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Abstract
Study Objectives

To determine the effect of self-reported clinical diagnosis of obstructive sleep apnea (OSA) on longitudinal changes in brain amyloid PET and
CSF biomarkers (Ap42, T-tau, and P-tau) in cognitively normal (NL), mild cognitive impairment (MCI), and Alzheimer’s disease (AD) elderly.

Methods

Longitudinal study with mean follow-up time of 2.52 + 0.51 years. Data were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database. Participants included 516 NL, 798 MCI, and 325 AD elderly. Main outcomes were annual rate of change in brain amyloid
burden (i.e. longitudinal increases in florbetapir PET uptake or decreases in CSF AB42 levels); and tau protein aggregation (i.e. longitudinal
increases in CSF total tau [T-tau] and phosphorylated tau [P-tau]). Adjusted multilevel mixed effects linear regression models with randomly
varying intercepts and slopes was used to test whether the rate of biomarker change differed between participants with and without OSA.

Results

In NL and MCI groups, OSA+ subjects experienced faster annual increase in florbetapir uptake (B = .06, 95% CI = .02, .11 and B = .08, 95%
CI = .05, .12, respectively) and decrease in CSF AB42 levels (B =-2.71, 95% CI =-3.11, —2.35 and B = —2.62, 95% CI =—3.23, —2.03,

respectively); as well as increases in CSF T-tau (B = 3.68, 95% CI =3.31,4.07 and B = 2.21, 95% CI = 1.58, 2.86, respectively) and P-tau (B
=1.221,95% CI =1.02, 1.42 and B = 1.74, 95% CI = 1.22, 2.27, respectively); compared with OSA— participants. No significant variations in

the biomarker changes over time were seen in the AD group.

Conclusions

In both NL and MCI, elderly, clinical interventions aimed to treat OSA are needed to test if OSA treatment may affect the progression of
cognitive impairment due to AD.

obstructive sleep apnea, Alzheimer’s disease, longitudinal study, CSF biomarkers, brain amyloid PET, AB42, T-tau, P-tau
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Recent studies show that obstructive sleep apnea (OSA) is associated with increased Alzheimer’s disease (AD) risk. This study adds to the
literature by providing evidence that OSA is related to longitudinal increases in amyloid and tau burden in cognitively normal and mild cognitive
impairment (MCI) OSA patients when compared with healthy controls. These novel findings are directly relevant to the emerging literature
examining for evidence of a causal relationship between OSA and AD, and are of interest to further understand the various possible
mechanistic links that explain this relationship. More importantly, it suggests that clinical interventions aimed to treat OSA in the elderly may

slow the progression of cognitive impairment due to AD.

Introduction

Intermittent hypoxia and sleep fragmentation have been implicated as possible mechanistic links in a causal pathway between obstructive sleep apnea
(OSA) and Alzheimer’s disease (AD) [1-4]. Recent cross-sectional studies have demonstrated associations between OSA and AD biomarkers (i.e.
brain amyloid PET and CSF biomarkers [AB42, T-tau, and P-tau]) in both cognitively normal (NL) and mild cognitive impairment (MCI) elderly [5—
7]. Clearly establishing whether OSA individuals are at heightened risk to develop AD is critical for preventing AD. Positron emission tomography
(PET) amyloid tracer uptake and decreases in cerebrospinal fluid (CSF) amyloid-beta42 (AB42) levels are robust predictors of amyloid burden as
well as of future development of AD [8, 9]. Significant increases in CSF P-tau and CSF T-tau are also documented in AD patients compared with
controls [10]. An important question is whether OSA—AD association is related to changes in AD neuropathology over time. Recently, our group
demonstrated that objectively measured OSA was associated with markers of increased amyloid burden over a 2-year follow-up in the NYU cohort
which consists exclusively of community-dwelling healthy cognitively normal elderly. In this study, we examined self-reported clinical diagnosis of
OSA’s association with longitudinal changes of brain amyloid burden and tau protein aggregation in a sample of cognitively normal (NL), mild
cognitive impairment (MCI) and Alzheimer’s disease (AD) elderly in the larger Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort, to
provide additional evidence for a possible causal relationship between OSA and AD.

Methods

Data were obtained from the ADNI database (adni.loni.usc.edu). ADNI was launched in 2003 as a public—private partnership, led by Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET, other biological markers, as well as clinical and
neuropsychological assessments can be combined to measure the progression of MCI and early AD. Thus far, ADNI has recruited over 2,000 adults

aged 55-90, consisting of NL, MCI, and early AD. Follow-up for CSF sampling and PET typically occurs every 1-2 years.

Standard protocol approvals, registrations, and patient consent

The Institutional Review Board at each of the ADNI participating centers approved the ADNI study. Written informed consent was obtained from all
patients participating in ADNI. ADNI inclusion and exclusion criteria are detailed elsewhere (http://adni.loni.ucla.edu/wp-content/uploads/
2010/09/ADNI_GeneralProceduresManual. pdf).

Study participants

Participant data used for this study were based on medical history obtained from the ADNI database on December 2016. This study included 1,639
participants: 516 NL, 798 MCI, and 325 AD. Subjects missing biomarker data were excluded. Subjects with preexisting comorbid sleep disorders
other than OSA, and those with body mass index (BMI) change greater than 5 between visits, were further excluded, since both could modify group
allocation (i.e. OSA+ vs. OSA-) [11]. Other exclusions included previous OSA surgery and having a reversible diagnosis (i.e. had a MCI or AD
diagnosis at any time point but a NL diagnosis or MCI diagnosis, respectively, at their last visit), thereby allowing us to exclude reversible conditions

and unspecified diagnoses.

OSA diagnosis

Presence or absence of OSA was based on self-reported clinical diagnosis of OSA (variable name: MHDESC) during a clinical interview. Patients
with reported “sleep apnea,” “sleep disordered breathing,” “OSA,” or “SDB” were labeled OSA+ and the remaining participants were considered
OSA-. To ensure that patients were allocated into the correct groups, three physicians (R.O., S.A., and O.B.) reviewed medical history clinical notes


http://adni.loni.ucla.edu/wp-content/uploads/ 2010/09/ADNI_GeneralProceduresManual.pdf

from the ADNI download, for group allocation.

