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Abstract
Study Objectives

Sleep deprivation is associated with impaired immune responses, cancer, and morbidity and mortality, and can degrade cognitive performance,
although individual differences exist in such responses. Sleep deprivation induces DNA strand breaks and DNA base oxidation in animals, and
psychological stress is associated with increased DNA damage in humans. It remains unknown whether sleep deprivation or psychological
stress in humans affects DNA damage response from environmental stressors, and whether these responses predict cognitive performance

during sleep deprivation.

Methods

Sixteen healthy adults (ages 29-52 years; mean age + SD, 36.4 + 7.1 years; seven women) participated in a 5-day experiment involving two 8
hr time-in-bed (TIB) baseline nights, followed by 39 hr total sleep deprivation (TSD), and two 8-10 hr TIB recovery nights. A modified Trier
Social Stress Test was conducted on the day after TSD. The Psychomotor Vigilance Test measured behavioral attention. DNA damage was

assessed in blood cells collected at 5 time points, and blood cells were irradiated ex vivo.

Results

TSD, alone or in combination with psychological stress, did not induce significant increases in DNA damage. By contrast, radiation-induced
DNA damage decreased significantly in response to TSD, but increased back to baseline when combined with psychological stress. Cognitively
vulnerable individuals had more radiation-induced DNA strand breaks before TSD, indicating their greater sensitivity to DNA damage from

environmental stressors.

Conclusions

Our results provide novel insights into the molecular consequences of sleep deprivation, psychological stress, and performance vulnerability.
They are important for fields involving sleep loss, radiation exposure, and cognitive deficits, including cancer therapy, environmental toxicology,

and space medicine.

DNA strand breaks, Psychomotor Vigilance Test performance, sleep deprivation, psychological stress, individual differences, biomarkers, radiation, Trier Social Stress Test
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Statement of Significance

Although sleep loss, by itself or in combination with psychological stress, does not increase DNA damage in human blood cells, DNA strand
break levels from ex vivo cell irradiation are lower than baseline when participants are sleep deprived, and increase back to baseline levels
when participants are sleep deprived and psychologically stressed. The level of radiation-induced DNA strand breaks is higher in the cells of
individuals who are cognitively vulnerable to sleep loss, indicating that they are more sensitive to cellular DNA damage from environmental
stressors. These results provide novel insights into the molecular processes induced by sleep deprivation, psychological stress, and cognitive
performance deficits, and are significant for identifying biomarkers to predict vulnerability to sleep deprivation and for developing effective

countermeasures.

Introduction

Chronic sleep deprivation is a significant public health issue and is associated with an increased risk of cardiovascular disease, obesity, diabetes,
cancer, and overall morbidity and mortality [1-7]. For most individuals, sleep loss increases fatigue, sleepiness, and sleep propensity, and produces
marked deficits in mood and neurobehavioral functions including decreases in sustained attention, cognitive processing speed, working memory, and
executive functioning [8-11]. However, large, highly replicable, phenotypic individual differences occur in the magnitude of neurobehavioral
vulnerability to sleep deprivation [12], whereby some individuals are vulnerable and others are resistant to sleep deprivation [ 13, 14]; notably, this
phenotypic stability is maintained across months and years [15]. The underlying reasons for such differential neurobehavioral vulnerability to sleep
loss are largely unknown and are not reliably explained by demographic and other factors [16]. Candidate gene and various “omics” approaches have
been used to identify biomarkers that may relate to such responses [12], although more work is needed, including investigation of molecular

mechanisms such as DNA strand break formation.

Single strand DNA breaks are the most frequent type of DNA damage but they are normally rapidly repaired. However, unrepaired single strand
DNA breaks can be converted into double strand DNA breaks that could result in chromosome rearrangements and instability [ 17], and this process
may drive cancer development. Reactive free radicals formed during normal aerobic metabolism (causing endogenous DNA strand breaks, ESB) and
water radiolysis induced by ionizing radiation (causing induced DNA strand breaks, ISB) are major contributors to the formation of single strand
DNA breaks. Sleep loss has been shown to affect DNA integrity. In rats, sleep loss, especially acute total sleep deprivation (TSD), induces DNA
strand breaks in both blood and brain cells [18, 19]. Furthermore, the level of 8-Oxoguanine (8-0x0Q), a marker for oxidative DNA damage, also
increases in rats who are partially sleep deprived [20]. In mice, sleep deprivation induces DNA double strand breaks and delays DNA repair [21].

