various approaches applicable on the smartphone
platform, and examine the particular benefits and limitations of
the platform. We posit a positioning system, primarily based
on WLAN fingerprint matching, that includes various minor im-
provements to improve the positioning accuracy of the algorithm,
as well as improve the quality and reduce the collection time of
the reference fingerprints. Finally, we employ a novel Path Eval-
uation and Retroactive Adjustment module intended to improve
the positioning accuracy of the system in a similar fashion to a
Pedestrian Dead Reckoning implemented along with WLAN Fin-
gerprint Matching in a Sensor Fusion system. The benefit of this

approach being that it avoids the requirement of inertial sensor
data, as well as its intensive computation and power use, while
providing a similar accuracy improvement to Pedestrian Dead
Reckoning.

2. BACKGROUND

2.1 Mobile Devices

2.1.1 Sensors: Due to the multitude of sensors now offered
by mobile devices, there is a vast amount of data that becomes
available to exploit for the purpose of positioning (Lane et al.,
2010). Some of the sensors that may be available in a standard
smartphone are: WLAN Radio, Bluetooth Radio, Cellular Ra-
dio, Accelerometer, Gyroscope, Magnetometer, NFC, Barometer,
Camera, Ambient Light and Proximity.

2.1.2 Computing Capabilities Today’s smartphones and
tablets can perform nearly the same computations as low-end lap-
tops. Furthermore, for at least three years, mobile devices have
had quad-core processors and more recently there are even some
octa-core devices appearing on the market. Along with the in-
crease in performance that is possible by an increasing number
of cores, energy efficiency has also been a concern of manufac-
turers. Due to the trend of progressively larger screens and thin-
ner bodies on smartphones along with faster (and more power-
hungry) data transmission technologies such as LTE radios, en-
ergy on mobile devices always seems to be on short supply. Thus,
CPUs have seen great power efficiency improvements along with
the performance improvements.

2.2 Location Models

2.2.1 Discrete: A discrete location model means that the nav-
igable space within the floor or building is partitioned into dis-
crete generally equal spaces. Each individual space is then as-
signed a unique identifier and its location is generally set as the
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location of its geometric center. When the positioning algorithm
estimates a position for the subject in this location model, it
chooses one or more of the discrete spaces as the most likely lo-
cation(s) of the subject. This type of location model was utilized
in the implemented algorithms discussed in this paper.

2.2.2 Continuous A continuous location model means that
no partitioning of the navigable space occurs, the position of a
subject can be estimated at any location in the navigable space.

This type of location model is generally used with trilateration-
based positioning systems, or any other algorithms that are not
limited to estimating only the best candidate out of a discrete set.

2.3 Location Estimation Methods

This opens the door to vast amount of existing indoor position-
ing methods, and even inspires a few new methods (Subbu et al.,
2014). The following is a list of the most popular approaches to
indoor positioning on a smartphone:

• WLAN Fingerprint Matching

• WLAN Raning

• Bluetooth Ranging

• Pedestrian Dead Reckoning

• Magnetic Fingerprint Matching

• Image Recognition / Visual Odometry

• Hybrid / Sensor Fusion

The WLAN and Pedestrian Dead Reckoning approaches were
significantly studied prior to the advent of smartphones, whereas
the others were only studied in significant detail once smart-
phones arrived with an increasing variety of sensors. Further-
more, on the mobile platform it has become increasingly common
for new research to focus on multi-sensor hybrid approaches, usu-
ally cooperatively employing various algorithms using different
sensor data.

2.3.1 Trilateration (WLAN Ranging) WLAN signal-based
approaches can be broadly categorized into two major categories,
ranging and fingerprinting. Ranging methods use signal path loss
models of varying complexity to estimate the distances to WLAN
access points (APs) based on the received signal strengths of the
APs. Trilateration is then used to position the user based on the
computed distances to the various APs. These methods generally
require detailed floor plans of the building and the locations of
the APs in the building (Torteeka et al., 2014).

Bluetooth ranging works in a manner very similar to WLAN
ranging. The main difference is that Bluetooth signals are used
as opposed to WLAN. This method requires Bluetooth beacons
that constantly emit an identifying signal. The users device then
computes the distances to the sensed beacons and trilateration is
used to estimate a position for the user. Another key difference
with WLAN ranging is that the number of beacons required for
equivalent performance between the two methods is significantly
higher than the number of APs required because Bluetooth bea-
cons have a much weaker signal and therefore, range due to the
importance given to low cost and energy consumption (Martin et
al., 2014).