NL, MCI, and AD diagnosis

ADNI criteria for subject classification are described elsewhere [12]. NL and MCI subjects scored between 24 and 30 on the Mini-Mental State
Examination (MMSE) while AD subjects scored between 20 and 26. MCI and AD participants had global Clinical Dementia Rating (CDR) scores of
0.5 and 1, respectively. The diagnosis of AD was made using established clinical criteria [13].

Florbetapir PET imaging acquisition and interpretation

ADNI florbetapir summary data was uploaded to the Laboratory of Neuroimaging (LONI) by the University of California at Berkeley [14, 15]. For
more information on the methods, see https://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_PET Tech Manual 0142011.pdf,
http://adni.loni.usc.edu/updated-florbetapir-av-45-pet-analysis-results/. Briefly, native-space segmented and parcellated magnetic resonance imaging
(MRI) scan with Freesurfer (version 5.3.0) was used for each subject to define cortical gray matter regions of interest (frontal, anterior/posterior
cingulate, lateral parietal, lateral temporal) that make up a summary cortical region of interests (ROI). Five reference regions (cerebellar gray matter,
whole cerebellum, brainstem/pons, eroded subcortical white matter, and a composite reference region) were defined. Each florbetapir scan was then
matched to the corresponding MRI and the mean florbetapir uptake within the cortical and reference regions is calculated. The baseline MRI was
used to define regions for all subsequent florbetapir scans. Image data are available at three levels of preprocessing (raw, unsmoothed, and
smoothed) as described online at http:/adni.loni.usc.edu/data-samples/mri/. Calculation of florbetapir standardized uptake value ratios (SUVRs) were
done by obtaining means across the four cortical regions and dividing this cortical summary ROI by one of the five reference regions. Cortical ROI
selection and reference region is predicated on the goals of the analysis. Two summary SUVRs were provided. The first is the cortical summary ROI
divided by the whole cerebellum reference region (SUMMARYSUVR WHOLECEREBNORM), which as recommended we used for cross-
sectional florbetapir analyses. The second is the cortical summary ROI divided by a composite reference region
(SUMMARYSUVR_COMPOSITE REFNORM), which as recommended we used for our longitudinal florbetapir analyses.

Cerebrospinal fluid methods

CSF biospecimen data collection details can be found at http://adni.loni.usc.edu/data-samples/biospecimen-data/. Briefly, AB42, T-tau, and P-taul81
were measured from CSF that was collected at each ADNI site, and transferred into polypropylene transfer tubes followed by freezing on dry ice
within 1 h after collection and shipped overnight to the ADNI Biomarker Core laboratory at the University of Pennsylvania Medical Centre on dry
ice. A standardized protocol was implemented to quantify biomarker concentrations in each of the CSF baseline aliquots using a multiplex xMAP
Luminex platform (Luminex Corp, Austin, TX) with Innogenetics (INNO-BIA AlzBio3, Ghent, Belgium; for research use only reagents)
immunoassay kit-based reagents, validated in Vanderstichele ez al. [16] and Shaw e? al. [17]. Further details can be found at http://www.adni-
info.org/index.php.

Covariates/potential confounders

As our study tried to answer an etiological question, we employed a broad selection of covariates based on published literature [18, 19]. Covariates
were selected a priori and included factors that might be more common in cases with OSA and that might contribute to either AB-pathology (CSF
AP42 and florbetapir PET) or neurodegeneration (CSF T-tau), including age, sex, BMI, education, CP AP use, ApoE4 status, alcohol intake, baseline
biomarker data, history of respiratory disease, hypertension, diabetes, and history of cardiovascular disease (e.g. including ischemic heart disease,
heart failure, and stroke/TIA), as well as history of traumatic brain injury.

Data analyses

All analyses were conducted separately for each clinical group (i.e. NL, MCI, and AD). Cross-sectional analyses of baseline AD biomarker levels by
OSA status were conducted using generalized linear methods.

Multivariate analysis of variance (MANOVA) was conducted to test differences in time-trend, groups (OSA+ vs. OSA—) and time points. To test

differences in time-trend, baseline biomarker data were subtracted from data at each time point.

ADNI data are unbalanced with unequal numbers of measurement for each participant. We therefore used multilevel mixed effects linear regression

models with normal errors [20], examining the relationship between OSA and the rate of change in AD biomarkers. This allowed the incorporation of
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all available information and possibly reduced bias resulting from using only the complete cases [21].

To determine the specific type of modeling, we examined profile plots for the biomarker levels over time by OSA status, using both the original
dataset and within-subject residuals. We also examined trajectory plots obtained by subtracting the baseline measurement from the original
measurements (i.e. dij = Yij — Yil) and examined plots of mean and variance of the biomarkers at each time point by OSA status. Further, using the
slopes as summary statistics, we conducted different formal tests to compare groups. Our assumption was that the rate of change of biomarker data
is approximately linear over time. Thus, we used a parametric model with time as a continuous variable. We fitted the models with randomly varying
intercepts and slopes and allowed them to depend on exposure group (i.e. OSA status). Based on the findings, we then fitted a random coefficients
model to analyze the relationship between OSA status and time using unstructured covariance. To find a parsimonious covariance structure, we fitted
many different covariance models and conducted a likelihood ratio test of each nested model using information criteria for non-nested models. Finally,
using the unstructured, independence covariance model (i.e. the preferred covariance structure), we tested whether the rate of change in biomarkers
differed between OSA groups. Final models were adjusted for age, sex, BMI, education, CPAP use, ApoE4 status, alcohol intake, baseline biomarker
data, history of respiratory disease, hypertension, diabetes, and history of cardiovascular disease (e.g. including ischemic heart disease, heart failure,
and stroke/TIA), and history of traumatic brain injury.

Adjustment for the extensive list of covariates had little impact on the estimates. The age and sex only-adjusted model and the extensively adjusted
model showed similar results, indicating little to no risk of bias due to overadjustment. Sensitivity analysis removing CPAP users (NL: » = 10; MCI: n
=16; AD: n =9) from OSA+ participants had also a negligible impact on the estimates (e.g. NL florbetapir estimate of .06 changed to .08). Statistical
analyses were performed using SAS (version 9.4; SAS Institute Inc., Cary, NC).

