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ABSTRACT The ability to predict the agronomic performance of single-crosses with high precision is essential for selecting superior
candidates for hybrid breeding. With recent technological advances, thousands of new parent lines, and, consequently, millions of new
hybrid combinations are possible in each breeding cycle, yet only a few hundred can be produced and phenotyped in multi-environment
yield trials. Well established prediction approaches such as best linear unbiased prediction (BLUP) using pedigree data and whole-genome
prediction using genomic data are limited in capturing epistasis and interactions occurring within and among downstream biological strata
such as transcriptome and metabolome. Because mRNA and small RNA (sRNA) sequences are involved in transcriptional, translational and
post-translational processes, we expect them to provide information influencing several biological strata. However, using sRNA data of
parent lines to predict hybrid performance has not yet been addressed. Here, we gathered genomic, transcriptomic (mRNA and sRNA) and
metabolomic data of parent lines to evaluate the ability of the data to predict the performance of untested hybrids for important
agronomic traits in grain maize. We found a considerable interaction for predictive ability between predictor and trait, with mRNA data
being a superior predictor for grain yield and genomic data for grain dry matter content, while sRNA performed relatively poorly for both
traits. Combining mRNA and genomic data as predictors resulted in high predictive abilities across both traits and combining other
predictors improved prediction over that of the individual predictors alone. We conclude that downstream “omics” can complement
genomics for hybrid prediction, and, thereby, contribute to more efficient selection of hybrid candidates.
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HYBRID breeding has considerably advanced yields in
crops such as maize, rice, sorghum, pearl millet, rye,

sugar beet, and sunflower (Duvick 1999). To exploit heterosis
in an optimal manner, parent lines are organized in geneti-
cally distinct heterotic groups (Melchinger and Gumber
1998; Reif et al. 2007). Each breeding cycle results in large
numbers of new inbred parents, especially if line development
is based on the doubled haploid (DH) technology (Wedzony

et al. 2009) or on rapid cycles of recurrent selfing by single
seed descent (SSD). Any possible combination of two lines
from different groups can potentially yield a unique single-
cross hybrid that may result in a new cultivar. Together with
the large number of available parent lines (around n = 1000
or more per heterotic group), this poses a great challenge to
plant breeders, whomust then select the superior ones from n2

potential hybrid candidates. From these numbers it becomes
obvious that it is economically and logistically impossible to
evaluate the phenotypic performance of all n2 hybrid candi-
dates in multi-environment field trials.

Previous studies have shown that genotypic value of un-
tested hybrid candidates can be successfully forecast using
predictors collected on the 2n parent lines as the basis of a
statisticalmodel trainedwith an onlymoderately sized subset of
hybrids with phenotypic data (Bernardo 1994; Massman et al.
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2013; Technow et al. 2014; Kadam et al. 2016). Traditionally,
pedigree and genomic information on the parent lines have
been used for predictions of breeding values, and the major-
ity of studies in the past decade focused on conceiving and
improving algorithms for exploiting the full potential of these
data (Meuwissen et al. 2001; Maenhout et al. 2010; Habier
et al. 2011). Best linear unbiased prediction (BLUP) was ini-
tially developed for animal breeding (Henderson 1984), and
later established in plant breeding by Bernardo (1994). As an
approach for polygenic traits, BLUP shrinks all effects equally
and uses the degree of relatedness, based on pedigree infor-
mation, to predict breeding values. However, coancestry co-
efficients calculated from pedigree data are expectations, and
can deviate from the realized relationship between individu-
als because pairs of founder genotypes are considered unre-
lated and Mendelian sampling is neglected, as are the effects
of selection (Cox et al. 1986; Speed and Balding 2015). Ge-
nomic information addresses these issues but captures the
activity of genes only imperfectly through linkage (Schopp
et al. 2017). Moreover, statistical models used in genomic
prediction are limited in capturing physiological epistasis
(Sackton and Hartl 2016), such as pervasive interactions be-
tween loci throughout the genome (Brem et al. 2005; Brown
et al. 2014).

Recently, research turned toward exploring the predictive
value of intermediary biological strata in the cascade from
genotype to phenotype, expecting these would capture gene
activities and integrate interactions within and among up-
stream strata. The transcriptome reflects the active part of the
genome by quantifying gene expression and has displayed
promising properties for predicting yield performance in both
maize inbred lines (Guo et al. 2016) and hybrids (Westhues
et al. 2017; Zenke-Philippi et al. 2017). As the final stratum in
the biological cascade, the metabolome might be expected to
integrate all previous processes and interactions. It has in-
deed yielded promising predictive abilities for lines (Guo
et al. 2016) and testcrosses (Riedelsheimer et al. 2012) in
maize, and for hybrids in rice (Xu et al. 2016) and maize
(Westhues et al. 2017), whenmetabolites were sampled from
plant tissue at an early development stage. In this study, for
the first time, we augment the repertoire of “omics” predic-
tors with small RNA (sRNA) sequences expected to further
improve prediction of hybrid performance due to their in-
volvement in transcriptional, post-transcriptional, and trans-
lational processes of gene regulation (Lappalainen et al.
2013; Franks et al. 2017; Li et al. 2017).

In practical breedingprograms, only pedigree andgenomic
data are currently established for routine analyses and appli-
cations. It is therefore of great interest to compare genomic
with other “omics” data regarding their ability to predict hy-
brid performance in a dataset that represents an applied
hybrid breeding program with important agronomic traits.
Major questions include how consistently single predictors
perform for different traits, and whether combining pre-
dictors provides high predictive ability more consistently
across traits, due to complementation of positive properties.