2.3.2 WLAN Fingerprint Matching On the other hand, fin-
gerprinting methods require AP signal strength maps of the build-
ing, or in practical terms, a database of the expected signal
strengths of APs at discrete locations in the building (reference
fingerprint database); the density of these discrete locations may
vary. The user takes a sample of the signal strengths of APs
within range (live fingerprint) and various mathematical algo-
rithms can then be used to match the live fingerprint to the
most similar location in the database with respect to the signal
strengths of the sampled APs (Honkavirta et al., 2009), (Farshad
et al., 2013).

2.3.3 Pedestrian Dead Reckoning The pedestrian dead reck-
oning (PDR) algorithm has three components, step detection, step
length estimation, and heading estimation. Steps are detected
from the periodic pattern of accelerometer readings while the
user is walking; step length is estimated in real-time from the
amplitude of the accelerometer readings or based on user charac-
teristics; the users heading is determined by magnetometer read-
ings and the gyroscope can be used to detect and correct erro-
neous magnetometer readings from magnetic anomalies due to
the physical environment. This method essentially estimates the
users movement based on the inertial sensor measurements pro-
vided by the mobile device. The starting location, however, needs
to be provided by an external source for this system, or alter-
natively, the user may be located after a traversing a path suffi-
ciently long and unique to be matched to a likely potential path in
the floor plan (Harle, 2013), (Durrant-Whyte and Bailey, 2006),
(Bailey and Durrant-Whyte, 2006).

2.3.4 Magnetic Anomaly Fingerprint Matching Magnetic
fingerprint matching, as the name implies, has functional simi-
larities to WLAN fingerprint matching. Some of the materials
used in the construction of larger commercial buildings, as well as
large pieces of furniture within them, can create local anomalies
in Earths magnetic field measured in different areas of a building.
The magnetometers available in modern smartphones are able to
measure the magnetic field with enough precision to be able to
distinguish local field anomalies throughout a building. Thus, a
live sample of the magnetic field (fingerprint) is matched to the
most similar location in a reference fingerprint database based on
the magnetic field measured. Since these magnetometers measure
the magnetic field in the three physical dimensions, this method is
functionally equivalent to a WLAN fingerprint matching system
where the signal from three APs is sensed throughout the whole
building (Li et al., 2012).

2.3.5 Image Recognition / Visual Odometry Methods tak-
ing advantage of the mobile devices camera sensor can be
grouped into two broad categories, scene recognition and visual
odometry. The former refers to methods that attempt to recognize
the location of the user based on photo(s) taken by their mobile
device in real-time. This can be accomplished by simple image
matching if a considerable database of images with known lo-
cation exists; alternatively, live images can be used to construct
a three-dimensional model of the scene in view and that model
then matched to a particular area of the building based on an
existing accurate three-dimensional model of the buildings in-
terior (Mautz and Tilch, 2011). Visual odometry, on the other
hand, uses live video from the camera to estimate the users move-
ment. By creating and continuously updating a three-dimensional
model of the view in the live video, the change in perspective over
time can convey the users movement. Visual odometry is thus
very similar to PDR, with the main difference just being how the
user’s movement is estimated (Nister et al., 2004).
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2.3.6 Sensor Fusion Finally, hybrid algorithms combine
multiple individual positioning methods into a larger more com-
plex positioning system. Some implementations employ as many
individual algorithms as possible and then attain a final position
by averaging all of the estimates, sometimes varying the influ-
ence of individual estimates depending on their expected accu-
racy. Other implementations choose the individual algorithms
strategically so that they may reinforce each others weaknesses;
a common example is a WLAN algorithm and PDR algorithm
working cooperatively; the WLAN algorithm is preferred to es-
timate an initial location, while the PDR algorithm is generally
superior in estimating the users movement relative to an initial
location, and thus, is given precedence when the user is moving
(Subbu et al., 2014), (Harle, 2013).

3. LOCATION FINGERPRINTING

Here we discuss how we prepare the positioning environment and
set up the positioning system. Broadly, this involves the collec-
tion, processing and storage of the reference data.

