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ABSTRACT DNA encodes protein primary structure using 64 different codons to specify 20 different amino
acids and a stop signal. Frequencies of codon occurrence when ordered in descending sequence provide a
global characterization of a genome’s preference (bias) for using the different codons of the redundant
genetic code. Whereas frequency/rank relations have been described by empirical expressions, here we
propose a statistical model in which two different forms of codon usage co-exist in a genome. We in-
vestigate whether such a model can account for the range of codon usages observed in a large set of
genomes from different taxa. The differences in frequency/rank relations across these genomes can be
expressed in a single parameter, the proportion of the two codon compartments. One compartment uses
different codons with weak bias according to a Gaussian distribution of frequency, the other uses different
codons with strong bias. In prokaryotic genomes both compartments appear to be present in a wide range
of proportions, whereas in eukaryotic genomes the compartment with Gaussian distribution tends to dom-
inate. Codon frequencies that are Gaussian-distributed suggest that many evolutionary conditions are
involved in shaping weakly-biased codon usage, whereas strong bias in codon usage suggests dominance
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of few evolutionary conditions.

Genome sequencing has provided a large amount of information on
how specific genomes use the 64 different codons of the redundant
genetic code. This information on codon usage by genomes has raised
many questions ranging from the fundamental to the technical: Can
codon usage help elucidate the origin of the universal genetic code
Crick (1968)2 Do genes carry information beyond amino acid
sequence in their usage of synonymous codons Zuckerkandl and
Pauling (1965)? What are the evolutionary mechanisms and pos-
sible (dis)advantages that make genomes use certain different co-
dons more (or less) often than others Zuckerkandl and Pauling
(1965); Andersson and Kurland (1990); Duret (2002); Plotkin and
Kudla (2011)? How do variations of codon usage arise in evolution
Knight et al. (2001); Chen et al. (2004); Sharp et al. (2010); Shah
and Gilchrist (2011)? What needs to be understood and controlled
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to optimize translation in heterologous expression systems Boél et al.
(2016)?

The detailed information compiled on diversity of codon usages
within and across specific genomes has naturally overshadowed a search
for common patterns in codon usage that overarch specific codon usages
in specific organisms. One such pattern is the descending sequence of
genomic codon frequencies. It characterizes bias inherent to the usages
of different codons made within a given genome. Intra-genomic bias is
necessary for the existence of inter-genomic diversity in the usage of the
different codons.

Interest into frequency/rank relations of genomes first concerned
linguistic analogies of the language of genes’ and spoken languages
Bender and Gill (1986). Empirical formal descriptions from this line
of work include a power of rank (Zipf’s law) Bender and Gill (1986);
Obst et al. (2011), an exponential of rank Tsonis et al. (1997); Som et al.
(2001), and a combination of exponential and linear relations Frappat
et al. (2003). Codon frequency/rank curves were described by statistical
relations with either no external parameter Borodovsky and Gusein-Zade
(1989), or two external parameters Naumis and Cocho (2007,
2008). With exception of the statistical model of Borodovsky and
Gusein-Zade (1989), these descriptions have not been interpreted
with regard to characteristics of evolutionary conditions that shape
codon usage. In contrast, to account for observations of inhomoge-
neous codon usages among genes of the same organism, Gusein-Zade
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Figure 1 Biased usage of different codons in genomes.
Codon frequencies of Homo sapiens (A, red color),
Arabidopsis thaliana (A, blue color), Streptomyces gri-
seus (B, red color), and Clostridium tetani E88 (B, blue
color). Frequencies are ordered as described in the text,
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and Borodovsky Gusein-Zade and Borodovsky (1990) have proposed
that there exist two compartments with exponentially-distributed
codon frequencies.

