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Abstract
The microbiota, which consists of commensal bacteria, fungi, and viruses, limits the colonization

of pathogens at barrier tissues and promotes immune homeostasis. The latter is accomplished

through the induction and regulation of both innate and adaptive immune responses. Innate lym-

phocytes, which include the type-1 innate lymphoid cell (ILC1), NK cell, type-2 innate lymphoid

cell (ILC2), type-3 innate lymphoid cell (ILC3), and lymphoid tissue inducer (LTi) cell populations,

and innate-like lymphocytes, such as NKT cells, mucosal-associated invariant T (MAIT) cells, and

𝛾𝛿 T cells, are uniquely capable of responding to the microbiota due to their tissue localization

and rapid primary responses. In turn, through their effector functions, these lymphocyte popula-

tions modulate the composition of the microbiota and maintain the segregation of commensals.

This review will focus on how innate and innate-like lymphocytes mediate the crosstalk with

themicrobiome.
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1 INTRODUCTION

The diverse array of bacteria, fungi, and viruses present at barrier sites

is collectively termed themicrobiome.1 Most commensals reside in the

gastrointestinal tract, with estimates of approximately 1014 bacteria in

the human colon,2 whereas the skin harbors about 1012 bacteria and

another 1012 bacteria are present at other mucosal sites.3 Each bar-

rier site is populated with a unique microbial community that displays

remarkable temporal stability.4–6 In addition to inhibiting coloniza-

tion by pathogens through competition and the induction of immune

responses, commensals promote immune homeostasis via the release

of microbial products and their constant interaction with host cells.1

Although colonization primarily occurs at birth, the dialog between

the microbiota and the host begins in utero, through the transfer of

microbial products derived from the mother's microbiota and limited

colonization of the amniotic fluid.7,8 Thus, while neonatal immunity
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is initially type-2 helper T cell (Th2) skewed, early exposure to the

microbiota shifts the immune response toward type-1 helper T cell

(Th1), reducing the possibility of allergy and autoimmunity through

adulthood.9 Understanding how the microbiome modulates the

immune response is paramount to harnessing its therapeutic potential.

Immunity can be broadly classified into innate and adaptive compo-

nents. The innate immune system relies on germline-encoded pattern-

recognition receptors for the identification of pathogen-associated

molecular patterns and is present in both animals and plants, suggest-

ing that it evolved prior to the divergence of these two kingdoms.10

Conversely, the adaptive immune system is only present in verte-

brates and these cells recombine their antigen receptors to gener-

ate a broader range of antigen specificities.10 Innate lymphoid cells

(ILCs) exhibit lymphoid morphology, yet lack RAG-dependent antigen

receptors characteristically expressed by B and T cells. As their innate

designation would suggest, these lymphocytes mount a rapid primary

response and localize primarily to tissues. Based on their production of

Th1-, Th2-, and Th17/22-associated cytokines, ILCs have been catego-

rized into three distinct subsets, termed group 1, group 2, and group 3

ILCs, respectively.11,12 While innate-like populations such asNKTcells,

mucosal-associated invariant T (MAIT) cells, and 𝛾𝛿 T cells, use RAG-

mediated recombination to generate their TCRs, they preferentially

utilize specific TCR genes, resulting in the expression of semi-invariant

receptors that limit the range of antigens these cells recognize.13
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Furthermore, like ILCs, innate-like cells acquire their effector charac-

teristics during their development and predominately localize to tis-

sues, where they respond immediately upon antigen recognition.13

Innate-like lymphocytes do not exhibit immunologic memory either, as

there is no marked difference in their activity following subsequent

antigen exposure.13

Owing to their tissue localization, innate and innate-like lympho-

cytes are in close proximity to the microbiota. These populations also

seed barrier sites prior to adaptive populations, with NK cells and

group 2 and 3 ILCs observed in the intestines of human fetuses prior to

T cells.14 Since many innate and innate-like populations are enriched

in mucosal tissues during neonatal colonization,7 these cells are cru-

cial for establishing the localization and composition of the micro-

bial communities. Conversely, the microbiome promotes the devel-

opment and/or function of many innate and innate-like lymphocytes.

This review will summarize both aspects of the dialog between host

and commensal.

