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Abstract. We consider Morita contexts for semirings that have certain local units but not necessarily an identity element. We show
that the existence of a Morita context with unitary bisemimodules and surjective maps implies that the two semirings involved have
isomorphic quantales of ideals and lattices of congruences.
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1. INTRODUCTION

In the classical case [1;2, Chapter 6], Morita equivalence is an equivalence relation on the class of rings with
identity, where two rings are considered equivalent if the categories of left (equivalently, right) modules over
them are equivalent. This equivalence of categories turns out to be equivalent to the existence of a Morita
context – a pair of bimodules over the two rings together with a pair of bimodule homomorphisms from
their tensor products onto the original rings, satisfying certain conditions. While the definition of a Morita
context may seem complex at first, it is often easier to prove statements about Morita equivalence using
them rather than the categorical definition.

There have been several successful attempts to generalize Morita equivalence to settings other than rings
with identity. Many results have be proven for rings with various kinds of local units [3,4]. In this case,
unitary modules are considered instead of arbitary modules in the definition of Morita equivalence as well
as in Morita contexts.

Generalizing in another direction, rings and modules have been replaced with semigroups and acts over
them. For monoids [5,6], Morita equivalence turns out to be very close to isomorphism and thus not very
interesting. However, using local unit conditions like those for rings, as well as unitary acts instead of
arbitary ones, gives a meaningful theory for semigroups where several results analogous to those of rings
hold [7].

A semiring is an algebraic structure where the additive structure in the definition of a ring has been
changed from an Abelian group to a monoid. The analogues for modules of rings are called semimodules.
It is a natural question whether a Morita theory could be developed for semirings, and whether it is closer
to the theory for rings or semigroups. For semirings with identity, Morita equivalence was first studied by
Katsov and Nam [8] and further by Sardar, Gupta, and Saha [9–11]. Morita equivalence for semirings with
local units was first considered by Liu [12].
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In this article, we approach Morita theory for semirings with local units from a different direction: that
of Morita contexts. The relationship between Morita equivalence and the existence of a Morita context in
this case has not been studied yet. We show, however, that the existence of a Morita context with conditions
analogous to those used for rings and semigroups with local units implies that the two semirings have
isomorphic lattices of ideals and congruences. These results are analogous to those obtained for semigroups
with local units by Laan and Márki in [13] and for semirings with identity by Sardar and Gupta in [10].

2. DEFINITIONS

Definition 1. A semiring [14] is an algebra (S,+, ·,0) such that (S,+,0) is a commutative monoid, multi-
plication is associative and distributes over addition from both sides, and 0 is a zero element with respect to
multiplication.

Note that we do not require the existence of a multiplicative identity element. Golan [14] uses the term
hemiring for the above definition and reserves semiring for semirings with identity.

Definition 2. A left semimodule over a semiring S is an algebra SM = (M,+,0,(s·)|s∈S) such that (M,+,0)
is a commutative monoid and the following identities hold for all s,s′ ∈ S, m,m′ ∈ M:
1. s(m+m′) = sm+ sm′,
2. (s+ s′)m = sm+ s′m,
3. (ss′)m = s(s′m),
4. s0M = 0M,
5. 0Sm = 0M .

Right semimodules are defined analogously.

Definition 3. A bisemimodule over semirings R and S is an algebra RMS = (M,+,0M,(r·)|r∈R,(·s)|s∈S)
such that RM is a left R-semimodule, MS is a right S-semimodule, and (rm)s = r(ms) for all r ∈ R, m ∈ M,
s ∈ S.

Definition 4. Let S be a semiring and SM a left semimodule. For A ⊆ S and U ⊆ M, we define

AU =

{
n

∑
i=1

simi : n ∈ N0,si ∈ A,mi ∈U

}

and analogously for right semimodules.

Since a semiring is a semimodule over itself, Definition 4 also defines the product of two subsets of a
semiring. This multiplication of subsets of a semiring is easily seen to be associative.

Definition 5. For a semiring S, a left (right) S-semimodule M is unitary if SM =M (MS=M). For semirings
S and T , a bisemimodule SMT is unitary if SM and MT are unitary.

The following local unit conditions are chosen to cover an as large as possible class of semirings in the
results to be proven. Both are implied by the notion of local units in [4, Definition 1].

Definition 6. A semiring S has weak local units if for every s ∈ S there exist e,e′ ∈ S with es = s = se′.