In addition, determining the impact of individual predictors
within such combined predictors is of interest.

Our objectives were to (i) compare the performance of
“omics” or pedigree data as single predictors for the predic-
tion of hybrid performance and (ii) investigate the benefit of
combining them in major agronomic traits of grain maize by
using multi-environmental phenotypic data of hybrids to-
gether with pedigree, genomic, transcriptomic, and meta-
bolic data of their parent lines.

Materials and Methods

Genetic material and agronomic data

A set of 1567 hybrids, denoted as HTot, was produced in
16 factorial mating designs between 143 Dent and 104 Flint
lines from the maize breeding program at the University of
Hohenheim (Stuttgart, Germany). The present study is an
extension of the publication of Technow et al. (2014) who
analyzed a subset of factorials for hybrid prediction on the
basis of genomic data only. All HTot hybrids were evaluated in
field experiments between 1999 and 2014 at 4–10 (median:
7) agro-ecologically diverse environments across Germany.
In the trials of each factorial, which included at least five
common check genotypes, entries were randomized in field
designs with incomplete blocks (a-lattice design, Patterson
and Williams 1976) and planted in two-row plots. Traits de-
termined were grain dry matter yield (GY, in tons per hect-
are), adjusted to 155‰ grain moisture, and grain dry matter
content (GDMC, in percent). For a subset comprising 50 Dent
and 41 Flint inbred lines, denoted as D = {1, 2, . . ., 50} and
F = {1, 2, . . ., 41}, data of all subsequently described pre-
dictors were available. To ensure that comparisons among
different predictor data types were carried out using identical
sets of genotypes for all involved predictors, the initial HTot

was restricted to the subset of crosses between D and F,
resulting in a core dataset H ⊂ HTot, comprising 550 hybrids.
These core set hybrids H, for which all five predictor data types
were available for both respective parents, were used for
hybrid prediction. Pedigree-based relationship coefficients.

Pedigree data

Pedigree data (P) were analyzed for all parent lines at least
back to the generation of their grandparents. Coancestry coef-
ficients (Falconer and Mackay 1996) were calculated for all
pairs of lines within each heterotic group using SAS (version
9.4; SAS Institute) as detailed in Westhues et al. (2017).

Endophenotypes

Genomic SNP data (G) of all inbred lines were obtained with
the Illumina SNP chip MaizeSNP50 (Ganal et al. 2011). After
performing quality checks as described by Technow et al.
(2014) and imputation of the remaining 0.9% missing data
points (Browning and Browning 2009), a set of 37,392 poly-
morphic SNPs was obtained and used for all further analyses.

Transcriptomic mRNA data (T) of all parent lines were
gathered as detailed by Westhues et al. (2017). Briefly, five
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seedlings per line were grown in a climate chamber. Seven
days after sowing, whole seedlings were sampled, frozen in
liquid nitrogen, pooled, and homogenized. Profiling with a
custom microarray (GPL22267) resulted in 1323 transcripts.
After raw data were normalized (Smyth and Speed 2003;
Ritchie et al. 2007), best linear unbiased estimates (BLUEs)
and repeatabilities for transcript abundance were obtained
separately for the Dent and Flint lines as described in
Westhues et al. (2017). Passing a repeatability threshold
set to 0.1 was required in both heterotic groups, resulting
in 300 gene expression profiles for further analyses.

Transcriptomic sRNA data (S) were collected from all
parent lines, of which 10 were replicated for calculation of
repeatabilities. Four seeds per entrywere taken from the same
seed lot used for metabolite and mRNA profiling, and were
grown at four different dates. At each date, seeds of all lines
(with one seed per entry) were laid out in a completely
randomized design, and grown under controlled conditions
(25� 16 hr day, 21� 8 hr night, 70% air humidity) in a climate
chamber. Seven days after sowing, for each entry, all four
biological replicates were sampled as whole plants, pooled,
and homogenized. Total RNAwas isolated with the “mirVana
miRNA isolation kit” (Ambion, Thermo Scientific). Illumina-
compatible sequencing libraries were generated using the
NEXTflex Small RNA Sequencing Kit v2 (BIOO SCIENTIFIC)
and following the manufacturer’s recommendations with
1 mg of total RNA. Sequencing of 50-nt single end reads
(SE50) was performed by the Beijing Genome Institute
(BGI, Hong Kong, China) on an Illumina HiSeq 4000 se-
quencer. After adapter removal, the reads were filtered for
99.9% sequencing quality (i.e., Phred quality score of 30 for
all nucleotides). Read counts were determined for sequences
from 18 to 40 nt. Across all entries, read counts were quan-
tile-normalized according to Bolstad and Irizarry (2003),
with a modification that maintains zero read counts for
sequences not present in the respective sample. To enable
comparison of libraries with varying sequencing depths,
quantile-normalized read counts were scaled to 1 million
reads per library and all sRNAs with at least one read per
million quantile-normalized reads in two entries were
retained. Processing of S data were carried out using custom
Java scripts and resulted in 477,193 unique sRNA sequences.
After a quality check requiring expression in at least 10% of
all samples, and a repeatability threshold set to 0.9, 10,736
sRNA expression levels remained for further analyses. The
raw and processed sRNA expression data are deposited at
NCBI GEO under the accession GSE106098.