In this study we investigate intra-genomic bias in codon usage and
test the applicability of a generalized two-compartment model in a large
set of different genomes. We find that superposition of two compart-
ments of codons with different usages describes genomic frequency/rank
plots consistently. Variation of the proportion of the two compart-
ments captures the variations observed among frequency/rank plots
of genomes from many taxa. In one compartment, prevailing in eu-
karyotes, codon usage follows a random pattern as described by a
Gaussian distribution of frequencies. Usage bias in that compartment
is weak. In the other compartment, usage bias is strong to the extent of
using essentially a subset of the available different codons. Prokaryote
genomes reveal both compartments in widely varying proportions.
The existence of a genomic compartment using codons with Gaussian-
distributed frequencies likely implies the existence of many evolu-
tionary conditions, which together could underlie codon usage of
eukaryotic genomes.

BIASED USAGE OF CODONS: OBSERVATIONS

Different codons occur with a range of frequencies in a given genome,
and any specific codon tends to occur with generally different frequen-
cies across different genomes. These two aspects of bias in codon usage
are illustrated in the cases of four organisms sampled from diverse taxa
(Figure 1A,B).

In Figure 1A, the frequencies of the 64 different codons in human
genomic DNA have been put in descending order (red color). When the
frequencies of the different codons of the plant Arabidopsis thaliana are
plotted in the order of the ordered human codons, they do not form a
descending sequence (blue color). The codon frequencies of the plant,
however, when ordered among themselves, form a descending se-
quence (line) that is quite similar to that of the ordered human
frequencies. Codon usages of the bacteria Clostridium tetani and
Streptomyces griseus also reveal similar intra-genomic bias, but
diverse patterns of inter-genomic bias (Figure 1B). Both forms
of bias are stronger in the bacteria than in human and plant.
In each of the pairs of genomes of Figure 1A,B, a shared pattern
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of intra-genomic bias is associated with two distinct patterns of
inter-genomic bias.

Here we study the intra-genomic aspect of codon usage bias in
the genomic coding DNA of a set of 1840 organisms of different
taxa tabulated in the CUTG database Nakamura et al. (2000) (files
‘gbxxx.spsum.txt’ where xxx = bct, inv, mam, pln, pri, rod, vrt). We
restrict analysis to genomes represented with total codon counts
> filci =10*, and define frequencies of occurrence, y;, of different
codons i (1 =i=64) by:

Ci
64
DG

For a non-parametric assessment we measure intra-genomic ‘bias’ as:

Vi = (1)

2

For a hypothetical genome in which all different codons occur with
the uniform frequency 1/64, bias B = 0. A real genome will have
bias B> 0.

A histogram of codon usage bias, B, constructed over the entire
set of 1840 analyzed genomes is shown in Figure 1C (gray-shaded).
Histograms drawn as lines represent the subsets eubacteria (black),
archaea (red, counts scaled by a factor of 5), and eukaryotes (blue).
The genomes presented as examples in Figure 1A,B locate to the
bins marked by asterisks. Weak bias of codon usage is characteristic
of eukaryotic genomes, whereas prokaryotic genomes reveal a wide
range of bias. Overall, bias varies about threefold over the sampled
set of genomes.

Frequency/rank curves averaged over the genomes in each bin of the
bias histogram in Figure 1C are shown in Figure 1D. Codon usage bias
with respect to average codon frequency (dashed line) is observed in all
genomes, but a characteristic of the frequency/rank curve changes in
the succession of curves from weak (purple lines) to strong bias (red
lines): in curves associated with weak bias, curvature changes direction
near the mean frequency, whereas curves associated with strong bias
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decline without inflection. Moreover, frequency of genomes with strong
bias decays in a cascade-like fashion about the lower and upper halves
of the ranks.

Frequency/rank relations of a genome assign to a given frequency the
number of different codons that have frequencies larger than or equal
to that frequency. In this way they define the cumulative distribution of
the random variable, codon frequency. For this statistical view of the
descending frequency sequence, rotate Figure 1 clockwise by 90 degrees.
Then the horizontal axis in panels A,B, and D is the random variable,
codon frequency. A position on the vertical axis, read as offset with
respect to rank 64, indicates how many different codon values have
frequencies less than that at that frequency. The distributions in
Figure 1A reveal a sigmoid cumulative distribution, whereas those in
Figure 1B resemble an exponential distribution.