However, in humans, partial sleep deprivation increases expression of genes involved in the DNA damage response [22].

Psychological stress contributes to cancer development, and increased DNA damage from exposure to stress and stress hormones has been
suggested as the possible mechanism [23-25]. A number of studies in animals and humans have shown a relationship between acute stressors and
DNA damage. For example, students had more oxidative DNA damage in their lymphocytes when they were undergoing psychological stress
induced by examinations than they did during a nonstress period [26]. Clinical studies have also demonstrated that some psychiatric disorders are
associated with DNA damage [27]; for example, patients with recurrent depression had more single and double strand DNA breaks and impaired
DNA repair compared with healthy controls [28]. Similarly, patients with posttraumatic stress disorder had more DNA strand breaks in their immune
cells than a nonstressed matched control group [29]. In addition, greater DNA damage was found in the prefrontal cortex and hippocampus of rats
subjected to stress than in control rats [30]. Furthermore, alteration of stress-induced DNA damage response renders cells more vulnerable to
environmental stressors such as radiation. For instance, after lymphocytes were irradiated with 0.8, 2.5, and 4.2 Gy y-rays, inmediate DNA damage
and residual DNA damage, measured 2 hr after radiation, were both significantly higher in lymphocytes from chronically stressed individuals than in
lymphocytes from a nonstressed population [31]. Psychological factors such as depressed mood or certain personality traits can also influence the
yield of radiation-induced DNA damage [32].

Thus, both sleep deprivation and psychological stress can affect DNA damage response, leading to changes in radiosensitivity. Although the effects
of sleep deprivation and psychological stress on cellular functions and DNA have been investigated, previous research is mostly limited to animal
models. To the best of our knowledge, no one has reported the effects of acute sleep deprivation or a combination of sleep deprivation and
psychological stress on endogenous DNA strand breaks or radiosensitivity in humans. Given that sleep deprivation amplifies the biological and
physiological responses to psychological stress including increasing cortisol, systolic blood pressure, heart rate, and skin conductance [33-36], it is
possible that the combination of sleep loss and psychological stress may increase the number of endogenous or radiation-induced DNA strand breaks.

In this study, we determined whether sleep loss, alone or in combination with psychological stress, affects DNA integrity and/or the level of radiation-



induced DNA damage in peripheral blood cells from healthy individuals.

Furthermore, in patients with mild cognitive impairment and/or Alzheimer’s disease, the loss of general cognitive and functional abilities has been
associated with higher DNA damage and poorer DNA repair [37, 38]. In addition, a recent exploratory study reported that genetic variation in the
oxidative stress and DNA repair pathways plays an important role in cognitive performance in women with breast cancer prior to initiation of
adjuvant therapy, suggesting that oxidative stress and DNA repair genetic polymorphisms are predictors of poorer cognitive function in breast cancer
survivors [39]. Therefore, we also determined whether the baseline level of DNA strand breaks and/or the amount of radiation-induced DNA strand

breaks in these individuals could predict cognitive performance after sleep deprivation.

Methods

Participants

The Human Research Program Human Exploration Research Analog (HERA) is a high-fidelity space analog isolation facility located in Johnson
Space Center in Houston, TX. We studied 16 healthy men and women (ages 29-52 years; mean age + SD, 36.4 + 7.1 years; 7 women, 13
Caucasians, 1 Hispanic, 1 Asian, and 1 African American). Groups of four volunteers participated in each of the four HERA 30-day missions. These
participants were thoroughly screened by the National Aeronautics and Space Administration (NASA), were required to pass drug screening and a
physical exam, and were in good health with no history of cardiovascular, neurological, gastrointestinal, or musculoskeletal problems. The study was
approved by the Institutional Review Boards of NASA and of the University of Pennsylvania, and all protocol methods were carried out in
accordance with approved guidelines and regulations. Participants provided written informed consent, which was in accordance with the Declaration

of Helsinki. Participants received compensation for their participation in the protocol.