3.1 Data Collection

3.1.1 Collection Tools Custom Android application was cre-
ated for the purpose of collecting WLAN AP fingerprints. Appli-
cation interface shows a constantly updating list of visible APs,
showing their SSID, RSSI, and time of the reading. The interface
also contains a text box for the name of this collection instance
and a button to write the collected readings to a .txt file. Further-
more, options exist to timestamp the collection, filter out non-
university infrastructure APs, and to compute and record only
the mean of the RSSI readings obtained for each AP. The scan-
ning for APs can be paused/resumed, restarted, and manually re-
freshed if automatic scans stop occurring. (screenshots of appli-
cation will follow)

Figure 1. Main User Interface of Android based Data Collection
Tool

The application was installed on multiple devices that were used
for collecting fingerprints over the course of the research. De-
vices included the LG Nexus 4 and 5, Samsung Nexus 10, Sony
Xperia Z3 Compact, and OnePlus One.

3.1.2 Collected Data Prior to data collection, the positioning
environment must be set up. Within our work, given that a sym-
bolic location system was used, the positioning area was set up
semi-automatically. Key locations were manually chosen, then
spaces between them were automatically filled by additional uni-
formly spaced out symbolic locations.

The reference WLAN fingerprint data can be collected once the
symbolic locations are set. The Data Collection tool provides the

data captured from the scans in the following format:

• Building

• Floor
• Symbolic Location 001
• AP1 (MAC, SSID, number of RSSI readings
• RSSI1:timestamp
• RSSI2:timestamp
• . . .
• . . .

• Symbolic Location 002
• AP1 (MAC, SSID, number of RSSI readings
• RSSI1:timestamp
• RSSI2:timestamp
• . . .
• . . .

• . . .

3.2 Fingerprint Database

3.2.1 Storage Primarily, the fingerprint database is stored on
text files; each symbolic location has one text file from each de-
vice used to collect fingerprints at that location. The format of
each file is as follows:

• Symbolic Location 001 (# of APs)

• AP1 (MAC, SSID, number of RSSI readings
• RSSI1:timestamp
• RSSI2:timestamp
• . . .

• AP2 (MAC, SSID, number of RSSI readings
• RSSI1:timestamp
• RSSI2:timestamp
• . . .

• . . .

Once the positioning algorithm is initialized (text files are read
and a live database structure is created on memory), the posi-
tioning application can create a backup txt file of the database
containing only the simplified information (see section 3.2.3) in
order to speed up initialization for the next time positioning is
attempted on the same floor with the same initialization parame-
ters.

3.2.2 Filtering The main filtering that occurs is with respect
to the APs that are considered. The data collection application
collects readings from all APs in range, however, the positioning
algorithm only uses readings from the APs that are part of the uni-
versity’s WLAN infrastructure. When creating the live database,
APs are filtered based on their SSID (whitelist of university in-
frastructure SSID’s used).

Other filtering may also occur based on the initialization param-
eters, for example, APs with very erratic RSSI readings (beyond
a certain threshold), or APs with very low mean RSSI (again, be-
yond a certain threshold), may be removed from the database.

Finally, filtering generally also occurs for real-time readings dur-
ing positioning as well as test readings used for performance
evaluation. The filtering in these cases occurs on a fingerprint-
by-fingerprint basis; a fingerprint may be discarded or combined
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with the following/preceding fingerprint depending on the num-
ber of APs represented in that fingerprint and/or the timestamps
of RSSI readings contained in it. Occasionally, fingerprints read
by the positioning algorithm are incomplete, thus, they will con-
tain fewer RSSI readings than expected for that particular loca-
tion; the remaining expected RSSI readings then come in the fol-
lowing fingerprint with timestamps a millisecond later than the
previous fingerprint. Thus, in these cases, the two fingerprints
are combined into one before being input in the positioning al-
gorithm. In the much more rare cases where the incomplete fin-
gerprint is not followed by its complementary incomplete finger-
print, the fingerprint is simply discarded as it is deemed unreli-
able. The general criterion for designating a fingerprint as incom-
plete is a threshold for the minimum expected AP RSSI readings
for any fingerprint attained on a particular floor; this threshold is
based on the number of APs visible at any given position on that
floor.