In an earlier study of codon usage, Gusein-Zade and Borodovsky
Gusein-Zade and Borodovsky (1990) have investigated the possibility
that genomes are inhomogeneous due to the existence of gene com-
partments that make distinct usages of different codons. Specifically,
they developed a model of two compartments, each characterized by an
exponential distribution. When only one compartment was presentin a
genome, the distribution was exponential. When both compartments
co-existed, the overall frequency distribution was described by the
convolution of the two scaled exponential distributions. This model
was compared to a small dataset then available to the authors and
found to account for characteristics such as the inflection observed in
certain frequency/rank relations.

In view of the larger dataset provided by the CUTG database, we
noticed that the Gusein-Zade and Borodovsky (GZB) model with two
exponentially distributed components falls short regarding the range of
bias that it can describe. Here, bias can vary between 1//(64) = 0.125
and 1/4/(128) = 0.088 depending on the proportion of the two com-
partments. This range is substantially less than the observed bias range
(Figure 1C). In this study, we find that a two-compartment model of
codon usage describes also the larger dataset of the CUTG database,
where variations among genomes are accounted for by a single param-
eter, the proportion of the two compartments. A generalization of the
GZB model, however, is necessary to describe the larger dataset: the
distributions that describe codon usage in each compartment need to
be chosen differently.

In our generalized model, one compartment uses different codons
according to a Gaussian distribution that produces minimal bias. We
suppose this compartment to dominate codon usages like those by the
genomes in Figure 1A. A Gaussian distribution would be expected to
arise due to the Central Limit Theorem of statistics if many different
evolutionary conditions shape codon usage in this compartment.
Alternatively, the Gaussian compartment could represent many
smaller compartments with not necessarily Gaussian distributions
of codon frequencies.

The other compartment of our model is governed by a distribution
that produces even stronger bias than the exponential distributions
proposed by GZB. The exponential distribution, as pointed out by GZB
Gusein-Zade and Borodovsky (1990), ‘obeys the principle of maximum
diversity of frequencies’, but this does not exclude that more biased
distributions are possible (though less likely to arise by chance). For
instance, genomes might restrict their machinery of translation to using
a subset of different codons within the degenerate genetic code, or even
use certain amino acids with preference. Such a codon usage is manifest
in the genomes of Figure 1B. In our model, we derive an empirical
description of codon frequencies in the second compartment from a
subset of the data. We suppose this compartment to dominate in ge-
nomes that use different codons with strong bias.
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CONSTRUCTION OF THE MODEL

We describe the model together with a Monte-Carlo numerical approach
used to construct it (Figure 2). Our approach reveals (and allows one
to assess) a limitation inherent to modeling multiple compartments of
codon usage.

Assume a genome comprises two compartments in which, generally,
each different codon is used according to two distinct and mutually
independent statistical distributions: a Gaussian distribution in com-
partment 1, and an empirically described distribution in compartment
2. Both distributions are naturally truncated to the range of codon
frequency, 0 = y = 1. Overall frequency of a different codon is given
by the algebraic sum of the scaled frequencies in the two compart-
ments. If « is the proportion of compartment 1,

y=an+(1-a)yy 3)

The cumulative probability of frequency y; in compartment 1 is that
of a truncated Gaussian distribution,

where ® denotes the cumulative normal distribution function with
position w and scale 0. These two parameters are restricted by the
requirement that the mean of the truncated distribution be equal
to 1/Necodons (Neodons = 64 being the number of different codons).
This restriction follows from the normalization inherent to codon
frequency. It leads to the relation:

654 - 9(:2)

o) — () ®

1/I\rcodons =M+

where ¢(t) = d®(t)/dt. Thereby, the Gaussian distribution has only
one external parameter. We will choose o and determine w by solving
equation 5 for u.