These analyses allowed us to examine whether significant variation between OSA subjects in mean AD biomarker level at baseline (intercept)
existed, as well as whether significant variation in the change in AD biomarker level over time (slope) occurred. Furthermore, the covariance
between the baseline AD biomarker level (intercept) and AD biomarker change over time indicated whether OSA+ or OSA— subjects had
experienced a faster increase or decrease in AD biomarker level over time (significant slope). It also allowed for assessment of significant

differences in the rate of change in AD biomarker level between OSA+ and OSA— patient groups over time.

Data availability statement

Authors state that anonymized data will be shared by request from any qualified investigator.

Results

Demographic and clinical characteristics

Figure 1 shows the stepwise exclusion process for NL, MCI, and AD participants used in the study. Table 1 shows the demographic and clinical
characteristics of study participants at baseline. Overall, the mean ages of OSA+ and OSA— were 72.3 + 7.1 and 73.9 + 7.3 years, respectively.
Female participants represented 49%, 40%, and 37% of the NL, MCI, and AD groups, respectively. Six percent were OSA+ in the NL group, while
13% and 7% were OSA+ in the MCI and AD groups. Participants differed markedly in ApoE4 status with 28%, 51%, and 66% being ApoE4
positive in the NL, MCI, and AD groups. NL, MCI, and AD participants were similar in age, education, BMI, and the three medical conditions across

groups. Mean follow-up time was 2.52 + 0.51 years.

Table 1.

Descriptive characteristics of participants by self-reported obstructive sleep apnea status at baseline

Characteristics Al OSA- OSA+
COGNITIVE NORMAL

Number of participants (%) 516 (100) 487 (94) 29 (6)
Female sex, number (%) 253 (49) 244 (50) 9(32)

Age, years, median (interquartile range) 74 (71, 78) 71 (70, 78) 71 (70, 76)



ApoE4 positive, number (%)

Characteristics

Education, years, median (interquartile range)
2

BMI (kg/m®)

Hypertension, number (%)

Diabetes, number (%)

Thyroid disease, number (%)

Respiratory disease, number (%)

Cardiovascular disease, number (%)

TBI, number (%)

Alcohol, number (%)

CPAP use

CSF amyloid beta 42 pg/mL median (interquartile range)

T-tau pg/mL median (interquartile range)

P-tau pg/mL median (interquartile range)

Florbetapir SUVR, median (interquartile range)*

MMSE median (interquartile range)
CDR median (interquartile range)
MILD COGNITIVE IMPAIRMENT
Number of participants (%)

Female sex, number (%)

Age, years, median (interquartile range)
ApoE4 positive, number (%)

Education, years, median (interquartile range)
BMI (kg/m?)

Hypertension, number (%)

Diabetes, number (%)

Thyroid disease, number (%)
Respiratory disease, number (%)
Cardiovascular disease, number (%)
TBI, number (%)

Alcohol, number (%)

CPAP use

CSF amyloid beta 42 pg/mL median (interquartile range)*

T-tau pg/mL median (interquartile range)*

P-tau pg/mL median (interquartile range)

ar oSA-
16 (14, 18) 16 (14, 18)
272448 271447
251 (49) 235 (48)
45 (9) 40 (8)
112 (22) 109 (22)
123 (24) 100 (21)
358 (69) 338 (69)
13 (3) 12 (3)

23 (5) 22 (5)

10 (19)

210 (155, 241) 209 (155, 241)
59 (45, 84) 59 (45 83)
27 (20, 40) 27 (20, 42)

11(1.0,1.2)  1.1(1.0,1.2)

29 (28, 29) 29 (28, 30)
0(0,0) 0(0,0)
798 (100) 695 (87)
319 (40) 294 (42)
74 (68, 79) 71 (70, 78)
410 (51) 368 (53)
16 (14, 18) 16 (14, 18)
269+46 265+4.4
395 (49) 337 (48)
75(9) 57 (8)

156 (20) 133 (19)
195 (24) 133 (19)
577 (72) 490 (71)
18 (2) 14 (2)

35 (4) 31(5)

16 (20)

153 (130,209) 150 (128, 206)
80 (54,116) 81 (54, 122)

36 (23, 51) 37 (23, 52)

OSAH

16 (15, 18)
29.8+59
16 (55)
5(17)
3(10)

23 (79)

20 (69)
1(3)

1(3)

10 (35)

226 (199, 259)
56 (48, 84)
27 (20, 32)
1.0 (1.0, 1.0)
29 (27, 30)

0(0,0)

103 (13)
25 (25)

71 (70, 76)
42 (41)

16 (14, 18)
29453

58 (56)

18 (17)

23 (22)

62 (60)

87 (85)

4 (4)

4 (4)

16 (16)

169 (139, 214)
67 (51, 97)

32 (21, 44)



ﬁg%’ggﬁfigﬂﬁiﬁ median (interquartile range)* '1N£ (1.0, 1.4) ??’(ofo 1.4) ??'(oﬁi-o 1.3)
MMSE median (interquartile range) 27 (24, 28) 28 (25, 29) 26 (25, 28)
CDR median (interquartile range) 0.5(0.5,0.5) 0.5(0.5,0.5) 0.5(0.5,0.5)
ALZHEIMER'S DISEASE

Number of participants (%) 325 (100) 303 (93) 22(7)
Female sex, number (%) 119 (37) 113 (37) 6 (27)

Age, years, median (interquartile range) 76 (71, 80) 76 (71, 80) 71 (64, 76)
ApoE4 positive, number (%) 216 (66) 198 (65) 18 (82)
Education, years, median (interquartile range) 16 (14, 18) 16 (14, 18) 16 (14, 18)
BMI (kg/m2) 259+46 256+4.3 29.0+6.8
Hypertension, number (%) 165 (51) 149 (49) 16 (73)
Diabetes, number (%) 32(10) 30 (10) 2(9)
Thyroid disease, number (%) 65 (20) 61 (20) 4 (18)
Respiratory disease, number (%) 67 (21) 52 (17) 15 (68)
Cardiovascular disease, number (%) 222 (68) 203 (67) 19 (86)

TBI, number (%) 18 (2) 14 (2) 4 (4)
Alcohol, number (%) 20 (6) 17 (6) 3(14)

CPAP use 9(3) 9(41)

CSF amyloid beta 42 pg/mL median (interquartile range)*

132 (116, 151)

115 (96, 182)

113 (79, 151)

T-tau pg/mL median (interquartile range) 80 (54, 116) 67 (51, 97) 81 (54, 122)
P-tau pg/mL median (interquartile range) 42 (33, 61) 41 (33, 61) 54 (35, 66)
Florbetapir SUVR, median (interquartile range) 1.4 (1.3,1.5) 1.4 (1.3,1.5) 1.4 (1.3, 1.6)
MMSE median (interquartile range) 24 (20, 26) 24 (22, 26) 24 (20, 25)
CDR median (interquartile range) 2.0(1.0,2.5) 1.5(1.0,2.5) 2.0(1.0,2.5)

AB = amyloid beta; ApoE4 = apolipoprotein epsilon4; BMI = body mass index; CDR = clinical dementia rating; CPAP = continuous
pulmonary airway pressure; CSF = cerebrospinal fluid; MMSE = Mini-Mental State Exam; tau = tau protein; P-tau = phosphorylated tau;
TBI = traumatic brain injury.