3.2.3 Simplification In this context, simplification refers to
the creation of the live fingerprint database used by the position-
ing algorithm in real-time. During initialization, the application
reads all of the fingerprint txt files for all symbolic locations on
the building and floor where the user is to be positioned. The
application then creates a data structure that contains reference
fingerprints for every symbolic location on that floor.

Generally, a mean value is calculated from the multiple RSSI
readings for each AP in the txt files; this mean value is then
added to the data structure and the individual RSSI readings are
discarded to conserve memory. Depending on the initialization
parameters, the data structure could also contain the number of
readings as well as a measure of the variability of the signal
strength for each AP at each symbolic location.

When the Bayes Maximum Likelihood algorithm is used for po-
sitioning, then normalized RSSI histograms are created for every
AP at every symbolic location.

To speed up initialization on future positioning sessions, all the
info retained in the live fingerprint database is written to a new
file, thus, allowing future initialization with the same parameters
to recreate the live fingerprint database without having to do any
of the computations in the first initialization.

4. LOCATION INFERENCE / ESTIMATION

4.1 k-Nearest Neighbours

4.1.1 k-Nearest Neighbours Algorithm The k-Nearest
Neighbours (k-NN) algorithm is a simple machine-learning
algorithm, generally used in pattern recognition. The algorithm
consists of searching through a set of reference points for the
k-nearest points of that set to a query point in the same dimen-
sional space. If there are multiple query points, the algorithm is
repeated for each one. Nearness or proximity can be arbitrarily
defined, although often Euclidean or Manhattan distance is used
as a metric of proximity. Upon the identification of the k nearest
reference points, those points can be used to either assign a class
(k-NN classification) or assign a value (k-NN regression) to the
query point.

4.1.2 Application to WLAN Fingerprint Matching The k-
NN algorithm can be utilized in WLAN Signal Fingerprint
Matching (WSFM), a method of positioning in (mostly indoor)

Figure 2. Diagram of k-Nearest Neighbours

areas with WLAN infrastructure. WSFM requires a database
or map of the signal strength of all WLAN access points (APs)
throughout the area where positioning is possible. The user then
obtains a sample of the signal strengths of all APs (fingerprint)
at their particular location, and the WSFM algorithm matches the
fingerprint to the most similar location (based on the AP signal
strengths) in the database.

A fingerprint typically contains the information in the ta-
ble below, with the set of RSSI readings, denoted by
RSSI s = RSSI1, RSSI1, RSSI1, . . . , RSSIn, used as the in-
put/measurement for k-NN.

Time
Received

AP
Network
Name

AP
Identifier

Signal
Strength

t1
SSID1

BSSID1 RSSI1

BSSID2 RSSI2

BSSID3 RSSI3

SSID2 BSSID4 RSSI4

Table 1. Information Typically Collected in a Fingerprint

The k-Nearest Neighbours algorithm (k-NN) is used to match the
subjects fingerprint to the symbolic location with the reference
fingerprint most similar to it. Every location estimation, that is,
whenever the subject collects a new fingerprint, k-NN compares
the subjects fingerprint to every single symbolic location in the
reference fingerprint database and returns the k symbolic loca-
tions that are nearest to it in terms of AP signal strengths.

When using k-NN, the database is set up as a set of reference
points (or reference fingerprints) in signal space that correspond
to particular locations in the positioning area. Thus, let the ref-
erence database be L = l1, l2, . . . , lp, where p represents the
number of specific locations represented in the database and li

typically contains the information in the table below. Also con-
tained in li is RSSIR = RSSI1, RSSI1, RSSI1, . . . , RSSIm,
the reference point in signal-space used in k-NN.

Symbolic
Location

Geometric
Location

AP
Network
Name

AP
Identifier

Mean
Signal
Strength

001 (x,y)001
SSID1

BSSID1 RSSI1

BSSID2 RSSI2

BSSID3 RSSI3

SSID2 BSSID4 RSSI4

Table 2. Information restructured based on its Symbolic and
Geometric Location

Finally, once all the distances are calculated between RSSIS and
every RSSIR, they are sorted and the k points in L with the small-
est distances to the fingerprint are selected to estimate a loca-
tion for that fingerprint. We also experimented with a modified
version of this algorithm (WSDFM) that uses a different defini-
tion of the fingerprint, namely the differences between the signal

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-253-2018 | © Authors 2018. CC BY 4.0 License.