Procedures

During the 30 days of confinement in HERA, volunteers participated in a 5-day experiment designed to create stress and induce sleep deprivation,
and to measure cognitive performance. This experiment consisted of two baseline nights (B1 and B2; 8 hr time-in-bed [TIB], 2300-0700 hr), followed
by a night of acute TSD during which participants remained awake all night. A modified Trier Social Stress Test (TSST) was conducted between
1500 and 1730 hr on the day after the TSD night to induce psychosocial stress (described below). The TSD night was followed by a 10 hr TIB night
of recovery (R1; 2200-0800 hr), and a second 8 hr TIB night of recovery (R2; 2300-0700 hr). Napping was prohibited during the experiment. Sleep—
wake episodes were verified by wrist actigraphy (Philips Respironics Healthcare, Bend, OR).

Cognitive performance

Each participant completed a total of 11 cognitive testing sessions during the study. Testing sessions occurred at 1130 and 1730 hr each day of the
experiment, with an additional test at 0400 hr after TSD. The cognitive sessions included an objective behavioral attention test measuring reaction
time, the 10-min Psychomotor Vigilance Test (PVT) [40, 41].

Trier social stress test

The TSST is a commonly used validated test to experimentally induce psychosocial stress [42—44]. It has been successfully modified and validated
using a virtual, rather than a physical, audience [45, 46]. The TSST has been shown to affect a range of biological markers of stress, including
cortisol, heart rate, blood pressure, and blood catecholamines [42, 44, 47-49]. Our 30-min TSST consisted of a number of challenging interview
questions regarding responses to TSD, including those relating to performance, motivation, aptitude, and interactions with others. The TSST also had
several difficult cognitive tests demanding both accuracy and speed, including a 3-min Stroop task and a 5-min calculation task requiring participants

to count backwards aloud in 13-step sequences. The TSST was conducted with participants remotely via audio and a one-way video camera.

Blood samples for DNA strand breaks

ESB and ISB were measured in DNA from blood samples that were collected from each participant at the following six time points: (1) immediately
before the HERA mission (prestudy); (2) during the experiment after two nights of fully rested conditions (baseline); (3) on the day after a night of
TSD and before stress was induced (TSD [AM]); (4) on the day after TSD and immediately after stress was induced (TSD [PM]); (5) after two



nights of fully rested conditions (recovery); and (6) 5 days after the study (poststudy). Blood was drawn at the same time each day (0800 hr before

eating), except for the poststress assessment, which was drawn at 1730 hr.

Blood collection and peripheral blood mononuclear cell storage

Human peripheral blood mononuclear cells (PBMCs) were isolated from 4 mL of whole blood that was collected in BD Vacutainer CPT
Mononuclear Cell Preparation Tubes (BD Biosciences, USA). Isolated cells were suspended in 1 mL of freezing medium containing 20 per cent
Roswell Park Memorial Institute medium (RPMI-1640) medium, 10 per cent dimethyl sulfoxide (DMSO), and 70 per cent fetal calf serum (FCS), and
stored overnight at —=80°C in a Mr. Frosty Freezing Container (Thermo Fisher Scientific, USA). The cells were then transferred to a liquid nitrogen
tank at —180°C until they were shipped overnight on dry ice to Konstanz, Germany. In Konstanz, the cells were kept in a liquid nitrogen tank at
—180°C until they were analyzed.

Cell thawing procedure

The cells were thawed using the same procedure described previously [50]. Briefly, the cryovial containing the cells was carefully immersed in a
water bath at 37°C until a small amount of ice remained in the cryovial. Next, I mL of thawing medium containing 90 per cent RPMI and 10 per cent
FCS was added to the cryovial and gently mixed; after 1 min the cell suspension was transferred into a polypropylene 15 mL tube. The thawing
medium was added stepwise as follows: 1 mL was added 1 min later, an additional 2 mL was added another 1 min later, and an additional 4 mL was
added after another minute. After an additional minute, the tube was centrifuged at 300 x g for 10 min. The cell pellet was gently resuspended in 1
mL RPMI medium, and the cell concentration and viability (determined by electric current exclusion) were assessed using CASY cell counter

technology (Innovatis, Switzerland).

Induction of DNA strand breaks

Cells (0.5-1 % 106/mL) in suspension buffer (0.25 M meso-inositol; 10 mM sodium phosphate, pH 7.4; 1 mM magnesium chloride) were irradiated
(Biological X-ray Irradiator X-RAD 225 iX from Precision X-Ray, Inc., North Branford, USA) on ice for 380 s at a dose rate of 0.59 Gy/min (70 kV,
30 mA, 70 cm distance, 1.25mm Al filter) resulting in a total dose of 3.73 Gy. After radiation, cells were placed in the pipetting robot to assess DNA
strand breaks.