*Significant differences between groups (CSF AB42 levels for both MCI [F = 4.37, p = .04], and AD [F = 6.89, p < .01] and T-tau levels

for the MCl patients [F = 5.08, p = .02]).

Figure 1.
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Stepwise exclusion process for NL, MCI, and AD participants used in the study.

Baseline AD biomarker levels by clinical group and OSA status

Table 1 and Supplementary Figure 1a—c show raw baseline CSF AB42, T-tau, and P-tau levels, and florbetapir PET uptake in NL, MCI, and AD
groups, by OSA status. There were significant differences in CSF AB42 levels for both MCI (¥ =4.37, p =.04), and AD (F = 6.89, p <.01) groups,
respectively (Figure 1), with OSA+ participants having significantly higher levels at baseline for the MCI group. Significant difference in T-tau levels
was seen for the MCI patients (/"= 5.08, p = .02) (Figure 1) with OSA+ individuals having significantly lower levels. These differences remained
after controlling for covariates, but the magnitude of the differences was small. For florbetapir values, there were significant differences between
OSA groups for both NL and MCI participants (' = 5.53, F =5.15, p < .02 for all, respectively) (Figure 1) with OSA+ participants having
significantly lower florbetapir values. However, after controlling for age, sex, BMI, education, CPAP use, ApoE4 status, and other medical conditions,
these differences in florbetapir values were no longer significant. For P-tau levels, no significant difference was seen across all groups in the

uncontrolled and controlled analyses.

Differences in time trend, groups (OSA+ vs. OSA-) and time-points

Table 2, Figures 24, and Supplementary Figure 2a—c show MANOVA results testing the differences in the mean change in AD biomarker values
over time, based on OSA status. The Pillai’s trace test values presented examines time-point X OSA effect and provides the exact F statistics for the
time trend of mean change in AD biomarker across OSA groups. The time-point effect provides the exact F statistics for the mean change (increase

or decrease) in Alzheimer’s disease biomarker over time. Other stats interpretations can be seen in the Table 2 footnote.

Table 2.

Multivariate ANOVA results testing biomarker mean change differences in time trend, groups and time points

MANOVA test Statistic Value F- P-value MANOVA test Statistic Value F- P-value
criteria value criteria value

Florbetapir SUVR CSF AB42


https://academic.oup.com/view-large/figure/136700961/zsz048f0001.jpg
https://oup.silverchair-cdn.com/DownloadFile/DownloadImage.aspx?image=https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/sleep/42/6/10.1093_sleep_zsz048/1/zsz048f0001.jpeg?Expires=1561394833&Signature=mwKc3TnCmDVhumgcu-FECajTwXBarzvUQUlBbfhXsKun5yXcU9qnGkRG99iIulbz4wGG-NFi7xQUp-L3P7Z5Q6eeilHXib2iW3j2EvwBBKZn~bwwgPQ2ZfQQHbXTryj8a7xozD41hYmKyofC3m3pNAv7TBf6ddm76XsNdlodQBuXnZpWD~jZpr-eDOztXlzZDY1OxLNJfBm1BVZ7rT2b9D47YETJb6BBN29TauYdvfe4FdKWS1iwxR1bswjrARNrHwIiaJoMvbjqyh3fiBb6ZSagEFzfpuZ6QZMf7ILgOu5ubo~rf5AczMmnXjNTbzEZI9d8g0hj54Qn~~-TzHLw7A__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA&sec=136700961&ar=5362540&xsltPath=~/UI/app/XSLT&imagename=&siteId=5573
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/sleep/42/6/10.1093_sleep_zsz048/1/zsz048_suppl_supplementary_figure-1.pdf?Expires=1561394833&Signature=TPWy3JHcEF4XetV2SGLAE~dNNeR4LVL-szT5IQUKLyIjQBdbI8QhBHXErQ~YrV9myh-kHrYfjllKsZAGhnbVfMKHwosPc7GR8UQlPKgdjzJXvQ8JALtsurseH5FOz7OmCCVdPaCaNAJgBh8ft5nuGGnKK4aN~W7SIs-MbohATBwzjqLFf0HSRdxO4dX7AcCKPaOTUeqG~C4XK43PN-QwZTE~95BscrsrWnVQRpp7eG~0HJnpAVbCLtQmHt5FYoeMyv~Af2ggiHZzVVSUIrEklACqNTH22LaTzAWQqXbXhipgy9N1-yNKP91G1x~p2CS~qp9rpasRoaBUkNqZ1oRMQQ__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA
https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/sleep/42/6/10.1093_sleep_zsz048/1/zsz048_suppl_supplementary_figure-2.pdf?Expires=1561394833&Signature=cGxEN~naom5cwLdpgj4S1bJKUUvN8UBGl~joDKQogDLMfPNb1QssfL1iQBLSlmjmYRJgupXAzhQrVZ4buC8HdTqdxBvHd8Hqm2BGkDSc11MWkbXoXqkp2H53EpCurjxMoIz1bWUto87859iWdomNNEPUeHTYv2qIOx6elvcP1kUKvl3NjJeTOvjIoD4m1RYrwL8wR7QplFAy8OVPG-MT4ZbKpsCdsFdl8XhrW6Q~ezplbMePnOspN2UpQX~WSVt0SSY5quhUkx6NKCr~m3dYZxtfdago08Ma4cPvSv5u18~2PXqwyz9XMgeePMMMGpgF8feM-jNLYsYm3gVrljFf9w__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA

Mam®l/oageition  Statistic

hitgria

Timepoint x OSA
effect

Pillai’'s
trace

Pillai’s
trace

Timepoint effect

Repeated
measures analysis
of variance of
contrast variables
OSA+ vs. OSA-

Timepoint_1 (year
2)