2 GROUP 1 ILCS

Group 1 ILCs are defined by their expression of the T-box tran-

scription factor T-bet and their ability to produce the Th1-associated

cytokines IFN-𝛾 and TNF, which enables them to promote immu-

nity to intracellular bacteria, viruses, and parasites.11,12 This group is

composed of recirculating NK cells, which are present in blood and

broadly distributed within secondary lymphoid and peripheral organs,

and tissue-resident type-1 innate lymphoid cells (ILC1s) that predom-

inantly reside within mucosal sites.15 NK cells recognize target cells

through activating and inhibitory surface receptors, including NKp46,

NKG2D, and in some mouse strains NK1.1. Upon activation, NK cells

release cytotoxic granules that contain the pore-forming protein per-

forin and proteases called granzymes, which result in apoptosis or

osmotic cell lysis of the target.While ILC1s also express activating sur-

face receptors, they are devoid of inhibitory receptors that recognize

MHC-I. Furthermore, though ILC1s produce IFN-𝛾 , they are function-

ally distinct fromNK cells in that they lack cytotoxicity.15

Though thedevelopment of splenicNKcells does not requiremicro-

biota and the expression of Ly49 receptors, NKp46, NKG2D, CD122,

and 𝛼2 integrin are unaltered in the absence of commensals, NK

cells exhibit impaired cytotoxicity and IFN-𝛾 production in germ-free

or antibiotic-treated mice.16 This corroborated an early study which

found that colonization of germ-free mice with intestinal bacteria

increased NK cell cytotoxicity.17 The diminished NK cell function in

mice that lack commensals is due to a reduction in type-I interferons

produced by dendritic cells (DCs) and macrophages (Figure 1), which

are necessary for priming NK cells via the trans-presentation of IL-

15.16,18 Therefore, the impaired antiviral immune responses observed

in germ-free and antibiotic-treated mice are caused by NK cell extrin-

sic effects of themicrobiota.

While innate immune cells are typically thought to lack mem-

ory characteristics, it has become evident that NK cells can exhibit

“memory-like” qualities following antigen-dependent recognition of

viral ligands or haptens, including longevity and enhanced effector
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F IGURE 1 Interactions between innate lymphocytes and themicrobiota. (A) Themicrobiota induces the release of type-I interferons fromDCs
and macrophages, which promotes the trans-presentation of IL-15 to NK cells, activating their IFN-𝛾 production and cytotoxicity. (B) Intestinal
dysbiosis allows theopportunistic pathogenC. difficile todisrupt epithelial integrity via the releaseof toxins. ILC1sactivate infiltrating inflammatory
cells through their production of IFN-𝛾 , promoting clearance of the pathogen and return to homeostasis. (C) Commensals induce IL-25 and TSLP,
which activates ILC2s to release Areg and IL-5/6. Areg promotes tissue repair, whereas IL-5/6 induce IgA production fromB cells, whichmodulates
microbial colonization. (D) Commensal-derivedAhR ligands induce IL-22 production fromgroup 3 ILCs, which promotesmucus production, release
of AMPs and fucosylation of luminal proteins and lipids that provide energy for the microbiota. Both ILC3s and LTi cells can be activated by IL-1𝛽
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functions.19 Recent work has shown that commensals activate NOD

receptors on nonhematopoitic cells, which promote IL-15 production

by myeloid cells.20 Excess IL-15 results in the terminal maturation

of NK cells, thus diminishing the pool of immature KLRG1− NK cells

that generate the memory-like pool.20 In the absence of T cells, deple-

tion of bacterial commensals improves NK cell antiviral responses.

Antibiotic treatment of Rag1−/− mice prior to infection with mouse

cytomegalovirus (MCMV) leads to a greater persistence of NK cells

that express Ly49H, which recognizes the MCMV glycoprotein m157,

resulting in decreased viral copies and improved survival.20 Thus, com-

mensals can indirectly regulate the generation of long-lived NK cells.

Owing to the recent distinction between the NK and ILC1 popula-

tions, neither the impact of the microbiota on ILC1 development and

function, nor the role of ILC1s in regulating commensals, have been

established.While all ILC1s express T-bet, single-cell RNA-sequencing

of ILC subsets revealed that the microbiota promotes expression of

Tbx21, the gene that encodes this transcription factor, in a fraction

of ILC1s.21

Oral antibiotics frequently leads to dysbiosis of the intestinalmicro-

biota, which can allow the opportunistic enteric pathogen Clostridium

difficile to establish an infection.22 Micedeficient inRAG2and 𝛾c,which

lack both adaptive and innate lymphocytes, are more susceptible to

C. difficile infection than Rag1−/− mice, suggesting that ILCs provide

immunity in the absence of T and B cells.23 Transfer of ILC1s into

Rag2−/−.𝛾c
−/− mice decreased disease progression and improved sur-

vival to levels comparable to Rag1−/− mice, indicating that ILC1s were

the primary contributor to immunity against C. difficile (Figure 1).23

Therefore, ILC1s contribute to returning the intestinal microbiome to

homeostasis by suppressing opportunistic pathogens.