Definition 7. A semiring S has common joint weak local units if for every s,s′ ∈ S there exist e,e′ ∈ S with
s = ese′ and s′ = es′e′.

Definition 8. An ideal of a semiring S is a set I ⊆ S that is a submonoid of (S,+) and for which SI ⊆ I and
IS ⊆ I. Finitely generated ideals are defined as in ring theory.
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Definition 9. A quantale is a complete lattice endowed with an associative multiplication that is distributive
from both left and right with respect to joins of any cardinality. An isomorphism of quantales is a bijection
from one quantale to another that preserves joins and meets of any cardinality and multiplication.

It is a well-known fact that the lattice Id(S) of ideals of a ring forms a quantale (see e.g. [15, p. 17]),
where the multiplication of two ideals is given by Definition 4. It is easy to verify that the same fact holds
for semirings.

Definition 10. For S-semimodules MS and SN, their tensor product M ⊗N is defined as the factor semi-
group of the free commutative additive semigroup F = F(M×N) generated by the set M×N, factorized by
the congruence ρ generated by all ordered pairs of the form

((m+m′,n),(m,n)+(m′,n)),
((m,n+n′),(m,n)+(m,n′)),

((ms,n),(m,sn)),

where m,m′ ∈ M, n,n′ ∈ N, s ∈ S. The congruence class containing a generator (m,n) of F is denoted by
m⊗n.

Note that the elements m⊗n form a system of generators for the semigroup M ⊗N, i.e. every element
of M ⊗N is a finite sum of such elements. From the generating pairs of ρ we obtain the following basic
identities:

(m+m′)⊗n = m⊗n+m′⊗n,
m⊗ (n+n′) = m⊗n+m⊗n′,

ms⊗n = m⊗ sn.

The semigroup M⊗N is actually a monoid, the zero element being 0M ⊗0N :

m⊗n+0M ⊗0N = m⊗n+0M ⊗0Sn = m⊗n+0M0S ⊗n = (m+0M)⊗n = m⊗n.

The tensor product of semimodules was first introduced in [16] and further studied in [17]. The following
proposition can be proven as described in the paragraph preceding Theorem 3.1 of [17].

Proposition 1. Let R, S, and T be semirings and SMR and RNT bisemimodules. Then the monoid MR ⊗ RN
can be turned in a unique way into a bisemimodule SMR⊗RNT , retaining its addition and zero element, such
that for any m ∈ M, n ∈ N

s(m⊗n) = sm⊗n, (m⊗n)t = m⊗nt.

Definition 11. A Morita context is a sextuple (S,T, SPT ,T QS,θ ,ϕ) where
1. S and T are semirings;
2. SPT and T QS are bisemimodules as indicated by the subscripts;
3. θ : S(P⊗Q)S → SSS and ϕ : T (Q⊗P)T → T TT are bisemimodule homomorphisms;
4. for every p, p′ ∈ P, θ(p⊗q)p′ = pϕ(q⊗ p′);
5. for every q,q′ ∈ Q, ϕ(q⊗ p)q′ = qθ(p⊗q′).

We say that a Morita context (S,T, SPT ,T QS,θ ,ϕ) is unitary if SPT and T QS are unitary bisemimodules.

Example. We give an example (inspired by the proof of [18, Theorem 9]) of a unitary Morita context with
surjective mappings where the semirings are non-isomorphic. Let F be a free semiring with two generators
x and y. Let ρ be the congruence on F generated by the pair (y,y2), and let R := F/ρ . Then e := y/ρ
is an idempotent. Let S be the subsemiring ReR of R; then S = SeS ̸= eSe. Now one can verify that
(S,eSe, SSeeSe, eSeeSS,θ ,ϕ), where θ(se⊗ es′) := ses′ and ϕ(es⊗ s′e) := ess′e, is a unitary Morita context
with surjective mappings.
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3. RESULTS

Our first result concerns ideals. The proof is analogous to that of Theorem 3 in [13] or Theorem 2.2 in [10].

Theorem 1. If two semirings S and T have weak local units and there exists a unitary Morita context
(S,T, SPT ,T QS,θ ,ϕ) with θ ,ϕ surjective, then there is a quantale isomorphism Id(S) → Id(T ) that takes
finitely generated ideals to finitely generated ideals.

