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ABSTRACT For heritability estimation using a two-component random effects model, we provided
formulas for the limiting distribution of the maximum likelihood estimate. These formulas are applicable
even when the wrong measure of kinship is used to capture additive genetic correlation. When the model is
correctly specified, we showed that the asymptotic sampling variance of heritability estimate is determined
by both the study design and the extent of variation in the kinship measure that constitutes the additive
genetic correlation matrix. When the correlation matrix is mis-specified, the extent of asymptotic bias
depends additionally on how the fitted correlation matrix differs from the truth. In particular, we showed in a
simulation study that estimating heritability using a population-based design and the classic GRM as the
fitted correlation matrix can potentially contribute to the ”missing heritability” problem.
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DNA inherited from the same ancestral copy by related individuals is
said to be identical by descent (IBD). In the case of defined pedigrees,
wemeasure IBD relative to pedigree founders. In quantitative genetics,
correlation of trait values between relatives has often beenmodeled as a
function of genome shared IBD.Auseful parameter for pairwise IBD is
the kinship coefficient, the probability that DNA randomly chosen
from each individual at the same locus is IBD. Pedigree kinship
(C), the expectation of kinship coefficient over realizations of descent
in the pedigree, is a deterministic function of the pedigree rela-
tionship. However, genome-wide realized kinship (F), the aver-
age of kinship coefficients over all loci in the genome varies widely
around this expected value (Hill and Weir 2011). Advances in
genetic marker data technology and statistical methodology have
enabled us to estimate both local and genome-wide IBD sharing
very accurately (e.g., Thompson 2013; Wang et al. 2017, and ref-
erences therein). It is important to understand how differences in
modeling genetic correlation between individuals affect outcome
of statistical analyses.

We investigate theproblemofheritability estimationusinga random
effects model of two components, where the trait values are sums of
normally distributed additive genetic random effects and unique envi-
ronmental random effects. The correlation structure of the additive
genetic random effects is twice thematrix of some kinshipmeasure.
This model was used by Thompson and Shaw (1990) to show how
eigen-transformation can significantly improve efficiency of EM al-
gorithm to find the maximum likelihood estimates (MLEs) of the
variance parameters. More recently, Visscher and Goddard (2015)
used the same model to study asymptotic sampling variance (ASV)
of heritability estimates. Raffa and Thompson (2016) considered hy-
pothesis testing and construction of confidence intervals for herita-
bility. These authors focused on the use of pedigree kinship (C) under
the assumption of correct model specification.

On the applied side, it has become popular to estimate heritability
from population samples, where the genetic correlation structure
takes the form of the classic Genomic Relationship Matrix (GRM). A
population-based design avoids confounding due to shared environ-
mental effects in close relatives. The classic GRM is constructed from
identity by state (IBS) matching at genotyped markers, and is often
referred to as the relatednessmatrix (e.g., Yang et al. 2010).Wang et al.
(2017) showed that the classic GRM (at the element level) is an un-
biased (under mild assumptions), but not very accurate estimator of
twice the genome-wide realized kinship, especially for remote rela-
tives. It is of interest to know how choices of kinship measures (e.g.,
realized or pedigree) impact outcome of heritability estimation.

In this paper we study the asymptotic distributions of heritability
estimates under the random effects model, when the genetic correlation
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structure is potentially mis-specified.We investigate how impact of mis-
specifying genetic correlation structure on heritability estimation varies
with respect to study design and the extent of variation in realized
kinship. Finally, we discuss the use of estimated kinship to capture genetic
correlation in a population-based design, and how it can contribute to the
“missing heritability problem” (Maher 2008; Manolio et al. 2009).