3 GROUP 2 ILCS

Multiple studies have described innate lymphocytes that produce

type-2 cytokines, initially referring to these cells as “natural helper

cells,”24 “nuocytes,”25 or “innate helper type 2 cells,”26 though they

were subsequently shown to be the same lineage and were there-

fore designated type-2 innate lymphoid cells (ILC2s).11 These cells are

defined by their expression of the transcription factor GATA3 and pro-

duction of the Th2-associated cytokines IL-4, IL-5, IL-6, IL-9, and IL-

13, which promote immunity to helminths through the recruitment of

eosinophils, activation of macrophages and granulocytes, mucus pro-

duction by goblet cells, and smooth muscle contraction.11,12 ILC2s

express receptors for IL-25 (IL-17RB), IL-33 (T1/ST2), and thymic stro-

mal lymphopoietin (TSLP), enabling them to respond to cytokines pro-

duced by hematopoietic and epithelial cells during inflammation.15

In germ-free mice, the frequency and number of lung ILC2s is

comparable to specific-pathogen-free (SPF) animals, and the expres-

sion of surface markers characteristically found on ILC2s, including

c-Kit, IL-7R𝛼, and T1/ST2, is unaltered, suggesting that ILC2 devel-

opment occurs independently of the microbiota.27 However, the pro-

portion of ILC2s within the small intestine is higher in the absence

of commensals,28 likely due to the decrease in microbe-dependent

populations. While the microbiota may not be necessary for ILC2

development, human ILC2s express TLRs, including TLR1, TLR4, and

TLR6, enabling them to recognize microbial ligand directly.29 Addi-

tionally, the microbiota can indirectly regulate ILC2 function through

cytokines. Commensals induce IL-25 and TSLP production,30,31 both

of which activate ILC2s (Figure 1).While type-I and type-II interferons

inducedby viral infections can inhibit cytokineproduction andprolifer-

ation of ILC2s,32 it remains to be seenwhether the virome is also capa-

ble of modulating ILC2 activity.

Though ILC2s have not been shown to directly target commensals,

they indirectly regulate the composition and spatial segregation of the

microbiota throughantibody responses andmucusproduction, respec-

tively. ILC2s express IL-5 and IL-6, which promote the production of

IgA,33,34 and coculture of ILC2s with B cells increased the secretion

of IgA in vitro,24 suggesting that ILC2s promote IgA responses (Fig-

ure 1). Additionally, IL-5 supports the proliferation of B1 cells, which

can modulate commensals.24,35 ILC2s also minimize translocation of

commensals through their production of amphiregulin (Areg), a mem-

ber of the epidermal growth factor family that promotes epithelial

repair (Figure 1).12

4 GROUP 3 ILCS

Group 3 ILCs are defined by their expression of the transcription fac-

tor ROR𝛾t and production of the Th17/22-associated cytokines IL-17

and/or IL-22, which enable them to promote immunity to extracellular

bacteria and fungi, as well as tissue repair.11,12 The group consists of

lymphoid tissue inducer (LTi) cells and ILC3s; the latter of which is sep-

arated into two subsets based on expression of the natural cytotoxicity

receptor (NCR)NKp46.11,12,15 LTi cells are necessary for generation of

secondary lymphoid organs during embryonic development, including

the formation of lymph nodes and Peyer's patches, which are crucial

sites for the development adaptive immune responses to commensal

and pathogenic microbes.36,37 Following birth, LTi cells generate cryp-

topatches, which are transformed into isolated lymphoid follicles in a

microbiota-dependentmanner,38 promoting intestinal IgA production.

In mice, embryonic LTi cells have been shown to originate from the

fetal liver and can be distinguished from ILC3s by their expression of

the chemokine receptor CCR6.11,12 LTi-like cells also arise from bone

marrow precursors in adults, though their ability to generate lymphoid

tissue has not been established. While all group 3 ILCs respond to the

cytokines IL-1𝛽 and IL-23, only LTi cells andNCR− ILC3s produce IL-17

in response to IL-23.11 Additionally, both NCR+ and NCR− ILC3s are

capable of producing IFN-𝛾 .39

There are conflicting reports on whether the microbiota is neces-

sary for the development of group 3 ILCs. One study observed a sim-

ilar frequency of NKp46+ NK1.1−/int IL-7R𝛼+ cells within the CD3−

CD19− population ingerm-freeanimals,40 suggesting thatNCR+ ILC3s

were unaffected, but did not assess the number of group 3 ILCs. Since

germ-free animals are known to harbor fewer innate immune cells,41

an unaltered frequency may not imply that the number of ILC3s was

not decreased in the absence of the microbiota. Another study found

that germ-free mice have as high a frequency of CD3𝜀− ROR𝛾t+ cells

as conventionally housed animals,42 but also did not provide numbers.
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While oral administration of doxycyclin to SPF mice from birth did not

alter the number or frequency of group 3 ILCs,42 treatment with a

single antibiotic would not deplete all commensal species, potentially

preserving microbial signals necessary for the development of group

3 ILCs. Conversely, others have suggested that the microbiota is nec-

essary for the development of group 3 ILCs. One publication demon-

strated that germ-free mice have fewer NK1.1int ROR𝛾t+ cells than

conventionally housed animals, both by frequency and number,43 indi-

cating that NCR+ ILC3s require commensals for their development.