Proof. Let (S,T, SPT ,T QS,θ ,ϕ) be a unitary Morita context with θ , ϕ surjective. Define

Θ : Id(T )→ Id(S), Θ(J) := θ(PJ⊗Q) =

{
θ

(
n

∑
i=1

piti ⊗qi

)
: n ∈ N, pi ∈ P,qi ∈ Q, ti ∈ J

}
,

Φ : Id(S)→ Id(T ), Φ(I) := ϕ(QI ⊗P) =

{
ϕ

(
n

∑
i=1

qisi ⊗ pi

)
: n ∈ N0, pi ∈ P,qi ∈ Q,si ∈ I

}
.

It is easily seen that the sets on the right side are indeed ideals. We show that Θ and Φ are mutually
inverse bijections. Due to symmetry, it suffices to show that Θ(Φ(I)) = I for any I ∈ Id(S). First,

Θ(Φ(I)) = θ(Pϕ(QI ⊗P)⊗Q).

We now show that
θ(Pϕ(QI ⊗P)⊗Q) = θ(P⊗Q)Iθ(P⊗Q).

To see this, observe that, according to Definitions 4 and 10, the subset of S on the left side consists of all
finite sums of elements of the form θ(pϕ(qs⊗ p′)⊗ q′), where s ∈ I, p, p′ ∈ P, q,q′ ∈ Q. This transforms
into

θ(pϕ(qs⊗ p′)⊗q′) = θ(θ(p⊗qs)p′⊗q′) = θ(p⊗q)sθ(p′⊗q′),

and elements of this form generate the set on the right side. Now θ(P⊗Q)Iθ(P⊗Q) = SIS ⊆ I. Using
weak local units, we can see that I ⊆ SIS, concluding the proof that Θ and Φ are mutually inverse.

It is easy to see that for J′ ⊆ J, Θ(J′) ⊆ Θ(J) and the same for Φ; thus Θ and Φ are order-preserving
bijections and therefore preserve all meets and joins.

To see that Φ preserves multiplication of ideals (the proof for Θ is analogous), we have to demonstrate
for I1, I2 ∈ Id(S) that Φ(I1)Φ(I2) = Φ(I1I2), or equivalently,

ϕ(QI1 ⊗P)ϕ(QI2 ⊗P) = ϕ(QI1I2 ⊗P).

The set ϕ(QI1 ⊗P)ϕ(QI2 ⊗P) consists of all finite sums of elements of the form

ϕ(q1s1 ⊗ p1)ϕ(q2s2 ⊗ p2) = ϕ(q1s1 ⊗ p1ϕ(q2s2 ⊗ p2))

= ϕ(q1s1 ⊗θ(p1 ⊗q2s2)p2) = ϕ(q1s1θ(p1 ⊗q2)s2 ⊗ p2), (1)

where p1, p2 ∈ P, q1,q2 ∈ Q, s1 ∈ I1 and s2 ∈ I2. Since s1θ(p1 ⊗q2)s2 ∈ I1I2, we have shown Φ(I1)Φ(I2)⊆
Φ(I1I2).

For the opposite inclusion, the set ϕ(QI1I2 ⊗ P) consists of all finite sums of elements of the form
ϕ(qs1s2 ⊗ p), where p ∈ P, q ∈ Q, s1 ∈ I1 and s2 ∈ I2. Let u ∈ S be chosen such that us2 = s2, and let
u = θ(p′⊗q′). Now applying (1) in reverse gives

ϕ(qs1s2 ⊗ p) = ϕ(qs1θ(p′⊗q′)s2 ⊗ p) = ϕ(qs1 ⊗ p′)ϕ(q′s2 ⊗ p) ∈ ϕ(QI1 ⊗P)ϕ(QI2 ⊗P).
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Now let I =∑m
i=1 SaiS be a finitely generated ideal. Using the existence of weak local units, let ai = uiaivi

for some ui,vi ∈ S. Using surjectivity of θ , let ui = θ
(

∑ni
j=1 pi j ⊗qi j

)
, vi = θ

(
∑n′i

k=1 p′i j ⊗q′ik
)

. Now

Φ(I) =ϕ(QI ⊗P) =
m

∑
i=1

{ϕ(qai ⊗ p) : p ∈ P,q ∈ Q}

=
m

∑
i=1

ni

∑
j=1

n′i

∑
k=1

{
ϕ
(
qθ(pi j ⊗qi j)aiθ(p′ik ⊗q′ik)⊗ p

)
: p ∈ P,q ∈ Q

}
=

m

∑
i=1

ni

∑
j=1

n′i

∑
k=1

{
ϕ(q⊗ pi j)ϕ(qi jai ⊗ p′ik)ϕ(q

′
ik ⊗ p) : p ∈ P,q ∈ Q

}
⊆

m

∑
i=1

ni

∑
j=1

n′i

∑
k=1

T ϕ(qi jai ⊗ p′ik)T.