METHODS

The polygenic model
In quantitative genetics, phenotype values are often modeled using a
linearmixedmodel,wherefixed effectsmay include age, sex, or principle
components derived from the matrix of SNP genotypes to account for
population sub-structure. In this paper we assume the fixed effects have
been correctly adjusted for, so that

y ¼ g þ e; (1)

where y are trait values after adjustment of fixed effects, g �
Nð0;s2

gGÞ are additive genetic effects and e � Nð0;s2
e IÞ are residuals.

s2
g and s

2
e are unknown variance parameters, andG is the appropriate

genetic correlation matrix. Total phenotypic variance is s2 ¼ s2
g þ s2

e .
The goal is to estimate heritability, h2 ¼ s2

g=s
2. We can parametrize

the trait distribution in terms of u ¼ ðh2;s2Þ as

y � N
�
0;
�
h2Gþ �

12 h2
�
I
�
s2�: (2)

We assume throughout the paper that the model described in (1) and
(2) is true, and that h2 and s2 are both positive. However, the fitted
correlation matrix Gf may differ from the true correlation matrix Gt .
To investigate the asymptotic distributions of the MLEs and the effect
of pedigree structure on the MLEs, we assume there are m mutually
independent pedigrees of the same structure with finite pedigree size n.

Correct model specification
When Gf ¼ Gt , it follows from likelihood theory that the MLEs are
consistent. Let the eigen-decomposition ofGf be TDTT , where T is the
orthogonal matrix of eigenvectors and D is the diagonal matrix of
eigenvalues of Gf . The transformed trait

y� ¼ TTy � N
�
0;
�
h2Dþ �

12 h2
�
I
�
s2�: (3)

The covariance matrix Varðy�Þ is diagonal, so that the log-likelihood
function without the constant term is

ℓ
�
h2;s2; y�
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1
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N   ln

�
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h2li þ 12 h2

�
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i¼1

y�2i
h2li þ 12 h2

#
; (4)

where N ¼ mn is the total sample size, li is the ith eigenvalue of Gf

(and Gt in the case). ASV(ĥ
2
) is given by, among others, Visscher and

Goddard (2015) as

ASV
�
ĥ
2
�
¼ 2PN

i¼1
ðli21Þ2

ðh2liþ12h2Þ2 2
1
N

hPN
i¼1

li21
h2liþ12h2

i2: (5)

Model mis-specification
When Gf 6¼ Gt , let the matrix of differences be D ¼ Gt 2Gf . The
same eigen-decomposition and transformation based on the fitted

correlation matrix Gf leads to the same log-likelihood function (4),
but the true distribution of the transformed trait is now

y� ¼ TTy � N
�
0;
�
h20Dþ �

12 h20
�
I
�
s2
0 þ h20s

2
0T

TDT
�
; (6)

where u0 ¼ ðh20;s2
0Þ are the true parameter values.

LetPðu0Þ denote the true trait distribution in (6). Themodel space for
fitting with Gf is denoted by Q¼ fQðuÞ; u 2 Q ¼ ½0; 1� · ½0;NÞg. If
we let m/N, the MLEs from fitting the wrong model, û ¼ ðĥ2; ŝ2Þ,
will converge in probability to u1 ¼ ðh21;s2

1Þ that minimizes the
Kullback-Leibler divergence (Kullback and Leibler 1951) between
Pðu0Þ and QðuÞ over the parameter space Q (e.g., Severini 2000).
In our case
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where ti is the ith eigenvector of Gf . It follows from likelihood theory
that
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where ℓðu; y�Þ is the log-likelihood over all data. For instance, the first
element of J before taking limit can be shown to be
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Given h20, s
2
0, Gt and Gf for any finite N ¼ mn, (7) can be solved

numerically for ðh21;s2
1Þ. J and K in (9) and (10) can be computed

subsequently to obtain the asymptotic variance covariance matrix of
the MLEs.