This was corroborated by another study which found that germ-free

B6 mice have ∼8-fold fewer CD3𝜀− NKp46+ IL-7R𝛼+ NK1.1− cells

than conventionally housed animals.44 Thus, while there is no consen-

sus whether all group 3 ILC3s require the microbiota, the data sug-

gesting that commensals are necessary for either the development

and/or homeostasis of NCR+ ILC3s is more convincing. In addition to a

potential role for luminal commensals, recent work has demonstrated

that commensals which colonize DCs within intestinal lymphoid tis-

sues promote the accumulation of group 3 ILCs in these tissues.45

Single-cell RNA-sequencing indicated that the microbiota promotes

Il17a transcription bymultiple subsets of group 3 ILCs.21

Microbial metabolites and themodulation ofmetabolite availability

by commensals can impact group 3 ILCs. In addition to ROR𝛾t, another

transcription factor that is necessary for LTi-like cells and NCR+ ILC3s

is the ligand-activated aryl hydrocarbon receptor (AhR),40,46 which

binds both endogenous and exogenous molecules, including microbial

metabolites. Catabolism of dietary tryptophan by commensals yields

the AhR ligand indol-3-carbinol (I3C), which induces IL-22 production

by the aforementioned group 3 ILC3s.46–48 Microbial-derivedmetabo-

lites, including indole derivatives, are transmitted during nursing and

administration of IC3 to pregnant mice was sufficient to increase the

number of NCR+ ILC3s in the progeny,8 suggesting that the mater-

nal microbiota can promote the development of some group 3 ILCs.

Colonic commensal bacteria generate short-chain fatty acids (SCFAs),

including butyrate, which can suppress the number of NCR+ ILC3s and

their IL-22 production.49 Commensals can also altermetabolism of the

vitamin A metabolite retinoic acid, leading to localized deficiency.50

Insufficient retinoic acid causes a decrease in group 3 ILCs and a cor-

responding increase in ILC2s,51 implying that themicrobiotamay have

the potential to alter the balance between group 2 and 3 ILCs in

certain contexts.

The microbiota can also indirectly modulate the functions of group

3 ILCs. Commensal antigens detected by intestinal macrophages cause

them to release IL-1𝛽 , which activates group 3 ILCs.52 Upon acti-

vation, group 3 ILCs produce colony-stimulating factor 2 (CSF2),

which triggers DCs to promote intestinal homeostasis through release

of the regulatory cytokine IL-10 and the induction of T regulatory

cells (Figure 1).52

While neither LTi nor ILC3s have not been shown to produce

microbe-specific effector molecules, these populations impact the

microbiota in numerous ways. All group 3 ILCs produce IL-22, a

cytokine that promotes segregation of luminal microbes from the

epithelial barrier by coordinating the release of antimicrobial peptides

(AMPs) and increasing mucus production. In the absence of an adap-

tive immune response, depletion of ILCs or neutralization of IL-22

in Rag1−/− mice resulted in increased translocation of commensal

bacterial to secondary organs, indicating that IL-22 producing ILCs

promote containment of the microbiota.53 The intestinal commen-

sal segmented filamentous bacteria induces the release of IL-23,

which promotes IL-22 production by LTi cells and ILC3s.54,55 In

response to IL-22, epithelial cells serum amyloid A (SAA) produce

proteins, which induce IL-17 production by type-1 helper T (Th17)