The opposite inclusion also holds, since for t, t ′ ∈ T , tϕ(qi jai ⊗ p′ik)t
′ = ϕ(tqi jai ⊗ p′ikt

′) ∈ Φ(I). Therefore

Φ(I) =
m

∑
i=1

ni

∑
j=1

n′i

∑
k=1

T ϕ(qi jai ⊗ p′ik)T

is finitely generated.

Next, we consider congruences. The following result is the analogue of Theorem 6 in [13] and The-
orem 2.15 in [10]. However, we give a slightly different proof, which does not need the use of transitive
closure.

Theorem 2. If two semirings S and T have common joint weak local units and there exists a unitary Morita
context (S,T, SPT ,T QS,θ ,ϕ) with θ ,ϕ surjective, then there exists a lattice isomorphism Θ : Con(S) →
Con(T ). Furthermore, for each σ ∈ Con(S), S/σ and T/Θ(σ) are themselves contained in a unitary
Morita context with surjective mappings.

Proof. For σ ∈ Con(S), define

Θ(σ) =
{
(t, t ′) ∈ T 2 : ∀p ∈ P, ∀q ∈ Q : θ(pt ⊗q)∼σ θ(pt ′⊗q)

}
.

Clearly Θ(σ) is an equivalence relation. It is actually a congruence: for (t1, t2),(t3, t4) ∈ Θ(σ), p ∈ P,q ∈ Q

θ(p(t1+t3)⊗q)= θ((pt1+ pt3)⊗q)= θ(pt1⊗q)+θ(pt3⊗q)∼σ θ(pt2⊗q)+θ(pt4⊗q)= θ(p(t2+t4)⊗q)

and

θ(pt1t3 ⊗q) = θ((pt1)t3 ⊗q)∼σ θ((pt1)t4 ⊗q) = θ(pt1 ⊗ t4q)∼σ θ(pt2 ⊗ t4q) = θ(pt2t4 ⊗q).

The map Θ : Con(S) → Con(T ) is easily seen to be order-preserving. Let Φ be analogous to Θ in the
opposite direction:

Φ(τ) =
{
(s,s′) ∈ S2 : ∀p ∈ P, ∀q ∈ Q : ϕ(qs⊗ p)∼τ ϕ(qs′⊗ p)

}
, τ ∈ Con(T ).

It remains to show that Φ is the inverse of Θ. Due to symmetry, it suffices to prove that ΦΘ = 1Con(S).
Let σ ∈ Con(S) and s ∼Φ(Θ(σ)) s′. From the definition of Φ, for all p ∈ P and q ∈ Q

ϕ(qs⊗ p)∼Θ(σ) ϕ(qs′⊗ p),

and from that and the definition of Θ, for all p, p′ ∈ P and q,q′ ∈ Q

θ(p′(ϕ(qs⊗ p))⊗q′)∼σ θ(p′(ϕ(qs′⊗ p))⊗q′). (2)
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The left side of (2) transforms to

θ(p′(ϕ(qs⊗ p))⊗q′) = θ(θ(p′⊗qs)p⊗q′) = θ(p′⊗q)sθ(p⊗q′).

Simplifying the right side of (2) in the same way, we get

∀p, p′ ∈ P, ∀q,q′ ∈ Q : θ(p′⊗q)sθ(p⊗q′)∼σ θ(p′⊗q)s′θ(p⊗q′).

Since σ is compatible with addition and P⊗Q consists of finite sums of elements of the form p⊗q, we get

∀α,α ′ ∈ P⊗Q : θ(α)sθ(α ′)∼σ θ(α)s′θ(α ′)

and from the surjectivity of θ
∀s1,s2 ∈ S : s1ss2 ∼σ s1s′s2.

Taking the common joint weak local units for s and s′ as the values of s1 and s2, we get s ∼σ s′. We have
shown that Φ(Θ(σ))⊆ σ .

