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Abstract: This study discusses the problem of direction-of-arrival estimation (DOA) estimation for a monostatic multiple-input multiple-
output (MIMO) radar system, and a novel sparse Bayesian learning (SBL) framework is presented. To lower the computational load, the
matched array data is firstly compressed via reduced-dimension transformation. Then the problem of DOA estimation is linked to a sparse
inverse problem. Finally, a forgotten factor-based root SBL algorithm is derived from hyperparameters learning, which can solve the off-
grid problem by finding the roots of a polynomial. The proposed algorithm does not require the prior of the source number, and it can
apply to the scenario with a small snapshot as well as coarse grid, thus it has a blind and robust characteristic. Numerical simulations
verify the effectiveness of the proposed algorithm.
1 Introduction

The topic of multiple-input multiple-output (MIMO) radar system
has aroused extensive attention in the past decade [1–5]. MIMO
radar is characterised by the features that emit mutual orthogonal
waveforms with multiple antennas and receive the echoes with mul-
tiple antennas. The spatial diversity enables a MIMO radar to
achieve an enhanced performance in parameter estimation, interfer-
ence and jamming suppression and so on. Generally, the MIMO
radar can be divided into statistical MIMO and colocated MIMO
radar in term of its antenna configuration [6]. The former utilises
distribute antennas to combat radar cross section (RCS) coefficient
fluctuation. The later explore colocated antenna array to obtain
higher-resolution direction estimation. In this paper, we focus on
the uniform linear array (ULA)-based monostatic MIMO radar,
which belong to the later.

Direction estimation plays an important role in a colocated
MIMO radar. Many excellent algorithms have been developed,
such as multiple signal classification (MUSIC) [7], estimation
method of signal parameters via rotational invariance techniques
(ESPRIT) [8], propagator method (PM), tensor-based methods
[9–14] and so on. Unlike the angle estimation problem in a bistatic
MIMO radar, only one-dimensional angle needs to be determined in
a monostatic scenario. Although the estimation algorithms in a
bistatic configuration are also suitable for a monostatic case, they
are usually too complicating to implement. To lower the computa-
tion burden, several reduced-complexity (RC) strategies have been
presented, e.g. RC-Capon [15], RC-MUSIC [16], RC-ESPRIT [17]
and RC-root-MUSIC [18]. It has been shown that typical subspace-
based methods, such as RC-MUSIC and RC-ESPRIT, provide
accurate estimation performance. However, all the methods men-
tioned above require the prior information of source number.
Moreover, they may fail to work with the small snapshot scenario,
especially when the snapshot number is smaller than source
number. The optimisation-based methods can overcome such draw-
backs [19], among which the sparse Bayesian learning (SBL)
methods are more attractive from the perspective of estimation
accuracy [20]. SBL was first proposed by Tipping at the beginning
of this century [21]. It is shown that the global minimum of SBL is
always the sparest solution to the inverse problem [22]. Besides,
SBL has much fewer local minimum than many existing algo-
rithms. Usually, a fixed grid is set in SBL, and the DOA estimation
problem is resolved via the maximum-likelihood criterion or the
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
maximum-posterior probability principle. Unfortunately, it is
usually very hard to choose a proper grid, as a coarse grid may
lead to imprecise DOA estimation while a refined grid will bring
extensive computational complexity.

Recently, the off-grid DOA estimators are developed to balance
the above tradeoff, in which a coarse grid is initiated as the base
matrix. The mismatch between the adopted grid and the real direc-
tion is considered as a perturbation in the sparse model. The grid
can be adaptively updated along with algorithm iteration. The
off-grid DOA estimation problem was first stressed in [23], where
the perturbation is approximated by the first-order Taylor expansion
of the real direction at its nearest grid. The off-grid gap is assumed
to satisfy a Gaussian prior, and a sparse total least squares (STLS)
solver is investigated. Since the off-grid error is within the grid
interval, the Gaussian prior is replaced by the uniform hypothesis,
and an off-grid sparse Bayesian inference (OGSBI) algorithm is
presented in [24]. Moreover, a polynomial rooting-based off-grid
sparse Bayesian learning (ROGSBL) scheme is derived in [25],
where the grid is updated by finding the roots of a polynomial. It
has been shown that the ROGSBL method is more suitable for a
coarse grid, and it has more accurate DOA estimation performance
than the OGSBI method. Since the rooting processing in ROGSBL
is computationally inefficient, not all the grid points are updated in
the iteration. Instead, a hard threshold is set to determine the active
grid point. Unfortunately, the updating of the grid is still inefficient
and can be improved further.