cells,55 thus allowing group 3 ILCs to promote an adaptive immune

response (Figure 1). Furthermore, IL-22 from group 3 ILCs prevents

a dysbiotic microbiome that is more permissive to pathogenic colo-

nization, as abrogation of IL-22 production from these populations

rendered mice more susceptible to Citrobacter rodentium infection in

a microbiota-dependent manner.56 IL-22 production by group 3 ILCs

also induces intestinal epithelial cells to express fucosyltransferase 2,

resulting in fucosylation of proteins and lipids on the luminal side of

the epithelium.57,58 Fucose is catabolized by commensal bacteria for

energy, so IL-22 produced by group 3 ILCs contributes to homeostasis

of the microbiota and mice lacking the fucosyltransferase are more

susceptible to S. typhimurium and C. rodentium infections.57,58

Although group 3 ILCs are predominantly located in the intesti-

nal lamina propria, the protective effects of IL-22 generated by group

3 ILCs extends to other organs. Antibiotic-mediated ablation of the

intestinal microbiota in neonatal mice was recently found to decrease

their survival upon intratracheal challenge with Steptococcus pneumo-

niae due to a lack of pulmonary IL-22 producing group 3 ILCs.59 Com-

mensal antigens detected by DCs promoted ILC3s to up-regulate the

lung-homing chemokine receptorCCR4,which enabled an influx of pri-

marily IL-22 producingNCR+ ILC3s into the lungs shortly after birth.59

Recently, CCR6+ LTi cells have also been shown to regulate adap-

tive immune responses to the microbiota (Figure 1). A portion of

both murine and human LTi cells, but not NCR+ or NCR− ILC3s,

expresses MHC-II and is capable of processing and presenting exoge-

nous bacterial antigens.60 Selective deletion of MHC-II expression on

group 3 ILCs (using H2-Ab1f/f.Rorc-cre mice) caused intestinal inflam-

mation in a microbiota-dependent manner.60 Intestinal inflammation

could be induced in Rag1−/− mice by transferring CD4+ T cells from

H2-Ab1f/f.Rorc-cre mice, but not H2-Ab1f/f.Rorc-cre animals treated

with antibiotics,60 suggesting that the LTi cells were regulating the T

response in a microbiota-dependent manner. Further work indicated

that LTi cells were inducing apoptosis of commensal-specific CD4+ T

cells through MHC-II-mediated antigen presentation,61 likely due to

the absence of costimulatorymolecules on ILCs.

5 NATURAL KILLER T CELLS

NKT cells are 𝛼𝛽 T cells, which recognize endogenous and microbial

lipids presented by the MHC class Ib molecule, CD1d.13 On the basis

of TCR gene usage, these cells are categorized into type I invariant

NKT (iNKT) cells, which express V𝛼14-J𝛼18 inmice or the correspond-

ing V𝛼24-J𝛼18 pair in humans, or type II noninvariant NKT cells .13

iNKT cells are classified into type-1 invariant NKT (iNKT1), type-2

invariant NKT (iNKT2), and type-17 invariant NKT (iNKT17) subsets

based in their productionof Th1-, Th2-, andTh17-associated cytokines,
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and the cytokines IL-1𝛽 and IL-23

respectively.13,62 iNKT1cells haveNKreceptors andprior to thedevel-

opment of CD1d tetramers, which permits selection of iNKT cells via

TCR specificity, where the only subset of iNKT cells that could be iden-

tified by expression of an 𝛼𝛽 TCR and NK1.1.13 iNKT2 cells and a frac-

tion of iNKT1 cells express the CD4 coreceptor, whereas iNKT17 cells

express neither CD4 nor CD8.13 Type II NKT cells have been shown to

produce IL-4, IL-13, and IFN-𝛾 .63

Multiple studies have reported that iNKT cells develop in the

absence of commensals,64–66 and microbiota does not seem to affect

the development of specific iNKT subsets since the frequency of

NK1.1+ and CD4+ iNKT cells were comparable between germ-free

and SPF animals.64 In support of these observations, human fetal iNKT

cells develop as early as the second trimester, prior to colonization

with commensals,67 though this does not preclude the possibility

of maternal transfer of microbial-derived ligands in utero.8 While

iNKT cells can be selected on endogenous ligands in the absence of

microbiota, commensals do impact the distribution of iNKT cells. In

germ-free mice, iNKT cells accumulate in the colonic lamina propria

and lungs due to greater expression of the chemokine CXCL16 by

the epithelial cells of these organs (Figure 2), exacerbating colitis and

allergic airway responses.65 While colonization of neonatal germ-free

mice prevented CXCL16 release and the subsequent recruitment

of iNKT cells, introduction of commensals 5 wk after birth was not

sufficient to do so,65 indicating that exposure to commensals during

early life has lasting effects on iNKT cells. Another study found that

iNKT cells from germ-free mice were hyporesponsive compared to

SPF iNKT,with a lower percentage of cells producing IL-4, IL-13, IFN-𝛾 ,

and TFN-𝛼 in response to TCR stimulation,66 suggesting that the

microbiota promotes iNKT cell function. In response to concanavalin

A, fewer leukocytes and DCs express glycolipid/CD1d complexes in

germ-free mice compared to SPF animals and this phenotype can

be reversed by colonizing the germ-free animals, suggesting that

commensals induce iNKT activation.68 Indeed, there is indication that

the intestinal microbiota contains glycolipids that can be recognized

by iNKT cells.68 The intestinal microbiota can also dampen iNKT cell

responses. Since some sphingolipids from Bacteroides fragilis do not

activate iNKT cells, they act as competitive inhibitors of agonists that

bind CD1d (Figure 2).69 Colonization of germ-free neonates with

B. fragilis minimized the iNKT expansion that typically occurs in the

absence of microbes and protected the mice from iNKT-mediated col-

itis through adulthood.69 While the microbiota regulates the function

of iNKT cells, but not their development, it remains to be determined

whether commensals also modulate type II NKT cells. However, type

II NKT hybridomas have been shown to recognize lipids derived from

Mycobacterium tuberculosis, Corynebacterium glutamicum, and Listeria

monocytogenes,70,71 so themicrobiota may influence type II NKT cells.