For the special case whereGf is twice the pedigree kinshipmatrix
(2C) and Gt corresponds to realized kinship over the causal ge-
nome, elements of D represent (twice the) deviations of realized
kinship from its pedigree expectation. Such deviations have expec-
tation 0 when samples are not ascertained by trait or by IBD shar-
ing. Since the pedigree kinship matrix is fixed given the pedigree
structure, we have 2Ci ¼

Pn
j¼1t jljt

T
j for all i (pedigree index). It

follows from (6) that D enters (7), (9) and (10) only in the form of
tTj ð

P​ Di=mÞt j, which converges to 0 as m/N. This implies fitting
model (1) with Gf ¼ 2C, regardless what is the true causal genome
from which realized kinship is measured and captured in Gt , pro-
duces consistent MLEs. In addition, the ASV of the MLEs will be the
same as in the case Gf ¼ Gt ¼ 2C, which can be easily computed
using (5).
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Method of analysis
We conduct two separate simulation studies for this paper. The
first simulation study serves to verify results presented in the previous
sections, and to investigate the impact of study design and the
extent of variation in kinship measure on heritability estimation.
We consider four different types of designs: sibpairs, sibships of
14, three-generation pedigree of 14 members (Figure 1A), and the
Cleopatra pedigree of 14 members (Figure 1B). Three types of
kinship measures are used for Gt and Gf : twice the pedigree kin-
ship matrix (2C), twice the genome-wide realized kinship matrix
(2F), and twice the realized kinship matrix on chromosome 22 (2F�).
These choices represent increasing amount of variation around the
pedigree expectation.

We set total phenotypic variance s2
0 ¼ 1 throughout, and use three

heritability values, h20 2 f0:2; 0:5; 0:8g. In total, there are 108 simulation
scenarios (4· designs, 9· ðGt ;Gf Þ combinations, and 3· heritability
values). The total sample size of the study is kept at N ¼ 1400 (e.g.,
700 sibpairs, or 100 sibships of 14). 500 simulation replicates are used
to capture the empirical distributions of the MLEs in each of the
108 scenarios. Within each simulation replicate, we obtain Gt and
Gf by simulating genome-wide descent in the pedigrees. Then we
simulate trait data given Gt and h20 under model (1), and fit model
(1) with Gf to obtain the MLEs. Means and standard deviations of
the empirical distribution of ĥ

2
are compared to those computed

from (7) and (8) based on (Gt ;Gf ).
The secondsimulationstudy investigates thepotential impactofmis-

specifying thegenetic correlationstructure inapopulation-baseddesign.
For ease of simulation, we usemultiple independent pedigrees of second
or thirdcousinshipsof varioussizes.Thisblock-diagonal structuremight
approximate that of a population sample that included clusters of more
closely related individuals. The total sample size is kept at 2000 across
different simulation conditions, so that in one of the conditions, for
example, the sample consists of 200 independent third cousinships
of 10. We consider three different kinship measures, each computed
within cousinship. These are twice the genome-wide realized kinship
matrix (2F), the classic GRM (2F̂c), and the LD (linkage disequilib-
rium) weighted GRM (2F̂w) introduced in Wang et al. (2017). Both
the classic GRM and the LD weighted GRM are computed from
simulated marker data. The LD weighted GRM represents a more
accurate estimator of twice the realized kinship matrix than the
classic GRM. For the two GRMs, we look at the cases both with and
without constraining the diagonal terms (twice the self-kinship) to 1.
True parameter values are set to h20 ¼ 0:5 and s2

0 ¼ 1.

Simulations were performed using the R package rres (Wang 2018).
Genome-wide realized kinship between each pair of individuals was
measured as the proportion of shared genome (in genetic distances)
over the 22 autosomes. To simulate marker genotypes, real haplotypes
from the 1000 Genomes Project Phase 3 data (The 1000 Genomes
Project Consortium 2015) were assigned to founders and populated
down the pedigree given the simulated joint IBD pattern. A total of
169,751 markers were selected from all 22 autosomes based on minor
allele frequency, marker spacing, and availability of genetic position.
Details of the marker data can be found in Wang et al. (2017). These
SNP markers were used to obtain the classic GRM and the LD
weighted GRM using the rres package, with allele frequencies
assumed known.

Data availability
The 1000 Genomes Project Phase 3 data are available at http://
www.1000genomes.org/data. Information on the set of 169,751
SNP markers used in the simulation studies can be found in the
supplement of Wang et al. (2017).