Metabolomic data of roots (R)of all parent lines were
quantified as described in de Abreu e Lima et al. (2017). In
short, for each of the two replicates per line, 10 seedlings
were grown in climate chambers. The roots were harvested
3.5 days after sowing, pooled, and snap-frozen in liquid ni-
trogen to quench metabolic activity at sampling. Profiling
resulted in 284 metabolites. After raw data were normalized
(van den Berg et al. 2006), BLUEs and repeatabilities (w2) for
metabolite levels were obtained as detailed in de Abreu e

Lima et al. (2017) and Westhues et al. (2017). Passing a re-
peatability threshold set to 0.3 was required in both heterotic
groups, resulting in 148 root metabolites for further analyses.

Principal component (PC) analysis of endophenotypes:

For predictors G, T, S, and R, individual variables were scaled
and centered across both heterotic groups. For the observed two
clusters, bivariate t-distributions were estimated with Maximum
Likelihood, and their 0.95 quantiles were used to plot ellipses.

Statistical analysis of agronomic traits

Agronomic data of hybrids were analyzed in two stages, as
outlined by Westhues et al. (2017). Briefly, adjusted entry
means were determined for each environment, followed by
a second stage of analysis, entailing the computation of
BLUEs for all hybrids in HTot. For hybrids in the core set H,
these BLUEs were used as response variables in the statistical
models for predicting the hybrid performance. General com-
bining ability (GCA) and specific combining ability (SCA) of
parent lines, as well as variance components (s2

GCAD ; s2
GCAF ;

s2
SCA) of all hybrids in HTot, were estimated as described by

Westhues et al. (2017), in a random effects model with geno-
mic relationship matrices for GCA and SCA effects using
ASReml (Butler et al. 2009). The genomic relationship matri-
ces for GCA effects of Dent and Flint parents, GD and GF, were
determined as detailed below, and for SCA by multiplying
the corresponding elements of GD and GF, as in Bernardo
(1996). Heritabilities (H2) were computed on an entry-mean
basis (Massman et al. 2013) as H2 ¼ ðs2

GCAD þ s2
GCAFþ s2

SCAÞ=
ðs2

GCADþs2
GCAF þ s2

SCA þ s2
R=eHÞ; where s2

R was the residual er-
ror variance, and eH the harmonic mean of the number of test
environments per hybrid.

Comparison of predictive abilities

A cross-validation (CV) scheme, stratified by the parent lines
(Technow et al. 2014) and comprising 1000 runs, was ap-
plied to obtain unbiased estimates of the predictive ability,
and to compare different predictor combinations, as detailed
in Westhues et al. (2017). Briefly, 35 of 50 Dent and 29 of
41 Flint lines were sampled as training parents in each CV
run. From all available hybrids between the 35 Dent and
29 Flint training parents, 200 were sampled at random as
training hybrids. With this procedure, the 550 core set hy-
brids H were partitioned into 200 training set hybrids “TRN”
and 350 test set hybrids “TST,” the latter comprising nT2 =
74 T2 hybrids (both parents tested in TRN), nT1d = 111 T1d
hybrids (dent parent tested), nT1f = 117 T1f hybrids (flint
parent tested), and nT0 = 48 T0 hybrids (neither parent tested
in TRN) on average across all 1000 CV runs. For each hybrid
fraction in a TST and for each scenario, defined as a single or
combined predictor applied to a specific trait, predictive abilities
were computed by using the same partitioning of TRN and TST
samples. This resulted in s vectors pT2, pT1d, pT1f and pT0,
respectively, containing the predictive abilities for 1000 CV
runs, with s pertaining to the number of scenarios. This en-
sured that the vectors pT2, pT1d, pT1f and pT0, respectively, were
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comparable across all scenarios. Predictive abilities were
obtained for each hybrid type, each scenario, and for each
CV run by calculating Pearson correlations between predicted
(ŷ) and observed phenotypes (y).

Prediction models

Hybrid performance was predicted on the basis of the TRN
hybrids in each CV run using predictor data (P, G, T, S, and R)
thatwere available for the corresponding sets of parent linesD
and F, respectively. A GCA model was used for predicting the
performance of TST hybrids as described by Westhues et al.
(2017). Correspondingly, WD and WF are matrices of feature
measurements for the respective predictors (G, T, S, and R).
The dimension of WD and WF, respectively, is determined by
the number of parent lines in the corresponding heterotic
group (lD = 50 and lF = 41) times the number of features in
the corresponding predictor (mG = 37,392; mT = 300; mS =
10,736; and mR = 148). The columns in WD and WF were
centered and standardized to unit variance. For each predictor
and lines from each heterotic group, kernels were defined as

GD ¼ 1
m
WDWT

D;GF ¼ 1
m
WFWT

F ; (1)

where m denotes the number of features for the respective
predictor (VanRaden 2008),WT

D the transpose ofWD, andWT
F

the transpose of WF. In the case of P, coancestry coefficients
were standardized for GD and GF, respectively. The model for
GCA effects was as follows:

y ¼ mþ
XC

c¼1

ZDgDc þ
XC

c¼1

ZFgFc þ e; (2)

where y is the vector of observed hybrid performance
(BLUEs), m is the fixed model intercept, ZD is the design
matrix for random GCA effects of the lines in D (gDc), and ZF
is the design matrix for random GCA effects of the lines in F
(gFc), referring to the c-th predictor data type. With this
model, one predictor (C = 1) or multiple (C . 1) predictors
can be considered simultaneously. The random effects (gDc
and gFc) have expectation zero and covariancematrices equal
toGDcs

2
GCADc andGFcs

2
GCAFc for the GCA effects of the Dent and

Flint lines, respectively, and Is2
e for the residual error. For C.