Intestinal commensal bacteria colonize germ-free Cd1d−/− mice

more readily than wild-type germ-free animals and activation of NKT

cells in SPFmice hinders colonization, suggesting thatCD1d-restricted

iNKT and/or type II NKT cells regulate the microbiota.72 Paneth

cell granules containing AMPs exhibited morphological defects and

degranulation in response to commensal colonization was impaired

in germ-free Cd1d−/− mice,72 implying that NKT cells may modulate

the microbiota via Paneth cells (Figure 2). Additional work has shown

that Cd1d−/− mice harbor an altered intestinal microbiome that is

proinflammatory in the context of dextran sulfate sodium-induced

colitis,73 suggesting that NKT cells regulate the relative abundance

of commensals.

6 MUCOSAL-ASSOCIATED INVARIANT

T CELLS

MAIT cells express semi-invariant T cell receptors (V𝛼13-J𝛼33 in

mice and V𝛼7.2-J𝛼33 in humans) that recognize microbial vitamin

B2 (riboflavin) derivatives presented by the MHC class Ib molecule,

MR1.74 MAIT cells are predominantly located at barrier sites and,

upon activation, rapidly produce either Th1- or Th17-associated
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cytokines.74 Though present in mice, MAIT cells are more abundant in

humans, where they represent approximately 5% of T cells in human

peripheral blood, but can reachmuch higher frequencies in tissues.75

Because the riboflavin synthesis pathway is broadly conserved

among many species of bacteria and fungi, MAIT cells respond to

a wide array of microbes, including known commensals.76–78 These

lymphocytes display heterogeneity in their responses to different

microbes,79 indicating that they may be able to distinguish between

pathogens and commensals, perhaps through secondary signals, such

as cytokines. Interestingly, MAIT cells are highly dependent on the

microbiota, as they are nearly absent from germ-free animals.80,81

While the number of mature thymic MAIT cells is decreased in germ-

free mice, the presence of immature MAIT cells is unaffected, indi-

cating that microbial products are necessary for the development of

MAIT cells, but not their selection.81 Though the presence of function-

ally mature MAIT cells in second trimester fetuses suggests that that

microbial colonization is not necessary for the development of MAIT

cells,82 it is possible that microbial products from the mother's micro-

biotawere transferred in utero,8 complicating conclusions drawn from

this study. Thus, while it remains to be determined whether commen-

sals are required for the developmental acquisition of effector charac-

teristics or the expansion of functionally mature MAIT cells following

development, the microbiota is necessary for this population. In addi-

tion to providing ligands, they can be recognized by theMAIT cell TCR;

the microbiota can also induce surface expression of MR1 through

engagement of TLR9 (Figure 2).83 Though MAIT cells likely promote

containment of themicrobiota through their production of IL-22,mod-

ulation of the microbiota using MAIT cell-deficient animals has yet to

be demonstrated.

7 𝜸𝜹 T CELLS

Similarly to 𝛼𝛽 T cells, 𝛾𝛿 T cells can be categorized into adaptive and

innate-like populations based on the diversity of their TCR repertoire.

In mice, the innate-like 𝛾𝛿 T cells include fetal-derived V𝛾4+ and V𝛾6+

populations (according to the nomenclature of Heilig and Tonegawa84)

which express IL-17 and a V𝛾1+V𝛿6.3/4+ subset which produces IL-4

and IFN-𝛾 .85–87 Though the ligands recognized by these populations

have not been identified, other 𝛾𝛿 T cells have been shown to recognize

microbial-derived proteins and lipids.87,88

While the total number of intraepithelial 𝛾𝛿 T cells is unaffected

in the absence of commensals,89,90 𝛾𝛿 T cell numbers are signifi-

cantly decreased in other sites, including the lungs, liver, and oral

mucosa.91–95 This discrepancy is likely due to differences in the

composition of the 𝛾𝛿 T cell pool within these tissues, with some

subsets more dependent on the microbiota than others. Reports that

have assessed the innate-like 𝛾𝛿 T cell populations have found that the

V𝛾6+ subset requires the microbiota.93,94 V𝛾6+ cells respond to the

microbiota through cell contact with CD103+ DCs,94 though both IL-1

and IL-23 signaling contribute to their activation,91,93 indicating that

cytokines induced during microbial colonization also modulate the

V𝛾6+ population (Figure 2). 𝛾𝛿 T cells from germ-free mice exhibited

decreased lysis of target cells compared to cells isolated from SPF

animals,96 implying that themicrobiota can promote 𝛾𝛿 T cell function.