Timepoint_2 (year
3)

Timepoint_1 vs.
timepoint_0

Timepoint_2 vs.
timepoint_1

Mild cognitive
impairment (MCI)

Timepoint x OSA
effect

Pillai’s
trace

Pillai’'s
trace

Timepoint effect

Repeated
measures analysis
of variance of
contrast variables
OSA+ vs. OSA-

Timepoint_1 (year
2)

Timepoint_2 (year
3)

Timepoint_1 vs.
timepoint_0

Timepoint_2 vs.
timepoint_1

Alzheimer’s
disease (AD)

Timepoint x OSA
effect

Pillai’'s
trace

Pillai’s
trace

Timepoint effect

Value

0.035

0.162

0.047

0.129

0.016

0.207

F-
value

4.46

23.66

0.14

8.93

34.22

6.51

4.24

18.06

0.08

4.63

25.63

6.16

1.94

31.86

P-value

0.0125*

<0.0001***

0.7125

0.0031**

<0.0001***

0.0113*

0.0143*

<0.0001***

0.7786

0.0323*

<0.0001***

0.0137*

0.1457

<0.0001***

Ma®UA test
crignition (NL)

Statistic Value

Pillai’'s 0.122

trace

Timepoint x
OSA effect
Pillai’'s 0.579
trace

Timepoint effect

Repeated
measures
analysis of
variance of
contrast
variables OSA+
vs. OSA-

Timepoint_1
(year 2)

Timepoint_2
(year 3)

Timepoint_1 vs.
timepoint_0

Timepoint_2 vs.
timepoint_1

Mild cognitive
impairment

(MCI)

Pillai's 0.219
trace

Timepoint x
OSA effect
Pillai’'s 0.791
trace

Timepoint effect

Repeated
measures
analysis of
variance of
contrast
variables OSA+
vs. OSA-

Timepoint_1
(year 2)

Timepoint_2
(year 3)

Timepoint_1 vs.
timepoint_0

Timepoint_2 vs.
timepoint_1

Azheimer’s

disease (AD)

Pillai’s 0.092
trace

Timepoint x
OSA effect
Pillai’'s 0.933
trace

Timepoint effect

value

5.23

51.77

9.99

4.12

69.4

8.08

5.06

68.23

4.95

7.38

132.92

13.12

248

341.26

P-value

0.0075**

<0.0001***

0.0023**

0.046*

<0.0001***

0.0006***

0.0116*

<0.0001***

0.0323*

0.01*

<0.0001™***

0.0009***

0.0944

<0.0001***



NépiQwatest
fdlgsifres analysis
of variance of
contrast variables
OSA+ vs. OSA-

Timepoint_1 (year
2)

Timepoint_2 (year
3)

Timepoint_1 vs.
timepoint_0

Timepoint_2 vs.
timepoint_1

CSF Tau

Normal cognition
(NL)

Timepoint x OSA
effect

Timepoint effect

Repeated
measures analysis
of variance of
contrast variables
OSA+ vs. OSA-

Timepoint_1 (year
2)

Timepoint_2 (year
3)

Timepoint_1 vs.
timepoint_0

Timepoint_2 vs.
timepoint_1

Mild cognitive
impairment (MCI)

Timepoint x OSA
effect

Timepoint effect

Repeated
measures analysis
of variance of
contrast variables
OSA+ vs. OSA-

Statistic Value
Pillai’'s 0.096
trace
Pillai’'s 0.302
trace
Pillai’'s 0.198
trace
Pillai’'s 0.321
trace

value

0.64

3.39

3.39

0.55

3.99

16.24

3.1

8.04

32.9

17.34

4.44

8.46

P-value

0.4228

0.067

0.067

0.4593

0.0226*

<0.0001***

0.083

0.0006***

<0.0001***

<0.0001***

0.0189*

0.001**

Népiwatest
fdfdifes
analysis of
variance of
contrast
variables OSA+
vs. OSA-

Timepoint_1
(year 2)

Timepoint_2
(year 3)

Timepoint_1 vs.
timepoint_0

Timepoint_2 vs.
timepoint_1

CSF P-tau

Normal
cognition (NL)

Timepoint x
OSA effect

Timepoint effect

Repeated
measures
analysis of
variance of
contrast
variables OSA+
vs. OSA-

Timepoint_1
(year 2)

Timepoint_2
(year 3)

Timepoint_1 vs.
timepoint_0

Timepoint_2 vs.
timepoint_1

Mild cognitive
impairment
(MCI)

Timepoint x
OSA effect

Timepoint effect

Repeated
measures
analysis of
variance of
contrast
variables OSA+

Statistic Value
Pillai’'s 0.142
trace
Pillai’'s 0.545
trace
Pillai’'s 0.272
trace
Pillai’'s 0.762
trace

value

3.78

1.16

0.12

4.06

29.29

5.74

5.74

53.39

3.64

6.73

57.72

P-value

0.0575

0.2873

0.2873

0.7253

0.0235*

<0.0001***

0.0204*

0.0203*

<0.0001***

0.0621

0.0033**

<0.0001***



MANOVA test

criteria
Timepoint_1 (year
2)

Statistic Value

Timepoint_2 (year
3)

Timepoint_1 vs.
timepoint_0

Timepoint_2 vs.
timepoint_1

Azheimer’s

disease (AD)

Pillai’s 0.114
trace

Timepoint x OSA
effect

Pillai's 0.751

trace

Timepoint effect

Repeated
measures analysis
of variance of
contrast variables
OSA+ vs. OSA-

Timepoint_1 (year
2)

Timepoint_2 (year
3)

Timepoint_1 vs.
timepoint_0

Timepoint_2 vs.
timepoint_1

value
1.13

9.1

17.39

12.9

4.83

112.37

3.42

8.68

8.68

0.52

P-value

0.2957

0.0046**

0.0002***

0.001**

0.0106*

<.0001***

0.0684

0.0043**

0.0043**

0.4712

NARSOR te st

criteria
Timepoint_1
(year 2)

Statistic Value

Timepoint_2
(year 3)

Timepoint_1 vs.
timepoint_0

Timepoint_2 vs.
timepoint_1

Alzheimer’s

disease (AD)