Detection of DNA strand breaks

DNA strand breaks were detected using the automated version of the “Fluorimetric detection of Alkaline DNA Unwinding” (FADU) assay [51, 52],
which has been successfully used in a number of prior studies [29, 53—64]. This assay is based on controlled DNA unwinding that starts at DNA
strand breaks. SybrGreen (MoBiTec, Germany) was used as the marker for double stranded DNA. A decrease in the fluorescence intensity
indicates an increase of DNA unwinding and consequently a greater number of strand breaks. The fluorescence signal was expressed as a measure

of radiation dose (Gy-equivalent) using a published mathematical transformation [65].

Statistical analyses

The poststudy time point was not included in any statistical analyses because one participant’s blood sample was not collected at this time point, and
the cell viability after thawing was compromised for 7 of the 15 remaining participants. Mixed-model regression analysis was used to estimate the
change in means of endogenous and induced DNA strand breaks (expressed as an equivalent radiation dose in Gy-equivalent) between each time
point and prestudy to account for the repeated-measures design. After estimation, analysis of variance (ANOVA)-based approximate degrees of

freedom were used to construct 95% confidence limits (CLs) for all changes from the prestudy values.

Repeated measures ANOVA, using multivariate models, with resistant/vulnerable cognitive performance as a between-participants factor was used
to assess ESB and ISB measures across the five time points. Cognitively resistant (» = 8) and cognitively vulnerable (n = 8) groups were defined by
a median split on TSD 10-min PVT performance [66], defined by total lapses (>500 ms response time) and errors performance (range: 1.33-33.33
PVT lapses and errors; mean = SD, resistant: 3.63 + 2.15 PVT lapses and errors; vulnerable: 12.00 + 8.71 PVT lapses and errors); these groups
were not significantly different in terms of sex or age (p >.05). After ANOVAs, post hoc comparisons corrected for multiple testing were used to
assess differences in ESB and ISB measures for the cognitively resistant versus cognitively vulnerable groups at each time point. Repeated measures

ANOVA examined sleep variables across nights, and examined cognitive performance across the baseline, TSD, and recovery assessments.



Results

Cognitive performance

After sleep loss, participants had significantly more PVT lapses and errors (mean = SD, 7.81 £ 7.50) than during their baseline PVT performance
(mean + SD, 3.81 + 6.47; #(15) =—4.92, p <.001). PVT performance returned to baseline levels after one night of recovery sleep (mean + SD, 4.31
+ 8.99 lapses and errors; p > .05).

Actigraphic sleep—wake

Participants were highly compliant to the sleep—wake schedule, as indicated by total sleep time (TST) during the experiment (Table 1). TST and other
sleep variables, including sleep onset latency, sleep efficiency, and wake after sleep onset, were not significantly different on the B2 and R2 nights,
the nights before the baseline and the recovery blood draws, respectively (p > .05; Table 1). No significant differences were found between the
cognitively resistant and cognitively vulnerable groups for TST or any other sleep variables on any of the experiment nights (p > .05), and sex or age

had no significant effect on any sleep variables.

Table 1.

Mean + SD actigraphic sleep measures for the five experimental nights (N = 16 participants)

Study Sleep onset Sleep Wake after sleep Wake time Sleep time  Total sleep
night latency efficiency onset (%) (%) time

(min) (%) (min) (min)
Night 1 16.38 £ 23.50 87.49+6.76 32.75+13.91 7.48+3.25 92.52+3.25 407.00 + 37.46
(B1)
Night 2 13.31 £ 34.19 87.77 £ 8.39 34.88 £ 19.98 8.03 +4.46 91971446 402.88 +40.72
(B2)
Night 3 N/A N/A N/A N/A N/A N/A
(TSD)
Night 4 1.19+2.07 91.19 £ 6.36 44.81 + 38.00 7.52+6.16 9248 +6.16 546.31 + 33.38
(R1)
Night 5 10.88 + 9.61 83.99 + 9.46 53.94 + 46.57 11.95 88.05 393.88 +48.39
(R2) 10.02 10.02

B1 = Baseline night 1; B2 = Baseline night 2; TSD = Total sleep deprivation; R1 = Recovery night 1; R2 = Recovery night 2; N/A = Not

applicable.