RESULTS
In the first simulation study, there is generally very good agreement
between the empirical and analytical results. Table 1 displays the results
from the 9 combinations of (Gt ;Gf ), for the sibship design and
h20 ¼ 0:5. We see that ĥ

2
appears to be unbiased when Gf ¼ Gt , and

when Gf ¼ 2C 6¼ Gt . In addition, Gf ¼ 2C resulted in very sim-
ilar SEðĥ2Þ regardless of Gt , as predicted in the previous section.
When Gf 6¼ Gt and Gf uses a more variable kinship measure than
Gt (in this case, realized kinship on a shorter causal genome), both
the point estimates and sampling errors tend to be smaller than
expected under correct model specification.

WhenGf ¼ Gt , equation (5) suggests that pedigree structure affects
ASV(ĥ

2
) only through eigenvalues of Gt . For large N, the first term in

the denominator of (5),

XN
i¼1

ðli21Þ2�
h20li þ 12h20

�2; (12)

dominates the second term. Since the summand in (12) is non-negative,
eigenvalues that lead to bigger summand values have a higher tendency
to reduce ASV(ĥ

2
). Figure 2A suggests that extreme eigenvalues have

biggest impact in reducing sampling variance. Figure 2B shows that
twice the realized kinship matrices on shorter genomic segments

Figure 1 (A) Three-generation pedigree. (B) Cleopatra pedigree (Wikipedia 2018).
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tend to produce more extreme eigenvalues. This provides intuition on
why SEðĥ2Þ is much smaller when Gf ¼ Gt ¼ 2F�, as compared to
the other cases of correct model specification shown in Table 1.

Figure 3 shows simulation results from use of other designs and
heritability values. We omit scenarios where Gt ¼ 2C since it cannot
be true biologically. Most of the observations from earlier discussion of
the sibship design also hold true for other designs. The one clear ex-
ception is that whenGt ¼ 2F andGf ¼ 2C, the impact of this specific
model mis-specification on SEðĥ2Þ is very small when using other
designs (compare blue circles to black bars in each scenario in Figure
3C). This is likely because the distribution of eigenvalues of the corre-
lation matrix depends on the length of the causal genome as well as
pedigree structure. For sibship design, a good proportion of eigenvalues
associated with 2F are close to 0 (Figure 2B), which is not the case for
other designs (results not shown). As a contrast, when Gt ¼ 2F� and
Gf ¼ 2C, the impact of model mis-specification on SEðĥ2Þ is clear
for all designs (compare blue circles to black bars in each scenario in
Figure 3D). This is because the greater variation in 2F� due to shorter
length of causal genome leads to the possibility of more extreme
eigenvalues for each study design.

Lastly, we note that for any given combination of (Gt ;Gf ), SEðĥ2Þ
varies with h20 quite differently across designs. For example, when
Gf ¼ Gt ¼ 2F the sibship design has slightly smaller SEðĥ2Þ than the
three-generation design at h20 ¼ 0:2, but it is the opposite when
h20 ¼ 0:8.

In the second simulation study, there is generally more bias in
heritability estimates when the sample consists of third cousinships as
opposed to second cousinships (Figure 4). This is in good agreement
with the findings ofWang et al. (2017), where the authors showed it is
relatively more difficult to estimate realized relatedness between more
remote relatives. This observed association between level of bias and
remoteness of relationship is further verified by additional simulations
using full sibships, half sibships and first cousinships (results not shown).

Another observation from Figure 4 is that the decision to constrain
the diagonal terms of 2F̂c or 2F̂w to 1 makes a big difference when
pedigree sizes are small, but that difference erodes when pedigree sizes
increase. A possible explanation is that apart from its effect on eigen-
values and eigenvectors in (7), Gf 6¼ Gt induces bias in heritability
estimates most directly from the matrix of difference, D. When we
constrain the diagonal terms of 2F̂c or 2F̂w to 1,Dwill have 0’s on the
diagonal. This is expected to have a bigger impact when pedigree sizes
are small and the diagonal terms make up a bigger proportion of
non-zero terms of D.