1, gDc and gFc (c = 2. . .C) were assumed to be stochastically
independent, and variance components for Dent s2

GCADc and
Flint s2

GCAFc were combined for each predictor, c, and stored as
relative variance, vc, in each CV run for later analysis of the
relative variances of the C predictors. By enhancing the
model with SCA effects we arrived at the universal model
for GCA and SCA effects described byWesthues et al. (2017).

In a modified approach, the model (Equation 2) was
extended for predictor-specific weights wc:

y ¼ mþ
XC

c¼1

ZDgDcwc þ
XC

c¼1

ZFgFcwc þ e; (3)

wherewc 2 ½0; 1�;    PC
c¼1wc ¼ 1: Kernels of C = 3 predictors

(P, G, and T) were weighted and summed up, resulting in one
joined weighted kernel per heterotic group. A grid search,
varying the weights wP, wG, and wT in increments of 0.1,
resulted in 66 different joined weighted kernels for Dent
and Flint, respectively. For each of these 66 joined weighted
kernels, the CV procedure was carried out using the same
partitioning of TRN and TST samples as for all other analyses
in this study. Consequently, for each weight combination, the
median across 1000 predictive abilities was reported. In prin-
ciple, this approach could be extended to include all five
predictors, but computational demand becomes markedly
higher with more dimensions.

All predictions were carried out in a computationally
efficient manner by mixed model equations implemented in
the R package “sommer” (Covarrubias-Pazaran 2016), pro-
viding BLUPs for hybrid performance.

Data availability

All statistical analyses, unless stated otherwise, were carried
out using R (R Core Team2016). The agronomic traits data of
hybrids are available in the Supplemental Material, “agro-
nomic.txt” in File S1. The pedigree and genomic data of the
parent lines are available in the supplemental files “pedigree.
txt” in File S1 and “genomic.txt” in File S1, respectively. The
metabolic data of the parent lines can be downloaded as table
S1 of de Abreu e Lima et al. (2017) at https://doi.org/10.1111/
tpj.13495. The transcriptomic data of the parent lines can be
downloaded from the National Center for Biotechnology In-
formation at https://www.ncbi.nlm.nih.gov/geo with GEO
accessions GPL22267 (for the mRNA data) and GSE106098
(for the sRNA data).

Results

Agronomic traits

Variance components ofGCA effectswere larger forDent than
for Flint parent lines, especially for GY (Table 1). The SCA
effects for GY and GDMC contributed 8.5 and 7.1%, respec-
tively, to the total genetic variance. Entry-mean heritabilities
H2 of all hybrids were higher for GDMC (0.96) than for GY
(0.91).

Table 1 GY and GDMC of the entire set HTot of 1567 hybrids, characterized by overall mean (m), variance components of GCA effects for
Dent (s2

GCAD ) and Flint lines (s2
GCAF ) and of SCA effects (s2

SCA) as well as entry mean heritabilities (H2). Each is followed by its SE

Trait m s2
GCAD s2

GCAF s2
SCA H2

GY (t/ha) 11.60 0.72 6 0.09 0.37 6 0.06 0.10 6 0.01 0.91 6 0.008
GDMC (%) 69.51 2.32 6 0.31 2.03 6 0.31 0.33 6 0.03 0.96 6 0.004
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Population structure and kernel matrices

Dent and Flint lines were well separated for G, T, and S, and
partially overlapped for R on the basis of the predictor data
(Figure 1). Off-diagonal elements of the kernels GD and GF,
respectively, exhibited strong associations (Figure 2) be-
tween G and each of P, T, or S, both for Dent (0.72 #

rD # 0.74), and slightly lower for Flint (0.58 # rF # 0.64)
lines. In contrast, associations between R and all remaining
predictors were weak (0.14 # r # 0.30). Remaining associ-
ations among P, T, and S were intermediate.

Single predictors

All of the following results refer to thepredictionofT0hybrids,
unless stated otherwise. The median of predictive abilities
from 1000 CV runs was obtained for each scenario where a
single or combined predictorwas applied to a specific trait. No
predictor achieved consistently superior ranking for predictive
ability (i.e., first or second highest among the five single predic-
tors) for both traits simultaneously. The predictive ability for
G was distinctly higher than for P and also higher than for S
(Figure 3) for both traits. For GY, the predictor G was outper-
formeddistinctly byT, and slightly byR,while, forGDMC,Gwas
the best single predictor. Predictor T was always superior to R,
and superior to S for GY, or nearly equal to it, for GDMC. The

only single predictor that ranked relatively consistently across
traits was S (Figure S1 in File S2); however, at a low level.
Including SCAeffects into ourmodels did not improve predictive
abilities (Table S1 in File S2) for genomic, transcriptomic, and
metabolomic data, and did not change the ranking of predictors.

Combining two predictors

Predictive abilities of the predictor combination PG were
similar to those of G, and higher than for P (Figure 3 and
Figure S2 in File S2). For GY, combining G with a second
predictor other than P improved the predictive ability to a
level superior to G alone, with the biggest improvement
for GT, and, although less pronounced, for GR and GS. For
GDMC, where G was the best single predictor, no improve-
ment was observed. The best single predictor for GY was T,
and combinations of T with any other predictor did not fur-
ther improve predictive ability. The predictor combinations
GT and PT performed consistently well across both traits
(Figure S1 in File S2). Comparing pairs of single predictors
with their combinations (Figure S2 in File S2) revealed that
combinations comprising the best single predictor of the re-
spective trait had similar or slightly lower predictive ability
than the superior single component. Combinations of two
predictors not comprising the best single predictor of the

Figure 1 PC analysis of Dent (red) and
Flint lines (teal) for G, T, S, and R data.
The variances explained by PC 1 (x-axis)
and PC 2 (y-axis) are shown in the re-
spective captions.
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respective trait had higher predictive abilities than any of its
components as single predictors. An exceptionwas PG, where
the combination was nearly identical to G alone.