Endogenous and radiation-induced DNA strand breaks

In our study, no significant differences were found for the level of endogenous DNA strand breaks for any of the time points, including those that
involved the sleep loss and psychological stress conditions (Figure 1A; p >.05). Before exposure to radiation, the average of DNA strand breaks for
all participants for the five time points studied was 1.38 + 0.09 (SEM) in units equivalent to radiation dose in Gy (Figure 1A). After ex vivo exposure
of 3.73 Gy of x-rays, the corresponding DNA strand breaks increased to an average of 4.94 = 0.16 (SEM). The difference of 4.94 — 1.38 = 3.56
agrees well with the dose of 3.73 Gy as predicted by the Gy-equivalent dose model [65] (Figure 1B). However, there was a significant effect of time
point on the degree to which radiation-induced DNA strand breaks (F(4, 60) = 5.81; p <.001). In particular, we found that radiation induced
significantly fewer DNA strand breaks in the blood collected the morning after sleep loss (TSD [AM]), (estimated change compared with prestudy =
—0.64, 95% CL = (—0.96, —0.32) in equivalent units of dose in Gy) (#(60) = —4.02; post-hoc Bonferroni-corrected, p <.001). After the TSST, average
radiation—induced DNA strand breaks measured at TSD (PM) were greater than at TSD (AM) and did not differ significantly from the level of ISBs
detected prestudy (Figure 1B). Sex and age did not significantly affect these data.
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Download slide

Mean + SEM DNA strand breaks for N = 16 participants undergoing total sleep deprivation and psychological stress. DNA strand breaks
were quantified at prestudy, baseline, total sleep deprivation in the morning (TSD [AM]), total sleep deprivation after psychological stress
(TSD [PM]), and recovery. TSST indicates the time when induced psychological stress via a modified Trier Social Stress Test (TSST)
occurred. (A) Levels of endogenous DNA strand breaks did not change at different time points and were unaffected by sleep deprivation
and/or psychological stress. (B) By contrast, levels of radiation-induced DNA strand breaks significantly decreased after TSD (AM)
(t(60) = —4.02; post-hoc Bonferroni-corrected, ***p < .001). After TSST, levels of radiation-induced DNA strand breaks increased
compared with TSD (AM) but did not differ significantly from the level of ISBs detected prestudy.

Endogenous and radiation-induced DNA strand breaks in cognitively
vulnerable and cognitively resistant individuals

No significant time point x group interactions or group differences were detected in ESBs for the cognitively vulnerable and cognitively resistant
groups (Figure 2A; p > .05). In addition, the cognitively vulnerable and cognitively resistant groups did not differ significantly for ESBs at any
individual time point (p > .05).
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Mean + SEM DNA strand breaks for N = 16 participants undergoing total sleep deprivation and psychological stress, separated into
cognitively vulnerable (n = 8) and cognitively resistant (n = 8) individuals. DNA strand breaks were quantified at prestudy, baseline, total
sleep deprivation in the morning (TSD [AM]), total sleep deprivation after psychological stress (TSD [PM]), and recovery. (A) There were
no significant time point x group interactions or group differences in ESBs between the cognitively vulnerable and cognitively resistant
performance groups. (B) There was an overall significant time point x group interaction between the cognitively vulnerable and
cognitively resistant performance groups (F(4, 11) = 3.78; p < .05). In addition, sleep-deprived cognitively vulnerable individuals were
more affected by radiation than sleep-deprived cognitively resistant individuals, evidenced by significantly more radiation-induced DNA
strand breaks at baseline before TSD (F(1, 14) = 4.76; *p < .05).
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For ISBs, there was an overall significant time point X group interaction between the cognitively vulnerable and cognitively resistant performance
groups (F(4, 11) =3.78; p <.05; Figure 2B). In addition, ISB values were significantly higher in the cognitively vulnerable group at baseline than they
were in the cognitively resistant group (F(1, 14) = 4.76; p <.05; Figure 2B). No other significant time point x group interactions or group differences
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between the cognitively vulnerable and cognitively resistant performance groups were detected for ISBs (p > .05; Figure 2B).