 
256



strengths, as opposed to the absolute signal strengths, of all vis-
ible APs. Therefore, distance calculations in this version of the
algorithm are in d(d−1)

2
dimensions when d APs are visible in the

fingerprint.

4.1.3 Definition of Proximity (Distance Calculation) The
metric of proximity in my implementation is a normalized Man-
hattan distance; for each fingerprints RSSIS, the distances are cal-
culated between it and the RSSIR of every reference fingerprint
in L. The proximity metric, dss(l), is described by the equation
below.

dss(l) =

∑i=1
m |RSSIR(l)

i −RSSISi |+ (β0(m− n))

m
(1)

Lkmin = arg kminl
k=5

dSS(l), Lkmin ⊂ L (2)

The symbolic locations corresponding to the k-smallest distances
in signal space are identified.

4.1.4 Distance Dimensions (Visible AP’s) It should be noted
that RSSIS and RSSIR are often not defined in the same dimen-
sions, that is to say n and m, the APs represented in RSSIS and
RSSIR, respectively, are often not the same. Not all APs are nec-
essarily visible in every location of the positioning area, thus, the
potential mismatch of dimensions must be dealt with.

Normalization One way to deal with a mismatch of dimen-
sions is to normalize the proximity metric, in this case, Manhattan
distance. This allows the proximity metric to represent the aver-
age distance per dimension as opposed to the combined distance
in all dimensions. A solution that relies solely on normalization
will compute a distance using only the dimensions that match be-
tween RSSIS and RSSIR, i.e. those that correspond to the same
APs. This means that non-matching dimensions are simply ig-
nored, and this can result in outliers and generally poor accuracy
when the number of matching dimensions is very low.

Artificial RSS Another way to deal with dimension mismatch
is to insert artificial values into RSSIS for the dimensions of
RSSIR that are not represented in RSSIS. In this case, the value
inserted (RSS*) is usually the lowest possible RSS value that can
be sensed, often set to -100 dBm. This solution assumes that
RSS* is practically equivalent to the real RSS in that spot (which
is too low to be sensed by the subjects device). Supporting ra-
tionale for this method is that by inserting a set minimum value
(RSS*), the penal impact on the metric for that reference loca-
tion will be proportional to the strength of the missing AP signal
(missing dimension).

Hybrid/Penalization for Mismatch The two methods of deal-
ing with dimension mismatch discussed above can be used to-
gether in a hybrid solution where the artificial RSS* readings are
inserted into the RSSIS and then the Manhattan distance is also
normalized. The rationale for the latter is that even RSSIR of dif-
ferent symbolic locations will vary in the dimensions represented
(APs visible), thus, normalization can still help make the proxim-
ity comparison fairer.

This hybrid method certainly improves the accuracy of position-
ing of the k-NN algorithm, however, during performance test-
ing, a different hybrid method (penalization method) was also

tested and showed to further improve accuracy. The penaliza-
tion method opts to add a set penalty to the Manhattan distance
for every dimension mismatch as opposed to employing artificial
RSS readings. This penalty is essentially an artificial difference
between RSSIR and RSSIS in one dimension. The actual penalty
was found heuristically by trying various values, and tests showed
that using one constant value for the penalty resulted in better
accuracy than the varying penalization resulting from inserting
the artificial RSS values. This penalization method is demon-
strated in the mathematical definition of our proximity metric
in the (β0 (m− n)) term. Here, β0 is the penalty value and
(m− n) determines how many times to add the penalty to the
proximity metric (i.e. how many dimensions are represented in
RSSIR but not in RSSIS.

4.1.5 k-NN Weighting Whether performing k-NN classifica-
tion or regression, when k > 1, there needs to be scheme to
combine the input/effect of all k neighbours. In the simplest case,
an equal weighted mean of the neighbours is computed. Another
very common method is to take a weighted mean of the neigh-
bours, where the weight of each neighbour is inversely propor-
tional to its rank or k-value. Other, more complex, methods can
also take into account the actual metric (e.g. Euclidean distance)
of the nearest neighbours calculation for each of the neighbours
to determine that neighbour’s weight, or simply retain all of the
neighbours and use an additional algorithm to obtain a single es-
timate from the k neighbours. The various methods of assign-
ing weight to the neighbours can also be broadly categorized into
two categories, apriori and aposteriori weighting; however, some
complex methods can even perform both types of weighting.