Figure 4A and 4B shows that when Gt ¼ 2F, setting Gf ¼ 2F̂w

produces less bias thanGf ¼ 2F̂c in all cases. This is expected since the
LD weighted GRM is a more accurate estimator of twice the genome-
wide realized kinship matrix. When constraining the diagonal terms of
the estimated matrices to 1, bias increases with pedigree size for both
second and third cousinships. Again, this is likely the result of the
composition of non-zero terms inD: larger pedigree sizes imply higher
proportion of non-zero terms. When not constraining the diagonal
terms of the estimated matrices to 1, bias first decreases and then
increases with pedigree size. A possible explanation is that in smaller
cousinships, the diagonal terms ofD take up a bigger proportion of all
non-zero terms. While self-kinship can be estimated relatively accu-
rately compare to realized kinship between remote cousins, the mag-
nitude of deviations on the original scale, as captured in D, is greater
for self-kinship (Wang et al. 2017). This means the diagonal terms of
D could be more influential than off-diagonal terms on a per-entry
basis, which lead to the bigger bias observed for smaller pedigrees.

Figure 4C and 4D show limits of heritability estimates when
Gt ¼ 2F̂c, and Gf ¼ 2F or 2F̂w. In both figures, the main observa-
tion is that the scale of bias is very small compare to that in Figure 4A
and 4B. This matches our findings from the first simulation study:
when Gt and Gf are associated with two kinship measures with zero
expected differences (expectation over realization of descent on pedigree),

n Table 1 Comparison of limits and asymptotic sampling standard errors of heritability estimates obtained by fitting model (1) and by
using (7) and (8), with data on 100 independent sibships of 14. True parameters are ðh20 ;s2

0Þ ¼ ð0:5; 1Þ. Empirical distribution of ĥ
2
is

constructed from 500 simulation replicates

Gt 2C 2F 2F�

Gf 2C 2F 2F� 2C 2F 2F� 2C 2F 2F�

ĥ
2

emp. 0.494 0.451 0.278 0.497 0.498 0.281 0.492 0.486 0.499
analy. 0.500 0.453 0.279 0.500 0.500 0.282 0.498 0.490 0.500

SEðĥ2Þ emp. 0.063 0.052 0.032 0.065 0.060 0.032 0.064 0.059 0.032
analy. 0.067 0.055 0.032 0.067 0.061 0.032 0.067 0.061 0.033

Figure 2 (A) ðl21Þ2=ðh20lþ 12h20Þ
2 evaluated at a range of l values and h0 2 f0:2;0:5;0:8g. (B) Cumulative distributions of eigenvalues of 2F

and 2F� from 100 simulated sibships of 14. Vertical dashed lines in both plots represent the two distinct eigenvalues of 2C: 0.5 and 7.5.
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we expect downward bias in heritability estimate if Gf uses a more
variable kinship measure than Gt , but not much bias the other way
round (e.g., Figure 3A and 3B). Wang et al. (2017) showed that both
the classic GRM and the LD weighted GRM are unbiased estimators
of twice the genome-wide realized kinship under certain assumptions,
and the unbiasedness property held very well in simulation studies.
Since the classic GRM is a less efficient estimator, it is a more variable
measure of kinship compare to LD weighted GRM.

DISCUSSION
For heritability estimation using a two-component random effects
model, we have provided formulas for the limits and the asymptotic
sampling variances of the MLEs. These formulas are applicable even
when the wrong kinship measure is used to capture additive genetic
correlation. To study the impact of pedigree structure on asymptotic
distribution of theMLEs, we have assumed that the sample consists of
multiple independent pedigrees of the same structure. The assumption
of a fixed pedigree structure is not required to derive equations (4)
through (11) inMETHODS, since log-likelihood sums over independent
pedigrees of any structure.When different pedigree structures are present
in the study sample, one only needs to replace the fixed pedigree size
n with ni for pedigree i in those formulas and the asymptotic results
are still valid.