Model combining three predictors P, G, and T

The three predictors P, G, and T were combined as indepen-
dent factors (Equation 2) for the PGT model and provided
median predictive abilities of 0.795 for GY and 0.573 for
GDMC. The relative variances per predictor (combined for

Dent and Flint) were vP = 0.20, vG = 0.21, and vT = 0.59
for GY, and vP= 0.31, vG= 0.42 and vT = 0.27 for GDMC, on
average across all 1000 CV runs. When combining the three
predictors by joined weighted kernels (Equation 3) in a grid
search (Figure 4), the highest predictive abilities for GY
(r = 0.822) were obtained with weights wP = 0.1, wG = 0.1,
wT = 0.8 or wP = 0.0, wG = 0.2, wT = 0.8, and for GDMC
(r = 0.599) with weights wP = 0.4, wG = 0.3, wT = 0.3, or
wP = 0.3,wG = 0.4,wT = 0.3. The sensitivity of the predictive

Figure 2 Associations among off-diagonal elements of the kernel matrices for various predictors. Diagonal boxes: Densities of pairwise kernel
coefficients among Dent (red) and among Flint (teal) parent lines. Off-diagonal boxes: Scatterplots of kernel coefficients for P, G, T, S, and R data
with the Pearson correlation coefficients for pairwise comparisons between kernel matrices and labels defining the respective pair of predictors
following the pattern “y-axis|x-axis.”
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ability to varying weights (Figure S3 in File S2) matched well
with the range of predictive abilities of the three contributing
single predictors for GY. In contrast, for GDMC, the majority
of the distribution exceeded the value of predictive ability of
the superior single predictor G.

Comparison of T0, T1, and T2

For GY, predictive abilities of T2, T1d, and T1f hybrids were on a
similar level (Figure S4 in File S2), and were clearly separated
from the lower values of T0hybrids, however,with one exception:
if T was included as a predictor, then predictive abilities for T0
hybrids were on a similarly high level as those for T1d, T1f, and
T2 hybrids. For GDMC, predictive abilities were on clearly sepa-
rated levels for T2 (high), T1d, as well as T1f (medium) and T0
(low) hybrids for all investigated single and combined predictors.

Discussion

In modern maize breeding programs, the DH and rapid SSD
methods enable the production of thousands of parent lines

and thus—hypothetically—millions of hybrids anew in each
season. Similar progress is expected for other crops (Wedzony
et al. 2009), especially with the cloning of the gene MATRILIN-
EAL, which triggers haploid induction in maize (Kelliher et al.
2017). Testing all these potential hybrid candidates in multi-en-
vironment field trials is logistically and economically prohibitive.
Any features that can be assessed on the parent lines in a high-
throughput fashion at an early stage of plant development under
standardized conditions, independent of season, and at accept-
able costs, might prove useful to forecast the performance of
hybrid candidates. In principle, this reduces the number of geno-
types onwhich data have to be collected fromn2 hybrids down to
only 2n parent lines plus a moderately sized set of hybrids for
training. Thus, breeding programs could become more efficient
by producing and field testing only the most promising of the
forecasted hybrid candidates.

Foundation of hybrid prediction

The careful establishment of genetically diverse heterotic
groups is regarded as the foundation of hybrid breeding
programs (Melchinger 1999). The breeding program at the
University of Hohenheim, which generated the material used
throughout this study, was based on these principles and
comprises a heterotic pattern of Flint lines, predominantly
based on landraces introduced to Europe centuries ago, and
Dent lines, established from the Iowa Stiff Stalk Synthetic,
and more recently introduced North American material
(Stich et al. 2005; Fischer et al. 2008). Compared to Dent,
the lower GCA variances in Flint corroborate the lower di-
versity of the long-established European Flint group, as ob-
served in previous studies on grain maize hybrids from the
same breeding program (Fischer et al. 2008; Schrag et al.
2010). Consistent with the breeding history, the PC analyses
based on G, T, and S showed clearly separated heterotic
groups (Figure 1).

Such clearly defined and separated heterotic groups re-
sult in decreased ratios of SCA variance to GCA variance,
and, thereby, increase the efficiency of hybrid selection
(Melchinger 1999; Reif et al. 2007). Accordingly, in our study,
SCA variances were considerably smaller than GCA variances
(Table 1), supporting estimates from previous studies in Eu-
ropean grain maize (Fischer et al. 2008; Schrag et al. 2010;
Technow et al. 2014) and silage maize (Argillier et al. 2000;
Grieder et al. 2012; Westhues et al. 2017). These small SCA
variances explain why incorporating SCA effects into the pre-
diction models did not further improve predictive abilities
(Table S1 in File S2), similar to what was observed by
Westhues et al. (2017) in a related dataset for silage maize.
In contrast, distinctly larger ratios of SCA to GCA variance
were reported by Bernardo (1996) and Kadam et al. (2016),
where the latter study comprised materials originating exclu-
sively from several North American Dent heterotic groups.
Heritabilites on an entry-mean basis corresponded well to
estimates published by Massman et al. (2013), who reported
0.85 for GY and 0.98 for grain moisture among maize single-
crosses.