Pre-defined (apriori) Constant Weights Apriori weights gen-
erally refer to scalar constant weights applied to the neighbours.
This generally includes the trivial case, where all neighbours are
equally weighted, and cases where the weights are based on the
rank. Rank based weights will generally be something along the
lines of 1/Rank, or in other cases, each rank can have a specific
arbitrarily predefined weight (i.e. 1st= 1.0, 2nd = 0.8, 3rd = 0.6,
and etc.) generally based on some prior knowledge about the
likelihood of each neighbour being correct.

Calculated (aposteriori) Weights (Bayes ML) Aposteriori
weights generally refer to the determination of weights for the
neighbours after the k-nearest neighbours have been determined.
This can be accomplished in a number of ways. The simplest way
is to use the distance metric of each neighbour that determined its
proximity to the query point (e.g. the weight could be 1/di). A
more complex way is to use an alternate algorithm to determine
the weights of the neighbours. The secondary algorithm can be
entirely independent of the k-NN metric, and thus, can result in
weights that are not proportional to the k-NN ranks of the neigh-
bours.

4.2 Path Assessment and Retroactive Adjustment

The possible paths of the subject over the last five epochs are
assessed based on three criteria; these can be briefly described as
k-NN score/proximity, and short-term and long-term movement
regularity.

4.2.1 k-NN Proximity Although the top k locations from k-
NN are attained, this does not mean that they are equally valued.
Thus, their proximity measures are also retained so that they may
be considered in the k-NN proximity criterion of the path assess-
ment stage. This criterion can be scored in three ways; the first
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is relative score by comparing each of the k locations (li) to the
nearest location (l1), the second is an absolute score of the prox-
imity, and the third is another more complex relative score.

kNNP
(
lti
)

=
dss (l1)

dss (li)
or

1

dss (li)
or

dss (l1)

1 + dss (li)− dss (l1)
(3)

Heuristically, it was determined that the first way of scoring this
criterion was the most effective.

4.2.2 Short-Term Movement Regularity The second crite-
rion scored in the path evaluation is the short-term movement reg-
ularity. This criterion essentially represents how likely it is that
the subject moved between two locations in the time between two
epochs. This is scored by comparing the physical distance be-
tween the two locations with the distance that can be walked at an
average walking speed during the time between the two location
estimates (i.e. time between consecutive k-NN estimates). The
score is calculated with the equation below, where ∆t is elapsed
time in seconds, wS is an average walking speed in m/s, and
dPS (li, lj) is the Euclidean distance between the symbolic lo-
cations with t being the epoch.

SMR
(
lti , l

t−1
j

)
=

wS ·∆t
dPS

(
lti , l

t−1
j

) (4)

Thus, the score is at a maximum when dPS is less than (i.e. sub-
ject is stationary [dummy 1 cm value inserted for dPS in this sit-
uation to avoid division by 0] or moving slowly) or equal to the
average distance walked in the elapsed time between the consec-
utive epochs. On the other hand, the score decreases as the phys-
ical distance between the locations increases (once it is above the
expected walked distance).

4.2.3 Long-Term Movement Regularity The third and fi-
nal criterion scored in the path assessment is long-term move-
ment regularity. Since the path assessment is performed for a
recent portion of the subject’s estimated path, namely the 5 last
epochs, this criterion represents how well the subject’s movement
matches its net displacement over the 5 epochs. This criterion is
scored by summing up the total distance travelled by the subject
as they move (or stay stationary) from epoch to epoch, then com-
paring it to the net displacement of the subject over the 5 most
recent epochs. The score is calculated with the equation below,
where dPS(li, lj) is the Euclidean distance between the symbolic
locations and t is the epoch.