We generate a frequency sequence for compartment 1 using
Monte-Carlo sampling of frequency into Ncodons discrete bins that
are associated with uniform increments of cumulative probability
over the range 0 < P < 1. In each of 10° sampling cycles, a cumula-
tive probability value is drawn from a generator of uniform random
values in the range 0 < R < 1. The associated frequency y; is com-
puted by solving equation 4 for y; using a root finder. The frequency
y1 is included into the frequency average accumulated in the bin
associated with the probability interval. A Monte-Carlo sampled
frequency sequence is shown in Figure 2A (solid line). This calcula-
tion needs to be done only once for a chosen Gaussian distribution.

We compute the frequency sequence of compartment 2 empirically,
as an average over a group of genomes that reveal the strongest bias of
codon usage in our dataset. We average the frequency sequences of
the genomes locating to the right-most bin of the bias histogram
(Figure 1C). In this study we will not further analyze the statistical
basis of this empirical distribution. We will show here that the charac-
teristics of that distribution are universally detected in genomes across
taxa, as are the characteristics of a particular Gaussian distribution.

To construct a frequency sequence for a genome comprising, e.g.,
two equally large codon compartments, we scale the compartmental
distribution frequencies by 1/2. We also randomize the association of
different codon and frequency rank among the two scaled frequency
sequences. This is done by assuming some order of different codons
in the ranks of both compartments. Compartment 1 retains that order
(represented by a rainbow sequence of colors in Figure 2A), whereas
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the order is scrambled in compartment 2 by swapping the colors of
randomly chosen pairs of ranks in 10* cycles (Figure 2B).

We merge the scaled and ordered sequences by algebraically adding
to each frequency from compartment 1 the frequency from compart-
ment 2 that is associated with the same different codon (i.e., color). This
produces the frequency sequence in Figure 2C, which happens to be no
longer in descending order. Re-ordering of that sequence produces
the joint frequency sequence of the two codon compartments of the
genome (Figure 2D).

The frequency sequence of the compartmentalized genome is
intermediate between the compartmental sequences. It also has sto-
chastic roughness that does not exist in the contributing sequences.
Both compartmental sequences are thoroughly sampled in the pro-
cedure of merging frequencies but each joint frequency is sampled
from exactly one pair of frequencies that is formed by a particular
different codon in the two compartmental sequences. We cannot
expect to model this pseudo-stochastic aspect of joint frequencies
because an observed genomic frequency sequence does not reveal
how a different codon is associated with rank in each compartment.
We can, however, assess the potential consequences of this uncertainty
by simulations with the model.

We re-compute the joint frequency sequence using different asso-
ciations of different codons and frequency ranks in the model com-
partments (by randomizing the ‘colors’ in compartment 2 for each
trial). Figure 2E shows examples of frequency sequence computed in
three different trials (colored lines) and an average curve computed
over 100 trials (black line) after re-ordering the sequence from each
trial. All individual trials produce frequency sequences that fluctuate
with respect to their mean to an extent small enough (rms of ~ 1073)
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to preserve systematic features of the frequency sequence. These sim-
ulations quantify how much the mean theoretical curve, which does
not capture consequences of specific ranks of different codons, is
expected to diverge from the curve observed in a genome in whose
compartments different codons have specific, but unknown ranks.

The computer code for all computations was written from scratch in
a PostScript-like language and is available in Zenodo (Khomtchouk and
Nonner 2019). Code was executed using a virtual machine (Peyser and
Nonner 2011).

Data availability

The authors affirm that all data necessary for confirming the conclu-
sions of the article are present within the article, figures, source code,
and tables.