Discussion

Previous studies have reported an association between sleep loss and stress, and DNA damage and/or DNA repair. We determined whether acute
sleep deprivation and/or psychosocial stress induced by the TSST affected endogenous DNA strand breaks and/or radiation-induced DNA strand
breaks, and whether DNA strand breaks predict cognitive performance during sleep deprivation. We found that endogenous DNA strand breaks did
not change with time, and levels were not affected by TSD or psychological stress. By contrast, radiation-induced DNA strand breaks decreased
after TSD but increased back to baseline following psychological stress. Furthermore, based on PVT performance, cognitively vulnerable individuals
were more sensitive than cognitively resistant individuals to induction of radiation strand breaks at baseline, but levels of DNA strand breaks were the

same for these two groups after sleep deprivation.

Our findings regarding radiation-induced DNA damage are intriguing and unexpected. The levels of radiation-induced DNA strand breaks at prestudy
and baseline were in accordance with the expected DNA strand break levels induced when applying 3.73 Gy of x-ray. Interestingly, radiation induced
fewer DNA strand breaks after sleep deprivation suggesting that sleep loss causally decreased radiosensitivity. The level of radiosensitivity could
depend on the following: (1) DNA repair activity, (2) cell chromatin status, (3) cell cycle status, (4) cell antioxidant status, or (5) cell type. Since cells
were irradiated on ice and lysed and analyzed immediately after, any influence of DNA repair mechanisms is unlikely. Cells with relaxed chromatin
and cells in the S phase of the cell cycle are more, not less, sensitive to radiation [67, 68]; therefore, cell cycle status can be excluded. Radiation
induces the formation of reactive oxidative species (ROS) through water radiolysis. Since antioxidants are radical scavengers, increased antioxidant
capacity reduces the radiation-induced DNA damage [69]. Interestingly, acute TSD increases antioxidant responses such as increased glutathione
peroxidase (GPx) activity in rats [70]. Furthermore, sleep-deprived mice had higher expression levels of the manganese superoxide dismutase
(MnSOD) gene and significantly increased copper-zinc-superoxide dismutase (CuZnSOD) and MnSOD activity compared to a control group [71]. A

recent meta-analysis in animals concluded that sleep deprivation has an important antioxidant function, although further studies are needed [72].

Notably, sensitivity to radiation also depends on cell type. In this study, we analyzed DNA strand breaks in PBMCs, a mixed blood cell population
including lymphocytes (T cells, B cells, and NK cells), monocytes, and dendritic cells. Sleep deprivation affects blood cell distribution, changing the
percentage of different subpopulations [73] such as granulocytes [74], neutrophils [75], and NK cells [76-78]. Additionally, different types of immune
cells (T cells and B cells) from mouse splenocytes have different radiosensitivity [79]. A comprehensive review summarized the current knowledge
of radiosensitivity of immune cells and concluded that stem cells, T helper cells, cytotoxic T cells, monocytes, neutrophils, and B cells are more
radiosensitive, whereas regulatory T cells, macrophages, dendritic cells, and natural killer cells appear to be more radioresistant [80]. Therefore, a
sleep-loss-induced shift in the cell subpopulations within the PBMCs could affect the average levels of DNA strand breaks detected after radiation.
However, sleep deprivation mostly affects granulocytes, natural killer cells, and monocytes [73—-78]. Of these, granulocytes are not mononucleated
cells. Natural killer cells, which are more radioresistant, are decreased after sleep deprivation. By contrast, monocytes, which are more radiosensitive,
are increased after sleep deprivation, which would result in a higher level of DNA strand breaks. Thus, a shift in the cell subpopulation as an
explanation for the lower level of DNA strand breaks observed is unlikely, although further studies are required to determine the extent to which the

DNA strand break effects may be due to a change in certain mononuclear cell subpopulations.

By contrast, acute TSD did not influence the level of endogenous DNA strand breaks in our cohort. Several rat studies reported that sleep deprivation
affects DNA damage [18-20]. This human-rodent discrepancy could be due to the species, the type of analyzed tissue, and/or the duration and type
of sleep deprivation. For example, 6 hr of acute sleep restriction was associated with DNA damage in brain cells but not in peripheral blood cells [19].
Furthermore, another study showed DNA damage in blood and brain cells of rats who were submitted to a long duration of selective sleep stage

deprivation (paradoxical sleep deprivation for 96 hr) [18].