Pillai’'s 0.074
trace

Timepoint x
OSA effect
Pillai’'s 0.939
trace

Timepoint effect

Repeated
measures
analysis of
variance of
contrast
variables OSA+
vs. OSA-

Timepoint_1
(year 2)

Timepoint_2
(year 3)

Timepoint_1 vs.
timepoint_0

Timepoint_2 vs.
timepoint_1

value
12.72

4.2

62.45

3.89

1.63

312.8

3.23

0.09

0.09

224

P-value

0.0001***

0.0474*

<0.0001***

0.056

0.2086

<.0001***

0.0797

0.7622

0.7622

0.1423

MANOVA test criteria interpretations: Timepoint x OSA effect provides the exact F statistics for the time trend of mean change in
Alzheimer’s disease biomarker across OSA groups; Timepoint effect provides the exact F statistics for the mean change (increase or
decrease) in Alizheimer’s disease biomarker over time. Repeated measures analysis of variance of contrast variables OSA+ vs. OSA-
interpretations: Timepoint_1 (year 2) provides the F statistic for the difference in mean change in Alizheimer’s disease biomarker across
OSA groups from baseline (year 1) to year 2; Timepoint_2 (year 3) provides the F statistic for the difference in mean change in
Alzheimer’s disease biomarker across OSA groups from baseline (year 1) to year 3.; timepoint_1 vs. timepoint_0 provides the F
statistic for differences in mean change in Alzheimer’s disease biomarker across OSA groups when timepoint_1 (year 2) is compared
with baseline (year 1); timepoint_2 vs. timepoint_1 provides the F statistic for differences in mean change in Alzheimer’s disease
biomarker across OSA groups when timepoint_2 (year 3) is compared with timepoint_1 (year 2).

SUVR = standard uptake value ratio of brain florbetapir; CSF = cerebrospinal fluid; P-tau = phosphorylated tau; MANOVA = multivariate

analysis of variance.

*p < 0.05; **p < 0.01; **p < 0.001.

Figure 2.


https://academic.oup.com/view-large/136700966

P ] B 30 o 3 s

Download slide

Mean change variations and trajectory plots in AD biomarker values over time in NL, MCI, and AD subjects by OSA status (cognitive
normal—NL).

Figure 3.
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Mean change variations and trajectory plots in AD biomarker values over time in NL, MCI, and AD subjects by OSA status (mild
cognitive impairment—NMCI).

Figure 4.
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Mean change variations and trajectory plots in AD biomarker values over time in NL, MCI, and AD subjects by OSA status (Alzheimer’s
disease—AD).

In NL and MCI participants, the time trend of mean change in florbetapir PET value indicated the change was not parallel across groups (Pillai’s
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trace test, p = .01 for all). Across all subjects, mean change in florbetapir uptake increased significantly over time (Pillai’s trace test, p <.001 for all).
There were significant differences in mean change in florbetapir values across the OSA groups when the previous time-point was compared with the
next (p <.01 for all).

In AD participants, the only significant finding was that the mean change in florbetapir uptake increased over time across all subjects (Pillai’s trace
test, p <.001).

In NL and MCI participants, the time trend of mean change in CSF AB42, T-tau, and P-tau values indicated the change was not parallel across
groups (Pillai’s trace test, p < .05 for all). Across all subjects, mean change in CSF AB42 values decreased while T-tau and P-tau values increased
over time (Pillai’s trace test, p <.001 for all). There were significant differences in mean change in CSF AB42, and T-tau values across the OSA
groups when the previous time-point was compared with the next (p < .01 for all). For P-tau, significant differences were only seen when

timepoint 1 (year 2) was compared with timepoint 0 (year 1) (p <.001).

In AD participants, the time trend of mean change in CSF T-tau indicated the change was not parallel across groups (Pillai’s trace test, p <.01).
Across all subjects, mean change in CSF AP42 values decreased while P-tau values increased significantly over time (Pillai’s trace test, p <.001 for
all). There were significant differences in mean change in T-tau values across the OSA groups only when timepoint 1 (year 2) was compared with
timepoint 0 (year 1) (p <.001). No significant differences were seen for CSF Ap42.

Rate of change in AD biomarker by OSA status

Table 3 reports the between-subjects variation and covariance parameter estimates in AD biomarker levels over time by OSA group.

Table 3.

Between subject variation in AD biomarkers and covariance parameter estimates



Parameters Estimate 95% CI P-value

OSAt+ vs. OSA- (cognitive normal patients)

Florbetapir SUVR over time 0.06 .02, .11 <0.0001
Florbetapir SUVR over time (covariance) -0.06 -.09, -.04 <0.0001
CSF AB-42 over time -2.71 -3.11,-2.35 <0.0001
CSF AB-42 over time (covariance) 3.93 3.56, 4.31 <0.0001
CSF T-tau over time 3.68 3.31,4.07 <0.0001
CSF T-tau over time (covariance) -2.89 -3.51,-2.29 <0.0001
CSF P-tau over time 1.22 1.02, 1.42 <0.0001
CSF P-tau over time (covariance) -1.21 -1.71,-0.74  <0.0001

OSA+ vs. OSA- (mild cognitive impairment patients)

Florbetapir SUVR over time 0.08 .05, .12 <0.0001
Florbetapir SUVR over time (covariance) -0.06 -0.09, -0.04  <0.0001
CSF AB-42 over time -2.62 -3.23,-2.03  <0.0001
CSF AB-42 over time (covariance) 2.69 2.02, 3.36 <0.0001
CSF tau volume over time 2.21 1.58, 2.86 <0.0001
CSF tau over time (covariance) -1.89 -2.91,-0.87 <0.0001
CSF P-tau over time 1.74 1.22,2.27 <0.0001
CSF P-tau over time (covariance) -1.48 -2.05,-0.94 <0.0001

OSAt+ vs. OSA- (Alzheimer’s disease patients)

Florbetapir SUVR over time 0.07 -1.19, 1.33 0.33
Florbetapir SUVR over time (covariance) -0.29 -2.07,1.49 0.31
CSF AB-42 over time -1.1 -3.31,1.09 0.53
CSF AB-42 over time (covariance) -1.14 -3.38, 1.63 0.56
CSF T-tau over time 0.26 -1.02, 1,28 0.47
CSF T-tau over time (covariance) -0.15 -1.94, 1.64 0.47
CSF P-tau over time 0.94 0.23, 1.65 0.11
CSF P-tau over time (covariance) -0.16 -1.66, 1.34 0.11

These analyses allowed us to examine whether there was significant variation between OSA+ and OSA- subjects in mean AD
biomarker level at baseline, as well as whether significant variation in the change in AD biomarker level over time occurred.
Furthermore, the covariance between the baseline AD biomarker level and AD biomarker change over time indicated whether OSA+ or
OSA- subjects had experienced a faster increase or decrease in AD biomarker level over time. It also allowed for assessment of
significant differences in the rate-of-change in AD biomarker level between OSA groups over time. Models were adjusted for age, sex,
BMI, education, CPAP use, ApoE4 status, alcohol intake, baseline biomarker data, history of respiratory disease, hypertension,
diabetes, and history of cardiovascular disease (e.g. including ischemic heart disease, heart failure, and stroke/TIA), and history of
traumatic brain injury.