In the opposite direction, s ∼σ s′ implies

∀p, p′ ∈ P, ∀q,q′ ∈ Q : θ(p′⊗q)sθ(p⊗q′)∼σ θ(p′⊗q)s′θ(p⊗q′)

or, applying the previously used transformation in reverse,

∀p, p′ ∈ P, ∀q,q′ ∈ Q : θ(p′(ϕ(qs⊗ p))⊗q′)∼σ θ(p′(ϕ(qs′⊗ p))⊗q′),

which is equivalent to s ∼Φ(Θ(σ)) s′. Thus Φ(Θ(σ)) = σ , concluding the proof that the congruence lattices
are isomorphic.

Let τ = Θ(σ). We proceed to construct a Morita context for S/σ and T/τ .
Let µ be the bisemimodule congruence on SPT generated by the set µ0 of all pairs (sp,s′p) and (pt, pt ′)

where (s,s′) ∈ σ , (t, t ′) ∈ τ and p ∈ P. Multiplications S/σ ×P/µ → P/µ and P/µ ×T/τ → P/µ ,

(s/σ)(p/µ) := (sp)/µ, (p/µ)(t/τ) := (pt)/µ,

are well defined. Now P/µ can be verified to be a unitary (S/σ ,T/τ)-module. From now on, we write P/µ
to mean S/σ (P/µ)T/τ .

Analogously, we define ν ∈ Con(T QS) generated by the set of pairs ν0, and Q/ν becomes a unitary
(T/τ,S/σ)-bisemimodule.

Denote by (µ,ν) the equivalence relation {((p,q),(p′,q′)) : (p, p′) ∈ µ,(q,q′) ∈ ν} on the set P×Q.
Define a map θ̂0 : P×Q → S/σ by

θ̂0(p,q) := θ(p⊗q)/σ .

We now verify that (µ,ν)⊆ Ker(θ̂0). Clearly, (µ,ν) is generated by the set

{((p1,q),(p2,q)) : (p1, p2) ∈ µ0,q ∈ Q}∪{((p,q1),(p,q2)) : (q1,q2) ∈ ν0, p ∈ P},

and it suffices to show that this set is contained in Ker(θ̂0). Consider the case of (p1, p2) ∈ µ0,q ∈ Q (the
case of (q1,q2) ∈ ν0, p ∈ P is analogous). There are two possibilities.
(a) (p1, p2) = (sp,s′p) for s ∼σ s′, p ∈ P. Then

θ(sp⊗q) = sθ(p⊗q)∼σ s′θ(p⊗q) = θ(s′p⊗q)

and thus θ̂0(sp,q) = θ̂0(s′p,q).
(b) (p1, p2) = (pt, pt ′) for t ∼τ t ′, p ∈ P. Then the definition of τ = Θ(σ) implies that θ(pt ⊗q)∼σ

θ(pt ′⊗q), and thus θ̂0(pt,q) = θ̂0(pt ′,q).
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By the above, the map θ̂ : P/µ ×Q/ν → S/σ ,

θ̂(p/µ,q/ν) := θ̂0(p,q) = θ(p⊗q)/σ ,

is well defined. This extends to a monoid homomorphism from the free monoid F(P/µ ×Q/ν) to S/σ ,
which we also denote by θ̂ . We can easily verify that the ordered pairs generating the congruence ρ given
in Definition 10 are contained in Ker(θ̂). Thus θ̂ factors through ρ , giving a monoid homomorphism
θ̃ : P/µ ⊗Q/ν → S/σ ,

θ̃(p/µ ⊗q/ν) = Θ(p⊗q)/σ .

The surjectivity of θ implies that θ̃ is also surjective.
Now we verify that θ̃ is an (S/σ ,S/σ)-bisemimodule homomorphism. Due to additivity, it suffices to

consider the tensor product’s generators, and due to symmetry, to verify multiplication from the left:

θ̃((s/σ)(p/µ ⊗q/ν)) = θ̃((sp)/µ ⊗q/ν) = θ(sp⊗q)/σ = (s/σ)(θ(p⊗q)/σ) = (s/σ)θ̃(p/µ ⊗q/ν).

By analogy, we get a surjective (T/τ,T/τ)-bisemimodule homomorphism ϕ̃ : Q/ν ⊗P/µ → T/τ ,

ϕ̃(q/ν ⊗ p/µ) = Φ(q⊗ p)/τ .