LMR =
dPS

(
lti , l

t−5
)∑t−4

e=t dPS

(
lei , l

e−1
j

) (5)

This score is at a maximum for this criterion when the total dis-
tance travelled is equal to the net displacement; conversely, it is at
a minimum when there is a lot of movement but no net displace-
ment. This essentially discourages a path with stuttering (i.e. one
step forward, one step back, two steps forward, while subject only
walked two steps forward), and tends to smooth the subjects es-
timated path. To make the comparison less cumbersome, the net
displacement considered in the equation is direction-less; further-
more, the code implemented also automatically inserts a value of
1 for the score if the total movement (and therefore also the net
displacement) is 0.

4.2.4 Final Score The aforementioned three scores all have
different ranges and they do not follow the same curve. Thus,
sigmoid functions are employed to reconcile the distributions of
each of the movement regularity scores. Furthermore, the sig-
moid functions allow for each of the scores to have a more pre-
cise and intended effect on the final overall score for the path seg-
ment being considered. The coefficients of the sigmoid function
were heuristically determined to best attain the aforementioned
behaviour. The following are the sigmoid functions used for each
criterion score and their respective graphs.

SMRs

(
lti , l

t−1
j

)
=

3 (SMR− 0.5)

2
√

9 (SMR− 0.5)2 + 1
+ 0.5 (6)

Figure 3. SMR Sigmoid Function

As can be seen in the graph, the SMR sigmoid function greatly
favours situations where the subjects is moving at a normal pace
(SMR is approximately 1) or staying stationary (SMR is sig-
nificantly greater than 1), with the latter being slightly more
favoured. As the movement increases, the score drops to dis-
courage very fast (and likely incorrect) movement. The function
outputs about half a maximum score when the subject has moved
twice as far as expected and a quarter of the maximum score when
the movement is three times whats expected.

On the other hand, the LMR sigmoid function does not need to
deal with input LMR values greater than 1, and additionally, the
score drops much faster than the SMR sigmoid function. The
scoring function is intentionally more punitive for the LMR be-
cause the distances being compared in the LMR function are
larger than those in the SMR function, thus, the LMR sigmoid
scoring function needs to penalize even small relative differences.

LMRS =
15 (LMR− 0.75)

8
√

9 (LMR− 0.75)2 + 1
+ 0.6 (7)

Figure 4. LMR Sigmoid Function

Once all the criteria are scored for all of the position estimates in
a particular potential path, the final path score for that segment (5
epochs) is given by the following function.
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a b c

Table 3. Path Score calculation left to right

PathScore = kNNP
(
lt−4
i

)
· SMRS

(
lt−4
i , lt−5

j

)
·kNNP

(
lt−3
i

)
· SMRS

(
lt−3
i , lt−4

j

)
·kNNP

(
lt−2
i

)
· SMRS

(
lt−2
i , lt−3

j

)
·kNNP

(
lt−1
i

)
· SMRS

(
lt−1
i , lt−2

j

)
·kNNP

(
lti
)
· SMRS

(
lti , l

t−1
j

)
(8)

As mentioned earlier, the k chosen locations from each of the
previous five epochs are retained. Thus, when we say all potential
paths, we mean all possible ways to traverse the following matrix
from left to right starting from the final chosen location at epoch
t− 5(lt−5

1 ) in the example, Table 3 (a)).

Once every possible path is scored, the path with the highest score
is chosen as the best path and its final location (at t) is presented
to the subject as the subject’s current position. Say, for example,
that the Table 3(b) was the highest scoring path.

At the next epoch (new set of k locations provided by k-NN),
shown in the matrix Table 3(c), the starting location on the left
side of the matrix is lt−5

2 . This is the same location as lt−4
2

from the previous matrix, and was the only one retained from
that epoch after being in the best path the last time the path was
assessed.

Another way to describe the path assessment process is to think
of a tree created by all the locations suggested by k-NN over the
number of epochs considered. The following simplified example
considers k-NN (where k = 3) over 3 epochs. All the possible
paths to go from root to leaf in the tree below are scored and then
ranked.

Figure 5. Path Assessment example in a tree format

The discrete locations of the highest ranked path are chosen as
the subject’s most likely path over the course of the epochs con-
sidered.

5. RESULTS

In this section, we will present results gathered from running sim-
ulation in indoor environment.