Under correct specification of model (1), ASV of heritability esti-
mates is a function of eigenvalues of the appropriate genetic correlation
matrix, which in turn can depend on pedigree structure and variation in
the corresponding kinship measure. For any pedigree structure and

choice of kinship measure, the resulting kinship matrix can be easily
obtained by simulation and subsequently used in the formulas we
presented to assess effectiveness of the pedigree inheritability estimation
under theassumedmodel.This isbeneficial topedigreeselection in study
design.

There can be bias in heritability estimate if the genetic correlation
matrixhasbeenmis-specified.Theextentof thebiasdependsonboth the
true and thefittedcorrelationmatrices, aswell as the studydesign.When
the true genetic correlation between individuals is captured by genome-
wide realized kinship, one should use an accurate estimator of realized
kinship to compute the fitted correlation matrix in order to reduce
downward bias in heritability estimate. This is especially important
when the study sample contains many remotely related individuals.

The popular classic GRM is not an accurate estimator of twice the
realized kinship. When used in a population-based design, it can lead
to substantial downward bias in heritability estimate if the truth (Gt) is
that of twice the genome-wide realized kinship. The downward bias
is expected to persist even if denser SNP panels are used to estimate
realized kinship, as additional markers do not provide information
without limit. In a follow up study of Wang et al. (2017), we found
that increasing marker density by 4 times made little improvement
in accuracy of the classic GRM estimator (results not shown). This
choice of kinship estimator and study design can contribute to the
“missing heritability” problem, among many other factors. On the
other hand, using a more accurate kinship estimator to compute
the fitted correlation matrix (Gf ) is more robust to mis-specification
of kinship measure.

Figure 3 Simulation results for all four designs, three values of h20 and various combinations of ðGt ;Gf Þ. (A) and (B) show the average bias of
heritability estimates from 500 simulation replicates, when Gt ¼ 2F or 2F� respectively. (C) and (D) show the standard deviation of heritabil-
ity estimates from 500 simulation replicates, when Gt ¼ 2F or 2F� respectively. In both (C) and (D), results obtained under correct model
specification are shown in black bars as references.
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When using a population-based design, it is common to remove
an individual in each pair that has a kinship estimate exceeding
certain threshold (e.g., Yang et al. 2010). A threshold of 0.025
roughly corresponds to excluding closer relatives than second cous-
ins (with pedigree kinship 0.0156). While more remote relatives often
exist in a population sample, we only presented results on second and
third cousinships in the second simulation study because they dem-
onstrate all the important points from this simulation setup. The
main reason for using a population-based design is not to eliminate
IBD, but to avoid confounding due to shared environmental effects
of closer relatives. Since our simulation models do not include shared
environmental effects, our findings should generalize to studies
that involve more remote relatives than third cousins. Additional
results on full sibships, half sibships and first cousinships (not
shown) have all confirmed the findings we have discussed. In par-
ticular, asymptotic bias in heritability increases with remoteness
of relationship when the additive genetic correlation matrix is
mis-specified.

Formulas in METHODS do not associate Gt or Gf with specific
kinship measures. They are applicable to all choices of genetic
correlation matrices. The decision to assume realized vs. estimated
kinship as the appropriate kinship measure for Gt depends on
one’s belief on whether genetic correlation is best captured by
IBD sharing or by IBS matching at genotyped markers. Taking
the IBS perspective, Jiang et al. (2016) provided a theoretical jus-
tification for consistency of heritability estimates in genome-wide
association studies (GWAS) under mis-specified linear mixedmodel.
The authors assumed that Gt takes the form of the classic GRM, but
the fitted model is mis-specified in the sense that only a subset of
the GWAS SNPs are actually causal. This setup falls within the more

general discussions in this paper. We have shown that fitting a co-
variance matrix that is broader than truth causes little asymptotic bias
(e.g., Figure 3B).