It remains to verify the Morita equations. Due to symmetry, it is enough to verify just one of them. As
above, it suffices to consider the tensor product’s generators:

ϕ̃(q/ν ⊗ p/µ)(q′/ν) = (ϕ(q⊗ p)/τ)(q′/ν) = (ϕ(q⊗ p)q′)/ν
= (qθ(p⊗q′))/ν = (q/ν)(θ(p⊗q′)/σ) = (q/ν)(θ̃(p/µ ⊗q′/ν)).

Thus (S/σ ,T/τ,P/µ,Q/ν , θ̃ , ϕ̃) is a unitary Morita context with surjective mappings.

4. CONCLUSIONS

It seems likely that the existence of a unitary Morita context with surjective mappings would imply Morita
equivalence for semirings with local units, as is the case for semirings with identity, and for semigroups
and rings with local units. Verifying this is left for future research. If it is true, our results imply that the
quantale of ideals and the lattice of congruences are Morita invariants for semirings with suitable local unit
conditions.
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Lokaalsete ühikutega poolringide Morita kontekstid ja ideaalid ning kongruentsid

Laur Tooming

Klassikaliselt [1;2, ptk 6] on Morita ekvivalentsus defineeritud ühikelemendiga ringide klassil: kaht ringi
peetakse ekvivalentseks, kui nende vasakpoolsete (ja samaväärselt parempoolsete) moodulite kategooriad
on ekvivalentsed. See tingimus on samaväärne nn Morita konteksti olemasoluga. Morita kontekst koosneb
kahest bimoodulist üle nende kahe ringi ja kahest homomorfismist nende bimoodulite tensorkorrutistest
ringidesse, mis peavad rahuldama teatud tingimusi. Morita konteksti definitsioon võib tunduda keeruline,
aga selle abil on mitmeid väiteid Morita ekvivalentsuse kohta tõestada lihtsam kui kategoorse definitsiooni
abil.

Morita ekvivalentsuse mõistet on mitmel viisil edukalt üldistatud muudele struktuuridele kui ühikele-
mendiga ringid. Esiteks on vaadeldud mitmesuguste lokaalsete ühikutega ringe [3,4]. Sel juhul tuleb Morita
ekvivalentsuse ja Morita konteksti definitsioonides asendada suvalised moodulid unitaarsete moodulitega.

Teine üldistussuund on olnud ringide ja moodulite asendamine poolrühmade ning polügoonidega. Mo-
noidide korral [5,6] on Morita ekvivalentsus väga lähendane isomorfismile ja seetõttu ei paku eriti huvi.
Kui aga nõuda (analoogiliselt ringidega) poolrühmadelt ühikelemendi asemel lokaalsete ühikute olemasolu
ja vaadelda suvaliste polügoonide asemel unitaarseid, tekib sisukas teooria, kus kehtivad mitmed ringidega
analoogilised tulemused [7].

Poolring on algebraline struktuur, kus Abeli rühma aditiivne struktuur ringi definitsioonis on asendatud
monoidiga. Ringi moodulitele vastavad poolringi poolmoodulid. On loomulik küsimus, kas Morita teooriat
on võimalik arendada ka poolringide korral ja kas see on lähedasem ringide või poolrühmade Morita teoo-
riale. Ühikelemendiga poolringide jaoks uurisid Morita ekvivalentsust esimestena Katsov ja Nam [8] ning
edasi Sardar, Gupta ja Saha [9–11]. Lokaalsete ühikutega poolringide jaoks uuris Morita ekvivalentsust
esimesena Liu [12].

Käesolevas artiklis läheneme lokaalsete ühikutega poolringide Morita teooriale teisest suunast – Morita
kontekstide poolt. Sel juhul ei ole veel tõestatud Morita ekvivalentsuse samaväärsus Morita konteksti
olemasoluga. Näitame, et Morita konteksti leidumisest koos tingimustega, mis on analoogilised lokaalsete
ühikutega ringide ja poolrühmade jaoks vajalike tingimustega, järeldub, et kahel poolringil on isomorfsed
ideaalide ning kongruentside võred. Analoogilisi tulemusi on varem poolrühmade jaoks saanud Laan ja
Márki [13] ning ühikelemendiga poolringide jaoks Sardar ja Gupta [10].