5.1 Experiment Setup

We conducted the experiments in three different buildings at York
University. Those buildings are as follows: Petrie Science & En-
gineering (PSE), Chemistry Building (CB) and Bergeron Centre
for Engineering Excellence (BCEE)

York University has its WLAN access points set up throughout
these buildings. Despite there being a multitude of other access
points in use throughout these buildings, we decided to only use
the readings received from York University’s network infrastruc-
ture access points. This was done because their signals were ad-
equately available throughout the positioning environment and
they provided a higher level of reliability and stability in compar-
ison to the other WLAN access points.

Figure 6 shows distribution of York University’s network infras-
tructure access points on the 3rd floor of the PSE building. We
used collection tools described in section 3.1.1.

Figure 6. Distribution of AP on 3rd floor of PSE

5.2 Performance Evaluation

We collected thousands of positioning data points from two ver-
sions of our implemented positioning system:

1. Referred to as k-NN in this section, the first implementation
was our improved WLAN Fingerprint Matching algorithm.

2. Referred to as k-NN + PERA in this section, the second imple-
mentation included the Path Evaluation and Retroactive Adjust-
ment module in addition to the WLAN Fingerprint Matching in
the first implementation.

Figures 7, 8 and 9 show the comparison between the two imple-
mentations. We observed that k-NN + PERA results in signif-
icantly improved positioning accuracy compared to k-NN. This
level of positioning accuracy can certainly be useful for location-
aware applications in the indoor space.

Figure 7. Cumulative Positioning Error on 3rd Floor of PSE

We see the greatest accuracy within the PSE building, positioning
error less than 3 metres 90% of the time for k-NN and position-
ing error less than 2 metres 99% of the time for k-NN + PERA.
We believe this is due to the fact that it is the oldest of the three
buildings and has thick concrete walls throughout; this results
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in greater heterogeneity of RSS from the various access points
throughout the positioning area, therefore resulting in better per-
formance primarily by the k-NN algorithm.

Figure 8. Cumulative Positioning Error on 4th Floor of CB

We see similar accuracy within the Chemistry building, position-
ing error less than 3 metres 90% of the time for k-NN and po-
sitioning error less than 2 metres 95% of the time for k-NN +
PERA. Chemistry building is much newer than the PSE build-
ing, but has similar sized hallways and likely relatively similar
structural materials and access point distribution.

Figure 9. Cumulative Positioning Error on 2nd Floor of BCEE

In BCEE, we observed lower accuracy compared to other two
buildings, positioning error less than 5 metres about 90% of the
time for k-NN and positioning error less than 3 metres 95% of the
time for k-NN + PERA. The most likely reason for the poorer per-
formance in this building is the fact that it is a brand new build-
ing with large open hallways and a general open concept style.
This results in more homogeneity in the RSS of the access points
in large swaths of the positioning area; in open areas where the
signal can travel unimpeded, it becomes difficult for WLAN Fin-
gerprint Matching algorithms, in general, to differentiate between
adjacent locations.

6. CONCLUSION

In this work, we presented a positioning system, primarily based
on WLAN fingerprint matching, that includes various minor im-
provements to improve the positioning accuracy of the algorithm,
we also employ a novel Path Evaluation and Retroactive Adjust-
ment module intended to improve the positioning accuracy of the
system in a similar fashion to a Pedestrian Dead Reckoning im-
plemented along with WLAN Fingerprint Matching in a Sensor
Fusion system. As can be seen in the experimental results, the
WLAN fingerprint matching algorithm, referred in the previous
section as k-NN, has respectable performance in its own right,
achieving room-level accuracy (less than 3 - 5 metre error) 90%
of the time, despite all positioning experiments taking place in
open hallways. Furthermore, we show that with the PERA mod-
ule, positioning accuracy is improved to less than 2 - 3 metre error
about 95% of the time. In our opinion, this level of accuracy is

adequate for indoor positioning on the smartphone platform and
comes without the added energy and computation cost of using
the inertial sensors in a PDR algorithm. This sort of performance
can also be considered practically equivalent, in our opinion, to
the performance of GPS positioning on smartphones in outdoor
use cases. In future research, we will look into improving the
weak points of our system, namely poorer performance in larger
and more open spaces, as well as making the PERA module more
elaborate and context-aware to aid in cases of more unusual user
movement. In addition, we hope to develop a reliable method
for floor detection, which can be a difficult task in its own right
within the indoor positioning realm.
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