Figure 3 Predictive abilities (r) for T0 hybrids of single predictors (P, G, T,
S, and R) and combinations thereof for GY and GDMC from 1000 CV
runs with median r given above each column.
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Exploiting established predictors

Pedigree information was first used for progeny prediction
(Bernardo 1994) because it was available at practically no
cost and did not require sampling of any plant tissue. In our
study, P was neither a superior predictor for GY nor for
GDMC. While P surpassed the performance of all nonge-
nomic predictors for GDMC, it performed most poorly for
the more complex trait GY. This lack of predictive ability
could be explained by the inability of P to account for any-
thing but the expected relationship between two individuals.
Conversely, the observed superiority of G over P for both in-
vestigated traits could be the result of direct estimation of the
actual relationship between the inbred parent lines by the
SNPs capturing both Mendelian sampling and the effects
of selection (Cox et al. 1986; Speed and Balding 2015). In

addition to realized relationship, genomic information also
captures linkage disequilibrium (LD) between SNP markers
and quantitative trait loci (QTL), thereby providing proxies
for the relationship at the QTL (Schopp et al. 2017), but is
very limited in addressing the activity of genes.

Capturing physiological epistasis

Other factors that influence the phenotype include the per-
vasive interactions between loci (Brem et al. 2005; Brown
et al. 2014), especially for single-cross hybrids, in which all
types of epistasis are fully used in selection (Cockerham
1961). Attempts to model such epistatic effects with genomic
data by extending the model were largely unsuccessful (Hill
et al. 2008; Guo et al. 2016) unless the training and test set
shared close relatives (Jiang and Reif 2015). Given that

Figure 4 Predictive abilities (r) for T0 hybrids in GY and
GDMC, respectively, for 66 cases that differ in their
weights for the predictors P, G, and T. Their correspond-
ing kernels were joined with weights varying from 0 to
1 in increments of 0.1. Weights for P (wP) and G (wG) are
shown at the respective scales; weights for T are wT =
12wP2wG. Plotted values represent medians of r across
1000 CV runs. Heat color schemes differ for GY and
GDMC, ranging from purple, indicating the respective
lowest value, to yellow for the respective highest value.
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genetic effects on the phenotype first pass through the inter-
mediary transcriptome, proteome and metabolome (Ritchie
et al. 2015), these biological strata—also called “endopheno-
types” (Mackay et al. 2009)—offer the prospect of capturing
and incorporating effects from the genome or any other up-
stream stratum including expression of genes or levels of
gene products. The transcriptome, as the second biological
stratum after the genome and reflecting its active part, is
expected to incorporate gene expression and physiological
epistasis (Sackton and Hartl 2016), going beyond mostly
negligible statistical epistasis at the population level. Indeed,
T was clearly the best single predictor for the more complex
trait GY, supporting this hypothesis. Similar results with
regard to genomic and mRNA data were published by
Westhues et al. (2017), who tested the same factorial designs
for silage maize traits in a subset of environments, and by
Zenke-Philippi et al. (2017), who tested a smaller subset of
the factorial designs for grain maize traits. The possibility of
artificially high predictive abilities for T, due to a potential
preselection bias of the custom mRNA chip, was ruled out by
Westhues et al. (2017), who used the same T data. Addition-
ally, independent studies also reported quite good perfor-
mance of transcriptomic RNA-Seq data for the prediction of
several yield-related traits in maize inbred lines (Guo et al.
2016), as well as for prediction of hybrid rice performance
(Xu et al. 2016). Harnessing such advantages of transcrip-
tomic data appears especially relevant in a hybrid breeding
program if a very small fraction of candidates is selected from
the huge number of possible hybrids, because the probability
of successfully selecting the best hybrid candidates is a
strongly convex function of predictive ability (Westhues
et al. 2017). Accordingly, because the predictive ability of T
for T0 hybrids in GY was 14% higher than for G, this would
result in an approximately twofold higher success rate for
selecting the top 100 hybrids out of 106 predicted candidates
for seed production and intensive testing in field trials.

Exploring further transcriptomic predictors

Phenotypic buffering suggests that information on down-
stream “omics” predictors cannot necessarily be inferred from
upstream predictors. For instance, increasing copy numbers
of genes in yeast did not directly increase their expression
levels, which may be an indicator for post-transcriptional
regulation (Ishikawa et al. 2017). Micro-RNAs (miRNA),
which are a subset of sRNAs, can repress the expression of
genes by guiding RNA-induced silencing complexes (RISC) to
their complementary mRNA (Mortimer et al. 2014). In addi-
tion to miRNAs, plants produce a wide variety of other sRNAs
that regulate gene expression at the transcriptional level
by directing epigenetic modifications of chromatin, likely
equally contributing to phenotypic plasticity (Borges and
Martienssen 2015). In our study, however, predictive abilities
of S as a single predictor were weak, and, depending on the
trait, similar or superior predictive abilities were achieved
when using G or T (Figure S1 in File S2). Nonetheless, S
never ranked last among all five predictors.

Given that the relative contributions of transcriptional and
post-transcriptional regulation determine the usefulness of
mRNA levels to infer protein levels, the combination ofmRNA
with sRNA data might therefore suggest an intriguing alter-
native to capturing information similar to the further down-
stream proteome itself (Franks et al. 2017). Indeed, in our
results for GY, predictive ability of TS was the highest among
predictor combinations, but not superior to T as a single pre-
dictor (Figure 3). For GDMC, although the combination TS
provided slightly higher predictive ability than T or S alone,
no overall superiority was observed.