A model with only two random effects is attractive for ease of
computationand interpretability. Inparticular, aneigen-transformation
is possible so that variance covariancematrix of the transformed trait is
diagonal, and it depends on the appropriate genetic correlationmatrix
only through the eigenvalues. This simplification is not possible with
more than two random effects. The asymptotic properties of herita-
bility estimates undermore complicated randomeffectsmodels will be
a topic of future investigation.
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2
when h20 ¼ 0:5 and Gf 6¼ Gt . Each sample contains multiple independent second (C2) or third (C3) cousinships of specific

sizes. Three kinship measures considered are: twice the genome-wide realized kinship matrix (2F), the classic GRM (2F̂c ) and the LD weighted
GRM (2F̂w ). In (A) and (B), Gt ¼ 2F, Gf ¼ 2F̂c   and  2F̂w respectively. In (C) and (D), Gt ¼ 2F̂c, Gf ¼ 2F  and  2F̂w respectively. The estimated
matrices (2F̂c   and  2F̂w ) are used with and without constraining the diagonal terms to 1.

1390 | B. Wang and E. Thompson

https://doi.org/10.1017/S0016672310000480
https://doi.org/10.1214/15-AOS1421
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1038/456018a
https://doi.org/10.1038/nature08494


Raffa, J. D., and E. A. Thompson, 2016 Power and effective study size in
heritability studies. Stat. Biosci. 8: 264–283. https://doi.org/10.1007/
s12561-016-9143-2

Severini, T. A., 2000 Likelihood Methods in Statistics, Oxford University
Press, Oxford, UK.

The 1000 Genomes Project Consortium, 2015 A global reference for human
genetic variation. Nature 526: 68–74. https://doi.org/10.1038/nature15393

Thompson, E. A., 2013 Identity by descent: variation in meiosis, across
genomes, and in populations. Genetics 194: 301–326. https://doi.org/
10.1534/genetics.112.148825

Thompson, E. A., and R. G. Shaw, 1990 Pedigree analysis for quantitative
traits: variance components without matrix inversion. Biometrics 46:
399–413. https://doi.org/10.2307/2531445

Visscher, P. M., and M. E. Goddard, 2015 A general unified framework to
assess the sampling variance of heritability estimates using pedigree or

marker-based relationships. Genetics 199: 223–232. https://doi.org/
10.1534/genetics.114.171017

Wang, B., 2018 rres: Realized Relatedness Estimation and Simulation.
R package version 1.1. https//cran.r-project.org/web/packages/rres

Wang, B., S. Sverdlov, and E. A. Thompson, 2017 Efficient estima-
tion of realized kinship from single nucleotide polymorphism
genotypes. Genetics 205: 1063–1078. https://doi.org/10.1534/
genetics.116.197004

Wikipedia, 2018 Cleopatra pedigree. http://en.wikipedia.org/wiki/
Cleopatra#Ancestry.

Yang, J., B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders et al.,
2010 Common snps explain a large proportion of the heritability for
human height. Nat. Genet. 42: 565–569. https://doi.org/10.1038/ng.608

Communicating editor: R. W. Doerge

Volume 9 May 2019 | Heritability Estimation | 1391

https://doi.org/10.1007/s12561-016-9143-2
https://doi.org/10.1007/s12561-016-9143-2
https://doi.org/10.1038/nature15393
https://doi.org/10.1534/genetics.112.148825
https://doi.org/10.1534/genetics.112.148825
https://doi.org/10.2307/2531445
https://doi.org/10.1534/genetics.114.171017
https://doi.org/10.1534/genetics.114.171017
http://https//cran.r-project.org/web/packages/rres
https://doi.org/10.1534/genetics.116.197004
https://doi.org/10.1534/genetics.116.197004
http://en.wikipedia.org/wiki/Cleopatra#Ancestry
http://en.wikipedia.org/wiki/Cleopatra#Ancestry
https://doi.org/10.1038/ng.608