Similarly, in our study, psychological stress induced by the TSST also did not affect the level of endogenous DNA strand breaks. This finding was
unexpected given there are several studies indicating higher DNA damage in stressed individuals. However, only a few studies have been conducted
in healthy populations, and individuals in those studies were exposed to prolonged stress, including students experiencing stress during examination
periods [26]. This suggests that increased endogenous DNA damage may be related to psychiatric disorders or chronic psychological stress rather
than to acute short-term stress in healthy individuals. Indeed, the effect of chronic, subchronic, and acute restraint stress on DNA damage response
has been investigated in the rat brain. Although the expression of genes involved in DNA repair differed depending on the level of stress, endogenous
DNA damage was not affected by stress [30].

Interestingly, the average levels of radiation-induced DNA strand breaks measured after inducing stress at TSD (PM) were higher than those
measured that morning after sleep deprivation but before the TSST. This finding could be explained by a decreased antioxidative capacity of the cells



after stress. Indeed, there are indications of reduced antioxidative capacity after acute psychological stress, although this seems to depend on the
stressor, antioxidative enzymes, and tissue type [81, 82]. Since the participants did not sleep during the 9.5 hr between the TSD (AM) and TSD (PM)
time points, the mechanisms underlying the observed increased radiosensitivity after psychological stress are not due to processes related to sleep.
However, given emerging evidence for circadian rhythmicity of the cellular antioxidant system [83], DNA repair capacity, cell cycle checkpoints, and
apoptosis [84], a time-of-day effect cannot be excluded. For example, splenocytes isolated from mice during the light phase displayed higher DNA
repair activity than those isolated during the dark phase [64], and activity levels of 8-Oxoguanine DNA glycosylase (OGG1), which removes oxidative
DNA damage, were higher in the morning compared with the evening, and consistently, 8-oxoG levels were lower in the morning than in the evening
in humans [85]. In addition, the sensitivity to radiation-induced apoptosis changes throughout the day in cells of small intestinal crypts in mice [86].
However, time-of-day effects on cellular antioxidative and DNA repair capacity are beyond the scope or design of this study, and further

experiments are needed to investigate this issue.

We discovered robust individual differences in the molecular consequences of sleep deprivation and psychological stress. Before sleep loss,
individuals who are cognitively resistant to sleep deprivation (defined by PVT performance) were more resistant to radiation than individuals who are
cognitively compromised by sleep deprivation. Notably, rats also showed individual differences in performance on the validated rodent version of the
PVT [87-90] in response to irradiation, with some rats showing performance resistance and others showing vulnerability [91]; the vulnerable rat
group had changes in the levels of the dopamine transporter and the D2 receptor, implicating dopamine as a possible biological mechanism of action
[91, 92]. Thus, heightened sensitivity to environmental stressors, including radiation, may make the vulnerable subgroup more susceptible to cognitive
performance deficits after sleep loss. Thus, tests of sensitivity to radiation or other environmental stressors in a well-rested individual may provide a

possible biomarker for predicting individual differences in performance after sleep loss.

Our study has the following limitations. Our participants were healthy, and between the ages of 29-52 years, and thus our results may not apply to
other age groups (e.g. adolescents or the elderly), or to nonhealthy individuals. Although our sample size was 16 participants, we assessed biological
and cognitive outcomes at multiple time points for each participant, and data were collected under highly controlled conditions, thus capitalizing on a
within-participants design with reduced variance. In addition, our study design does not allow for the effects of psychological stress to be completely
separated from the effects of TSD on radiosensitivity. Finally, our study was not designed to detect time-of-day effects on cellular antioxidative

capacity but rather to focus on the role of sleep deprivation.

In our study, sleep deprivation, alone or in combination with psychological stress, did not significantly induice DNA damage. By contrast, sleep
deprivation reduced radiation-induced DNA strand breaks, supporting the idea of an antioxidative function of sleep deprivation. Furthermore, an
individual’s level of radiosensitivity predicted his/her subsequent cognitive performance. Given that the consequences of sleep deprivation have been
investigated in diverse human cohorts, including firefighters [93], astronauts [94, 95], nurses [96], students [97], and physicians [98], it is critical to

identify molecular biomarkers to predict individual vulnerability to sleep deprivation and develop effective countermeasures.
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