Approximating the phenotype

As the last biological stratum in the complex genotype-phe-
notype cascade, the metabolome is expected to capture and
integrate all previousmain effects and interactionswithin and
among the various strata (Patti et al. 2012). For GY, predictive
abilities based on R were higher than those achieved using G,
albeit still lower than those obtained from using T. Hence,
our results support previous findings on the potential of me-
tabolites for predicting plant yields in studies on rice hybrids
(Xu et al. 2016) and silage maize hybrids (Westhues et al.
2017). In contrast, for GDMC, predictive abilities of R were
lowest, which is also in accordance with results from silage
maize hybrids for dry matter content (Westhues et al. 2017).

It should be noted that inWesthues et al. (2017), aswell as
in our study, the metabolites were sampled from seedlings
only a few days after sowing and grown in climate chambers.
Less promising results have been reported for predictions
based on leaf metabolites sampled from plants in the field
�1 month after sowing (Westhues et al. 2017), highlighting
the impact of environmental factors on metabolite profiles.
More generally, the perturbation of feature levels in endophe-
notypes such as transcripts, metabolites, and proteins is con-
siderably higher than for genomic sequence or marker data.
Endophenotypes are responsive to nongenetic factors such as
abiotic (Caldana et al. 2011; Waters et al. 2017) and biotic
(Tzin et al. 2015) effects, and susceptible to varying sampling
conditions, as applies especially to metabolites with ex-
tremely fast turnover rates (Arrivault et al. 2009). Addition-
ally, age (Francesconi and Lehner 2014;Melé et al. 2015) and
type of tissue (Melé et al. 2015; Searle et al. 2016) are impact-
ing on the feature levels of endophenotypes.

Choice of sampling stage

Taken together, the previous points suggest that sampling of
endophenotypes should ideallybe carriedoutonplantsgrown
in climate chambers under controlled conditions to reduce
the impact of noise effects. With regard to the application
of “omics”-based prediction in commercial hybrid breeding
programs, sampling from seedlings cultivated in climate
chambers provides additional advantages. Controlling the
environmental conditions enables the standardization across
batches. Therefore, independence from season allows to carry
out the assessment throughout the entire year whenever new
parent lines become available. Sampling of several tissues
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simultaneously (leaf, shoot, and root) is easier with seedlings
than with fully developed plants in field plots. Another advan-
tage is the shorter cultivation period, with which prediction
results become more rapidly available to produce the pre-
dicted superior hybrids for further testing. Overall, sampling
of the parent lines at an early stage of plant development un-
der controlled and standardized conditions appears as an ideal
basis to assess features in a high-throughput manner to fore-
cast the performance of hybrid candidates in applied breeding
programs.

Caveats of downstream predictors

While endophenotypes downstream of the genome may in-
corporate heritable upstream interactions within and among
strata (Dalchau et al. 2011; Zhu et al. 2012), it must be con-
sidered that endophenotypes are responsive to nongenetic
factors as discussed above. Technical limitations impose fur-
ther potential constraints on the direct use of some endophe-
notypes. For example, even very recent metabolite-profiling
technologies (Xu et al. 2016) capture only a small subset of
the estimated total set of metabolites occurring in nature
(Fernie 2007), and currently, it is still difficult to reliably quan-
tify a large number of proteins (Franks et al. 2017). Moreover,
measurement error is another source of noise, reducing the
predictive power of endophenotypic features. Evaluations of
predictive abilities, determined at various thresholds for re-
quired repeatability of individual T, S, or R features, suggested
that intermediate thresholds provide highest predictive abil-
ities, striking a balance between a minimum degree of repeat-
ability on the one hand and a sufficient number of features on
the other (Figure S5 in File S2). The optimum thresholds cor-
responded well between GY and GDMC, but differed among
predictors, whichmay havemultiple causes. First, the data sets
of T, S, and R differed in their design, and, more specifically, in
the number of replicated samples, which influences the impact
of noise and also the precision of measurements. Second, the
technologies for analyzing these endophenotypes differed, and
are most likely associated with different levels of precision.
Third, features of T, S, and R specifically interact with envi-
ronmental and physiological factors while genomic sequence
data remains unaffected by them. Fourth, the predictor data
sets differed widely in their numbers of features, ranging from
284 for R to 477,193 for S in their initial data sets. Due to such
differences among data sets of endophenotypes, the thresh-
olds chosen for required feature repeatability were specific to
each predictor.

Prediction of T2, T1, and T0 hybrids

The theoretical upper bound for predictive ability is given byffiffiffiffiffiffi
H2

p
(Bernardo 1996), which is in accordance with all ob-

served predictive abilities for T0, T1, and T2 hybrids in both
traits (Figure S4 in File S2). Further, the fraction of epistatic
effects contributing to the covariance between hybrids, and
captured by P or G, is expected to increase with the degree of
relatedness among individuals (Westhues et al. 2017). It is
therefore expected to be large for T2, intermediate for T1,

and small for T0 hybrids. For GDMC, this corresponds to the
observed high level of predictive abilities for T2 hybrids along
with small differences among the corresponding predictors,
the intermediate level of predictive abilities for T1 hybrids, and
the low level of predictive abilities along with larger differ-
ences among predictors for T0 hybrids (Figure S4 in File
S2). For GY, the predictive abilities for T2 hybrids also conform
with these expectations. Moreover, the predictive abilities for
T2 hybrids in GY were lower than in GDMC for all considered
predictors (Figure S4 in File S2), which is in accordance with
the lower heritability of GY compared to GDMC.