AB = amyloid beta; ApoE4 = apolipoprotein epsilon4; BMI = body mass index; CSF = cerebrospinal fluid; tau = tau protein; P-tau =



phosphorylated tau.

In both NL and MCI participants at baseline, OSA+ participants had lower levels of CSF T-tau, CSF P-tau and brain florbetapir values and higher
CSF AP42 levels, compared with OSA— subjects (Table 1). Interpretation of the covariance parameters is such that, if the signs of these estimates
are negative, they show that persons with higher baseline values tend to have less rates of change over time. For example, in NL participants, for the
flobertapir values, the covariance parameter estimate of —.06 (—.09, —.04) indicates that OSA— participants who had a higher baseline tended to have
slower rates of amyloid deposition over time (Figure 2). The covariance parameter estimate for CSF AB42 of 3.93 (3.56, 4.31) indicates that OSA+
who had higher baseline values tended to have higher rates of changes over time (in this case decline because of the negative slope).

In NL participants, there was significant variation by OSA status in the annual change in brain florbetapir uptake (mean SUVR; B = 0.06, p <.0001).
In MCI participants, there was also significant variation by OSA status in the annual change in florbetapir values (mean SUVR; B =0.08, p <.0001).
The covariance between the baseline florbetapir uptake and the annual florbetapir value change was —.06, indicating that OSA+ subjects experienced
faster increase in amyloid deposition over time (p <.0001) when compared with OSA— (Figure 3 and Supplementary Figure 2b). No significant
variation in the change in brain florbetapir PET volumes by OSA status was seen in the AD group (Table 3 and Figure 4).

For the NL and MCI groups, there was significant variation in the annual change in CSF AB42 by OSA status (mean CSF levels; B =—2.708, mean
CSF levels; B =-2.264, p <.0001 for all, respectively). Significant differences in the annual change in T-tau and P-tau levels over time were also
observed in both groups. Covariance parameters between the baseline CSF AB42, T-tau, and P-tau level change over time indicated that OSA+
subjects experienced a faster longitudinal decrease in CSF Ap42 and faster longitudinal increases in T-tau and P-tau levels (p < 0.0001 for all)
compared with OSA— participants, in both the NL and MCI groups (Table 3 and Figures 2—4). No significant variations in the change in CSF Ap42,
T-tau, and P-tau levels over time were seen for the AD group (Table 3).

Discussion

The major objective of this study was to examine the association of OSA and longitudinal changes in brain amyloid PET deposition and CSF
biomarkers. There were significant differences in the annual rate of change in florbetapir uptake as well as CSF AB42, T-tau, and P-tau levels over
the follow-up period for the NL and MCI groups, with OSA+ subjects experiencing significantly faster increase in brain amyloid load (as measured by
increases in florbetapir uptake and decreases in CSF AP42 levels) and tau aggregates (as measured by increases in CSF T-tau and P-tau levels). The
direction of these longitudinal changes is in accordance with growing evidence described below showing a link between disturbed sleep, OSA, and
AD pathogenesis. In a cross-sectional study, Spira et al. [22] found that MCI individuals with higher apnea—hypopnea and oxygen desaturation
indices demonstrated higher amyloid deposition on Pittsburgh compound B (PiB)-PET uptake globally and regionally in the precuneus. Recently, Yun
et al. [7] found that OSA patients had a higher amyloid burden in the right posterior cingulate gyrus and right temporal cortex relative to controls,
suggesting possible contribution of OSA. In a population of NL individuals, Liguori ef al. [S] compared CSF biomarkers in OSA+ versus OSA+
treated with CPAP as well as OSA— controls. Findings demonstrated lower CSF AB42 and higher T-tau/Ap42 ratio in OSA+ compared with CPAP
treated and OSA— control subjects. We also have recently documented that OSA severity is associated with increased amyloid burden (measured as

longitudinal decreases in CSF AB42 and increases in PiB uptake) over a 2-year follow-up in community-dwelling NL elderly [23].

Possible mechanisms responsible for these findings include intermittent hypoxia, sleep fragmentation, and intrathoracic pressure swings (Figure 5).
Studies of cerebral ischemia suggest that both acute and intermittent hypoxia may promote A accumulation [2, 4, 24-26], possibly mediated by
hypertension [27], cardiovascular disease [28], diabetes [29], chronic inflammation [30], and oxidative stress [31, 32]. Sleep fragmentation, arousals,
and circadian rhythm disruption have also been shown to increase the risk of developing MCI/AD [1, 33], possibly through disruption of slow wave
sleep (SWS) [34, 35]. Findings from a recent prospective study on subjects from the Framingham Heart Study cohort; suggest that OSA-related
REM disruption may also contribute to this association [36]. Other possible mechanisms include elevated intrathoracic, intracranial pressures, and/or
increased venous pressure, which have been hypothesized to acutely and repetitively impede the circulation of brain metabolites from the interstitial
fluid (ISF) into the CSF through the glymphatic system, leading to increases in A accumulation [24, 31, 32, 37]. Lastly, depression has been reported

as both a consequence of OSA and an AD risk factor and may also contribute to this association [38].

Figure 5.
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Proposed mechanisms linking OSA with amyloid deposition in late-life.