While the generation of 𝛾𝛿 T cells can be a benefit of the microbiota in

the context of an infection, it can also be deleterious in others. A recent

study found that IL-17+ 𝛾𝛿 T cells accumulate in the meninges after a

stroke, causing tissue damage, and intestinal dysbiosis minimizes this

by reducing the number of 𝛾𝛿 T cells and inducing Tregs.97 Another

demonstrated that antibiotic treatment reduced inflammation in

an imiquimod psoriasis model, and this correlated with decreased

numbers of IL-22+ V𝛾4+ cells.98 Monocolonization of mice with the

intestinal commensal Escherichia coli generates hepatic IL-17+ 𝛾𝛿 T

cells in a dose-dependent manner,95 whereas a commensal from the

ocular mucosa, Corynebacterium mastitidis, induced IL-17-production

from conjunctival V𝛾4+ T cells,99 indicating that both the V𝛾4+ and

V𝛾6+ subsets respond to themicrobiota.While the impact of commen-

sals on these populations is apparent, how the innate-like subsets of

𝛾𝛿 T cells affect themicrobiota has not been established.

8 OTHER INNATE-LIKE POPULATIONS

𝛼𝛽 and 𝛾𝛿 T cells within the intestinal epithelium are divided into

innate-like “natural” intraepithelial lymphocytes (IELs) and “induced”

IELs, which arise from conventional T cells.100 𝛼𝛽 IELs are classi-

fied based on their coreceptor expression, including the CD8𝛼𝛼+ and

CD4− CD8− double negative natural IEL populations.100 Coloniza-

tion of germ-free rats resulted in an oligoclonal expansion of CD8𝛼𝛼+

IELs, expressing specific TCR V𝛽 chains.101 Though the number of

𝛼𝛽 IELs is precipitously decreased in germ-free mice, the frequency

of CD8𝛼𝛼+ IELs is increased,102 suggesting that this population does

not require the microbiota for its development. However, CD8𝛼𝛼+

IELs are dependent on AhR signaling for their development and treat-

ment of germ-free mice with an AhR agonist increased the number

of CD8𝛼𝛼+ IELs, whereas antibiotic treatment of SPF animals led to

a decrease.103 This implies that the CD8𝛼𝛼+ subset can respond to

microbial-derivedAhR ligands. Themicrobiota can also indirectlymod-

ulate the CD8𝛼𝛼+ population, as MyD88-deficient mice have fewer

CD8𝛼𝛼+ IELs, in part due to a decrease in IL-15 production by intesti-

nal epithelial cells.104 AlthoughCD4+ CD8𝛼𝛼+ double positive IELs are

not considered innate-like lymphocytes, it is of interest that they are

induced by an intestinal commensal.105 Tryptophan derivatives gen-

erated by Lactobacillus reuteri activate AhR in CD4+ IELs, resulting in

the down-regulation of the transcription factor ThPOK, thus enabling

CD8𝛼𝛼 expression.105

B1 and marginal zone (MZ) B cells display characteristics of

innate-like lymphocytes, including rapid primary responses and tissue

localization, predominately in the peritoneal and pleural cavities or

the marginal sinuses of the spleen.106,107 Numbers of B1 and MZ B

cells are unaffected in germ-free mice, suggesting that these cells

do not require commensals for their development.108,109 However,

disruption of TLR signaling results in partial deficiencies in B1 and

MZ B cells, indicating that the microbiota does modulate innate-like

B cell populations to some degree.108 Additionally, B1 cell-derived

IgA is reactive to commensal bacteria, suggesting that these cells may

regulate the intestinal microbiome.35
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TABLE 1 Crosstalk between themicrobiota and innate and innate-like lymphocytes

Population Effectormolecules Predominant location Effect on themicrobiota Influence of themicrobiota

NK cell IFN-𝛾 , TNF, perforin,
granzymes

Spleen, liver N.D.a Increases cytotoxicity and IFN-𝛾16–18;
inhibits long-lived NK cells20

ILC1 IFN-𝛾 , TNF, TRAIL Liver, tonsils Contribute to intestinal
homeostasis by limiting
opportunistic pathogens23

Promotes Tbx21 expression in ILC1s 21

ILC2 IL-4, IL-5, IL-6, IL-9, IL-13,
Areg

Lungs, intestines, adipose
tissue

Promotemicrobial
containment through IgA24

and epithelial repair12

Indirectly activates ILC2s via IL-25 and
TSLP 30,31; inhibits ILC2s through
type-I and II interferons 32