RESULTS

We test the generalized two-compartment model on 1840 genomes from
the CUTG database. Frequency sequences of the entire genome set are
modeled by adjusting only the proportion « of the compartment with
the Gaussian distribution while maintaining the Gaussian or empirical
distributions of each compartment invariant. The scale of the Gaussian
distribution is chosen to be o = 0.009, which implies the position
= 0.01461 by equation 5. The standard deviation of the truncated
Gaussian distribution is 0.0081, and that of the empirical distribu-
tion 0.0207. These compartmental distributions (and a = 1/2) have
been used in the computations for Figure 2. In optimizing o we quan-
tify the closeness of fit by the rms residual between observed and mean
theoretical frequencies (the latter determined from 100 trials as
described above). This residual is expected to approach 1073 for

-=.G3:Genes| Genomes | Genetics



Figure 3 Observed frequencies of codon occurrence
compared to theory. Gray shaded: ordered sequences
of the frequencies of four genomes (A, B, D, E) and ordered
frequencies averaged across the subsets of genomes in
the two marked histogram bins in Fig. 1C (C, F). Theo-
retical frequencies (black lines) are computed with the
indicated proportion, a, of the compartment with Gauss-
ian distribution; dotted lines: residuals between observed

and theoretical frequencies. The rms values of the re-
siduals, scaled by 103, are: 1 (A), 0.8 (B), 0.4 (C), 2.2 (D),
1.9 (E), and 1.1 (F).
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a = 0.5 because the theoretical frequency sequence is an average
over many different rankings of a different codon’s frequency in the
two compartments (Figure 2E).

Figure 3A,B,D,E shows observed and theoretical frequency/rank
relations for the genomes introduced in Figure 1A,B. The model de-
scribes the data quite well, as is indicated by the residuals of the fit
(dotted lines).

The specific order of codons in the hypothesized compartments of
the individual genomes, which is unknown, might actually limit our
model’s capacity to account for the frequencies in an individual ge-
nome. On the assumption that different genomes of similar codon
usage bias have different specific orders of codons in their compart-
ments (compare Figure 1A,B), we expect that averaging the ordered
sequences of frequencies of such genomes produces a frequency se-
quence that is more accurately predicted by the (averaged) sequence
of the model than are sequences of individual genomes. Figure 3C,F
compare averaged observed frequency sequence with fitted theoreti-
cal sequence. The residuals are substantially smaller than in the case
of the individual genomes (Figure 3A,B,D,E; see legend for rms values
of residuals). The model describes frequency/rank relations averaged
over genomes more accurately than those of individual genomes of
similar usage bias.

Figure 4 extends the comparison of observed and theoretical
frequency sequences to twelve genomes that are commonly studied.
These genomes belong to diverse taxa, and the bias of their codon
usage is in the range most frequently observed in the genomes of the
CUTG database. In all cases, adjustment of the proportion of two
compartments in the model within the range 0.55 = o = 0.8 allows
the model to reproduce these frequency sequences quite well. Although
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the theoretical frequency sequences are determined by varying sub-
stantial contributions from both hypothesized compartments in these
cases, the observed sequences are reproduced without any change made
to the distributions that are assumed to underlie codon usage in each
compartment.

Figure 5A,B summarize the application of the model to the
entire set of genomes, divided between eubacteria and archaea
(A) and plants, invertebrates, and vertebrates (B). The proportion
of the Gaussian compartment, «, which is obtained by the fits of
the model to the data, is plotted vs. the observed bias (equation 1)
for each individual genome (symbols). The lines show the theoretical
relation:

B= \/[Ncodons - 1][&25% + (l_a)ZS% (6)
where s; = 0.0081 is the standard error of the truncated Gaussian
distribution, and s, = 0.0207 the standard error of the empirical
distribution.

Genomes follow the theoretical relation very closely for all taxa
represented here, showing that the model produces a consistent relation
between compartment proportions and codon usage bias over the full
range of bias and of shapes found in the frequency/rank relations of these
1840 genomes.

The accuracy of the model in describing these data are quantified in
Figure 5C showing the rms residual between observed and theoretical
frequency/rank relations for each genome (symbols). The line gives the
rms residual expected to arise from the uncertain frequency ranks of
a different codon in the two model compartments (see Construction
of the model and Figure 2E). For the majority of genomes, the actual
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residual of the fit is similar to the residual expected from the uncertainty
of ranks.