Intriguingly, at baseline, our data showed that OSA+ patients had significantly higher CSF Ap42 in MCls, lower florbetapir uptake in both NL and
MCIs, and lower T-tau levels in MCIs, compared with OSA— subjects. A possible concern here is a regression toward the mean, since the OSA+
group starts with significantly lower values of amyloid load in some of the biomarkers used. However, there are two factors worth addressing in this
regard. First, the absolute difference in these levels between groups was numerically quite small (e.g. in NL subjects, the difference in the median
CSF AB42 levels was 17 pg/mL). Second, the longitudinal analyses examined the “rate of change” as an outcome and not the mean levels of the AD
biomarkers. The longitudinal mean beta statistics presented refer to the mean change incorporating within and between group data. In addition, what
we examined was the slope statistics incorporating the effects of time, which looked at the rate of change for each individual between OSA groups.
Furthermore, one could expect faster progression of amyloid deposition in the NL group that has already higher amyloid burden at baseline [39, 40],
which would have driven our findings toward the null. Possible explanations for the reduced baseline AD biomarker presentation in the OSA+ group
include; first, if OSA accelerates AD pathology buildup this may simply be a sign of selection (survival) bias as most OSA+ will have transitioned to
MCI or AD and only those with very low AD pathology burden at disease onset would remain as cognitively normal. Second, particularly in those
with MCI, is the presence of increased vascular risk in this group (i.e. higher rates of diabetes and obesity) (Table 1), as onset of cognitive
impairment is likely to occur at a lower severity of Alzheimer lesions in individuals with more vascular pathology [41]. Notably, after age stratification
(55-73.8, and 74-92) based on age distribution (we categorized based on the 50th percentile), compared with OSA— individuals, OSA+ individuals in
the 55-73.8 years old category were more likely to have higher vascular burden (i.e. composite score for BMI, hypertension, diabetes, and
cardiovascular disease), higher CSF AB42 in MClIs, lower florbetapir uptake in both NL and MCls, and lower T-tau levels in MCIs (Supplementary
Table 1). In addition, among ages 74 years and above, OSA+ participants had a worse AD biomarker presentation (i.e. lower CSF AB42 in MCls,
higher florbetapir uptake in both NL and MCls, and higher T-tau levels in MClIs) at baseline. These findings suggest that the younger population
especially in the OSA+ with higher vascular burden were driving the noted differences at baseline between OSA+ versus OSA— groups. Third,
specifically for CSF AB42; slow wave sleep (SWS) occurring during nonrapid eye movement (NREM) sleep, a known A modulator [35, 42, 43],
may be responsible. OSA is associated with reduced SWS [44]. Sleep is involved in the clearance of AP [35], and fragmented SWS limits brain Af
clearance, thereby leaving higher levels that reflect in the CSF [45, 46]. At cross-section, disrupted SWS has been shown to be associated with higher
CSF AB42 in middle-aged [24, 47] and older adults [34]. Fourth, in both the NL and MCI groups, OSA— had more APOE4 positive participants,
which is known to confer higher risk and worse AD biomarker burden [48]. It is important to note that as stated above (see Baseline AD biomarker
levels by clinical group and OSA status under Results section), after controlling for age, sex, BMI, education, CPAP use, ApoE4 status, and other
medical conditions, the differences in florbetapir values were no longer significant. For P-tau levels, no significant difference was seen across all
groups in the uncontrolled and controlled analyses. In other words, these differences are numerically but not statistically different from each other,

and where they were “statistically” significantly different, it is not clear that they are clinically meaningfully different.

Our findings in a cohort of self-reported OSA patients suggest that untreated OSA can predispose to neurodegenerative processes in the long-term
by gradually weakening brain structure and altering its functioning [49, 50]. This hypothesis would be consistent with an overarching model of late-
onset AD with brain amyloid deposition and tau aggregates proceeding at different rates, influenced by a combination of protective/risk factors of
which OSA is part [51]. This model of AD implies a contributory role of OSA severity in affecting and/or accelerating AD biomarker change and
possibly increasing neurodegeneration. In agreement with these findings, our previous study performed in the ADNI cohort showed that the presence

of OSA was associated with accelerated cognitive decline and an earlier age of MCI or AD dementia onset [52]. As expected, there was no
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difference in the rate of biomarker change in the AD group by OSA status. This may be because in AD patients, brain amyloid is exhibiting a ceiling
effect at higher levels of brain atrophy [53]. OSA’s effect as it relates to AD biomarker changes may therefore be attenuated after it has reached its

maximum neuronal damage.

Strengths and limitations

Our study possesses several strengths including a well-defined cohort, and objective assessment of amyloid burden and CSF P-tau/T-tau, which
allowed for a high degree of certainty regarding measurement of clinical groups and outcomes [54].Our statistical analytic methods were also robust

with respect to unbalanced number of observations per subject over time.

We acknowledge we were limited by the measurement of OSA by self-report. Self-reported sleep measures can be impacted by diminished cognition
[55] and in certain situations might not be correlated with objective methods [56]. The prevalence of reported OSA was also significantly lower than
expected in this elderly cohort, which can relate to an underdiagnosis effect in this population, as epidemiological and sleep laboratory studies
document much higher OSA prevalence in elderly populations. Therefore, some OSA+ subjects were likely misclassified into the OSA— group;
however, this would have driven our findings toward the null. However, one implication of OSA classification by self-report is that those with self-
reported OSA very likely had associated symptoms (i.e. excessive daytime sleepiness) that prompted these subjects to seek diagnosis. The overall
prevalence of self-reported OSA in this group (6%) is similar to the US prevalence of the OSA syndrome (OSAS) (4%) defined by the presence of
AHI4% >5/h and daytime symptoms across all ages [57]. The prevalence of OSA (with or without symptoms) in the elderly is much higher,
estimated at 30%—50% in older subjects [58], thus additional work may be required to differentiate the risk of OSA for AD with and without
associated daytime symptoms. Notably, all cause excessive daytime sleepiness in elderly subjects defined by Epworth sleepiness scores >10 was

associated with longitudinal brain beta amyloid accumulation in a recent study [59].

Conclusions

OSA appears to accelerate increases in amyloid deposition, CSF T-tau and P-tau levels over time, both in NL and MCI individuals. Sleep
fragmentation, intermittent hypoxia, and intrathoracic pressure swings from OSA are likely candidate mechanisms. Thus, clinical interventions aimed
at OSA, such as treatment with CPAP or dental appliances, in cognitive normal and MCI patients, could possibly mitigate or slow the progression of

cognitive impairment to AD. Further studies examining the mechanisms underlying these observed effects are needed.
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