NCR− ILC3 IL-17, IL-22, IFN-𝛾 Intestines Inhibit microbial
translocation through
IL-2253

Commensal-induced IL-1𝛽 and IL-23
stimulate group 3 ILCs52,54,55;

NCR+ ILC3 IL-22, IFN-𝛾 Intestines See NCR− ILC3 Promotes NCR+ ILC3 development43,44;
induces IL-22 production through the
generation of AhR ligands46–48;
inhibits NCR+ ILC3s via SCFAs49

LTi cell IL-17, IL-22, LT𝛼, LT𝛽 Intestines Induce apoptosis of
commensal-specific CD4 T
cells60,61; promote
epithelial fucosylation via
IL-22 and LT𝛼57,58

See NCR− ILC3

iNKT1 cell IFN-𝛾 , (IL-4)b Liver, spleen Regulate commensal
colonization72,73; modulate
Paneth cell function72

Promotes cytokine production 66,
though commensal-derived
sphingolipids can dampen iNKT
responses 69; prevents accumulation
of iNKT cells in intestines and lungs 65

iNKT2 cell IL-4, IL-9, IL-13 Lungs, intestines See iNKT1 cell See iNKT1 cell

iNKT17 cell IL-17, IL-22 Lymph nodes, lungs, skin See iNKT1 cell See iNKT1 cell

Type II NKT cell IL-4, IL-13, IFN-𝛾 Liver, intestines N.D. Activated bymicrobial antigens70,71

MAIT cell IL-17, IL-22 or IFN-𝛾 , TNF,
perforin, granzymes

Lungs, liver, intestines N.D. Necessary for the development ofMAIT
cells80,81

CD8𝛼𝛼+ T cell IL-10, TGF𝛽 , IFN-𝛾 Intestines N.D. Induced by commensal-derived AhR
ligands103

V𝛾4+ 𝛾𝛿 T cell IL-17, IL-22 Lungs, liver, peritoneal
cavity, dermis, uterus

Promote release of AMPs99 Increases V𝛾4+ 𝛾𝛿 T cell numbers and
IL-17 production95,99

V𝛾6+ 𝛾𝛿 T cell IL-17, IL-22 Lungs, liver, peritoneal
cavity, dermis, uterus

N.D. Increases V𝛾6+ 𝛾𝛿 T cell numbers94 and
stimulates IL-17 production via IL-1𝛽
and IL-2391,93

V𝛾1+V𝛿6.3/4+ IL-4, IFN-𝛾 Liver, spleen N.D. N.D.

B1 B cell IL-10, IgM, (IgA)c Peritoneal and pleural
cavities

Generate
commensal-reactive IgA35

Unaffected in germ-freemice 109

MZB cell IL-10, IgM, (IgG), (IgA)d Spleen N.D. Unaffected in germ-freemice108,109

aNot determined.
biNKT1 cells can produce both IFN𝛾 and, to a lesser extent, IL-4.13
cWhile typically associatedwith IgM responses, B1 B cells can generate commensal-specific IgA.35
dIn addition to IgM,MZB cells can also produce IgG and IgA at steady-state and in response tomicrobial antigens.118

A novel subset of innate-like 𝛼𝛽 T cells that constitutively express

IL-4 was described in mice lacking the IL-2-inducible T cell kinase

(ITK).110 While this population developed independently of MHC-I,

MHC-II, CD1d, and MR1 molecules, it was dependent on the micro-

biota, as demonstrated by antibiotic treatment.110

9 CONCLUDING REMARKS

Since the microbiome has been shown to modulate the functions

of nearly every innate and innate-like lymphocyte population either

directly or indirectly (Table 1), it seems plausible that these cells may

be regulated by a common transcriptional program.During their devel-

opment, iNKT cells, MAIT cells, V𝛾1+V𝛿6.3/4+ 𝛾𝛿 T cells, ILC1s, ILC2s,

and ILC3s, express the transcription factor PLZF (encoded by the gene

Zbtb16), which imbues these populations with effector characteris-

tics, including their productionof effector cytokines, responsiveness to

proinflammatory signals, and migration to, and retention within, bar-

rier tissues via chemokines and integrins.81,111–117 Therefore, PLZF

enables many innate and innate-like lymphocyte populations to both

respond to commensals and regulate the composition and/or quantity

of themicrobiota.

While commensal bacteria influence innate and innate-like lym-

phocytes, the contributions of commensal fungi and viruses on these
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populations have hardly been explored. Likewise, how these compo-

nents of the microbiome are regulated by innate and innate-like lym-

phocytes remains unknown. Owing to their site-specific colonization

and persistence, commensals have therapeutic potential as tissue-

directed adjuvants or for localized calibration of the immunologic tone.
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