DISCUSSION

We have analyzed aspects of biased usage of different codons at a scale
ranging from the individual full genome to many genomes of differ-
ent taxa. Building on early work of Gusein-Zade and Borodovsky
Gusein-Zade and Borodovsky (1990), we have constructed a gen-
eralized statistical model to describe the ordered sequence of different-
codon frequency in the large genome set of the CUTG database.

Our model posits that codon usage is generally inhomogeneous
within a genome, albeit to varying extents. Two compartments of codons
provide a good description if each compartment has a distinct distri-
bution of codon frequency. Adjusting a single external parameter, the
proportion of the two compartments, while keeping the compartmental
frequency distributions the same then suffices to describe codon usage
throughout the database.

The two compartmental distributions are ‘antipodal’ in that one
is Gaussian with a scale that results in weak bias of codon usage,
and the other, described empirically, results in very strong bias. The
model is not concerned with a specific map relating the two com-
partments to the genome’s codons (at whatever scale), nor with a
specific association of different codons (or their nucleotide compo-
sition) with rank in the ordered frequency sequence. Nevertheless, the
model reveals a pattern of codon usages that is apparently universal
among genomes.
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Existence, within one and the same genome, of two forms of codon
usage indicates the existence of ‘inhomogeneous conditions of molec-
ular evolution within a genome’ Gusein-Zade and Borodovsky (1990).
Inhomogeneity must be strong enough to drive codon usage into
two antipodal compartmental patterns. Of the conditions that sup-
port either antipodal distribution of codon frequency, the ones that
result in the strongly biased distribution might intuitively appear as
the stronger determinants of codon usage. Then, the compartment
with Gaussian distribution might be determined more by the ab-
sence of strong determinants than by distinguished conditions that
favor the more balanced codon usage. Such a simple view of condi-
tions determining codon usage is diffracted by the fact that even the
postulated ‘strong’ conditions must generally result in much differ-
ent ranks of particular different codons in similar ordered sequences
of frequency (Figure 1B), a tendency recognizable even in genomes
that use codons with less bias (Figure 1A). It is therefore clear that a
further discussion of conditions that shape codon usages needs to
consider the fate of the specific different codons (a study of this kind
will be presented in a separate paper).

In the codon compartment that we model by a Gaussian distribution
of frequency, that distribution likely summarizes consequences of many
evolutionary conditions as well as outcomes in many subpopulations of
the compartment. The Central Limit Theorem of statistics would then
imply that the joint distribution approaches a Gaussian, even if individual
contributions have non-Gaussian frequency distributions with generally
different means and variances. Inhomogeneity of codon usage among

-=.G3:Genes| Genomes | Genetics
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Figure 5 The two-compartment model describes biased
codon usage of 1840 genomes. (A) The single varied
model parameter a describing a genome plotted vs.
the observed codon usage bias, equation 1: black symbols
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genes, or within genes, of a given genome is a common phenomenon,
and in many instances has been associated with functional aspects
of translation (for recent reviews see Komar (2016); Hanson and
Coller (2018)).

The wide range of taxa revealing a Gaussian compartment in genomic
codon usage (Figure 5) suggests that conditions contributing to this
compartment exist universally across genomes, but does not require
that conditions be the same across taxa. On the other hand, our obser-
vation that one distribution (of fixed scale and position) describes
the Gaussian codon compartment of different genomes suggests the
possibility that important evolutionary conditions shaping Gaussian-
distributed codon usage are widely shared by genomes.

The strongly biased distribution of the second codon compartment,
by virtue of being non-Gaussian, suggests a comparably simple structure
informed by few but strong evolutionary conditions. This raises the
question of how consequences of both weak and strong evolutionary
conditions might co-exist in one genome. An answer might have to
include not only the short-term evolutionary status but also the long-
term evolutionary history of an organism - the evolutionary condi-
tions informing codon compartments need not co-exist within one
and the same span of time.
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