Interestingly, in GY, predictive abilities for T1 hybridswere
nearly as high as those for T2 hybrids, and with only little
variation among predictors. Similar observations were also
obtained for T0 hybrids. Consequently, predictive abilities in
T1andT0hybrids forGYwerealmostalwaysgreater than those
forGDMC,which is inverse to the ratio observed forT2hybrids.
These unexpected results may be related to the capability of
predictors capturing epistasis and warrant further research.

Usefulness of predictors across traits

From an economic perspective, a single predictor with good
predictive ability formultiple traitswould be highly desirable.
While T and R exhibited highest predictive abilities for GY,
they were lowest for GDMC. And whereas G and P were
superior predictors for GDMC, they performed relatively
poorly for GY (Figure 3 and Figure S1 in File S2). Such strong
interactions between trait and predictor were also observed
in studies on hybrids for silage maize traits (Westhues et al.
2017), and on inbred lines for grain maize traits (Guo et al.
2016), which indicates that for prediction with “omics”-de-
rived kernels, the merit of an “omics” data type strongly de-
pends on the trait under investigation. In practice, knowledge
on the suitability of available predictors for a given trait could
be derived either from previous studies or from CV applied to
all available data, i.e., the training data set. Alternatively,
multiple predictors could be combined in one model, aiming
to provide consistently high predictive ability across traits by
complementing favorable properties of different predictors.

Combining different predictor types

By comparing pairs of single predictors with their combina-
tions (Figure S2 in File S2), we can draw two conclusions.
First, combining the best single predictor for a certain trait
with another predictor did not improve predictions, and, in
some cases, rather impaired predictive ability. Second, com-
binations that did not comprise the best single predictor
tended to be superior to both components individually.

The two above-mentioned conclusions provide insights
into whether genomic prediction (i.e., G only) could be im-
proved by combining G with other “omics” predictors. Based
on the first conclusion, and, in line with all observations, for
GDMC no improvement would be expected for combinations
of G with another predictor. Based on the second conclusion,
for GY, combinations of G with another predictor would be
expected to improve predictive abilities. This was consistent
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with all observations, except for GP, indicating that there is
no complementary effect of P beyond G. However, absence or
presence of complementary effects could not be connected to
the observed degrees of association between the kernel coef-
ficients for the respective predictors (Figure 2).

The consistently good performance of GT across both
traits may be explained by the fact that it combines the best
single predictor for GY (T) and for GDMC (G). Further, the
relatively good performance of PT in GY may be due to the
contribution ofTas thebest single predictor forGY.Although
neither P nor T were the best single predictor for GDMC, this
combination also performed well for GDMC, which may be
explained by the high association between P and G for their
kernel coefficients (Figure 2), and by the observation that P
is the second ranked single predictor for GDMC after G. In
addition, T seems to capture a fraction of the information in
G that is complementary to P so that the combination PT
performed comparably to the best single predictor G and
even slightly better than GT for GDMC. These combina-
tions—GT and PT—provided some advantages for predic-
tion, not only in this study on yield-related traits in grain
maize, but also for several yield and quality-related traits in
silage maize (Westhues et al. 2017).

Finally, we studied the triple combination PGT, because P
could be considered a generally available source of informa-
tion, and G and T were the best single predictors for the two
traits under investigation. Predictive abilities of PGT, when
compared to the related two-predictor combinations GT and
PT,were lower for GY, but higher for GDMC. To arrive at clear
recommendations for the predictors P, G, and T, we further
investigated their relevance using three approaches: (1) rank-
ing of single predictors with respect to predictive abilities, (2)
examining relative variance components from a model com-
prising all three predictors as independent factors, and (3)
determining weights by a grid search on joined weighted
kernels. For GY, all three approaches clearly indicated that
T had a high impact for predicting hybrid performance, while
G followed by P had lower impact. For GDMC, the order of
impact was G, P, and T, albeit differences among these
predictors were less pronounced than for GY.

Application in breeding programs

Despite the shown benefits of using transcriptomic data for
hybrid prediction, the currently higher sampling costs of
endophenotypes compared to genomic data should not
be neglected. One strategy to balance costs and benefits could
be a selective “omics”-screening strategy, where transcrip-
tomic measurements are only taken on a subset of genotypes.
For all other genotypes, which have pedigree and genomic
records, transcriptomic values could possibly be imputed
(Gamazon et al. 2015), thereby boosting predictive ability
while limiting expenses. Further open points are whether
parent lines should first be selected based on their per se
performance before carrying out molecular analyses, and
to which degree the production and field evaluation of
testcrosses is still required when applying “omics”-based

prediction methods. Ultimately, these operational and
economic aspects need to be considered well for successful
application in applied breeding programs and warrant fur-
ther research.

Conclusions

We have shown that the excellence of a predictor is highly
trait-dependent. The respective best single predictor was
always comparable or superior to any combination of pre-
dictors, highlighting the sufficiency of a single predictor for
the prediction of one trait. Due to the interaction between
trait and predictor, the prediction of multiple traits can
benefit from the complementation of predictors if the best
single predictor for any trait is unavailable. Given that P, and
often also G, are available in hybrid breeding programs, their
combination with T seems to provide a robust basis for
prediction of a broad spectrum of traits. Based on the crucial
role of mRNA for the genotype-phenotype cascade, we spec-
ulate that combining T with G or P enables superior pre-
dictive abilities, warranting further research on usingmRNA
for maize hybrid prediction.
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