In this paper, an improved DOA estimation algorithm is proposed
for a ULA-based monostatic MIMO radar. A reduced-dimension
transformation is firstly applied to obtain a Vandermonde structure
of the direction matrix as well as lower the computation burden.
Then a sparse inverse model is established that links the DOA esti-
mation problem to an off-grid optimisation problem. An improved
root-SBL algorithm is derived, in which a forgotten factor model is
utilised to update the grid dynamically. Numerical experiments
show that the proposed method provides a more accurate DOA
estimation than the existing off-grid SBL methods.

The remaining of the paper is organised as follows. The data
model for the monostatic MIMO radar is presented in
Section 2. The details of the proposed scheme are given in
Section 3. Simulation results are illustrated in Section 4. The
paper is ended by a brief conclusion in Section 5.

Notation, bold capital letters, e.g. X , and bold lowercase letters,
e.g. x denote matrices and vectors, respectively. The M ×M
Commons J. Eng., 2018, Vol. 2018, Iss. 5, pp. 268–273
doi: 10.1049/joe.2017.0872

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:


identity matrix is denoted by IM . The superscript ·( )T, ·( )H and ·( )−1

stand for the operations of transpose, Hermitian transpose and
inverse, respectively; ⊗ and ⊙ represent, respectively, the
Kronecker product and the Khatri-Rao product (column-wise
Kronecker product). The subscript ‖ · ‖F and ‖ · ‖2 represent the
Frobenius norm and 2-norm of a matrix; diag ·( ) and vec ·( ) denote
the diagonalisation and the vectorisation operations, respectively.
tr ·( ) and E ·( ) return the trace and the expectation, respectively.
X ·n and Xm· denote the nth column and the mth row of X ,
respectively.
2 Signal model

Consider a monostatic MIMO radar system equipped with M trans-
mitters and N receivers, both of which are colocated ULAs with a
half-wavelength spacing, as depicted in Fig. 1. Suppose that there
are K far-field sources appearing in the same range bin of the
radar system, and the kth (k = 1, 2, . . . , K) DOA is denoted by
uk . An additional assumption is that the transmitters emit mutual
orthogonal waveforms. The transmitted signals are reflected by
the sources, and the echoes are collected by the receivers. The
output of the matched filters can be expressed as [16, 17]

R = AT⊙AR

[ ]
ST + E (1)

where AT , AR, S and E denote, respectively, the transmit loading
matrix, the receive loading matrix, the echo loading matrix and
array noise matrix, and

AT = at u1
( )

, at u2
( )

, . . . , at uK
( )[ ]

[ CM×K

at(uk ) = 1, ejp sin uk , . . . , ejp M−1( ) sin uk[ ]T
AR = ar u1

( )
, ar u2
( )

, . . . , ar uK
( )[ ]

[ CN×K

ar(uk ) = 1, ejp sin uk , . . . , ejp N−1( ) sin uk[ ]T
S = s f1

( )
, s f2
( )

, . . . , s fK
( )[ ]

[ CL×K

s fk
( ) = 1, ak e

j2pfk/fs , . . . , ak e
j2p L−1( )fk/fs[ ]T

where at(uk ), ar(uk ) and s fk
( )

are the kth (k = 1, 2, . . . , K) column
vectors of AT , AR and S, respectively; ak , fk and fs stand for the
RCS amplitude, the Doppler frequency and the pulse repeat fre-
quency, respectively; L is the number of snapshots, E [ CMN×L

is a white Gaussian noise matrix. From (1), we can observe that
the received array data R is redundant, since the dimension of
virtual steering vector at uk

( )⊗ ar uk
( )

is MN, while only
R = M + N − 1 unique elements in it. The redundancy in (1) can
Fig. 1 Bistatic MIMO radar configuration
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be expressed as

at uk
( )⊗ ar uk

( ) = Gã(uk ) (2)

where ã(uk ) = 1, e−jp sin (uk ), . . . , e−jp(R−1) sin (uk )
[ ]T

, and
G [ CMN×R is

G =

1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0

..

. ..
. . .

. ..
. ..

. . .
. ..

.

0 0 . . . 1 0 . . . 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
M

0 1 0 . . . 0 . . . 0
0 0 1 . . . 0 . . . 0

..

. ..
. ..

. . .
. ..

. . .
. ..

.

0 0 0 . . . 1 . . . 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
M

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 . . . 0 1 0 . . . 0
0 . . . 0 0 1 . . . 0

..

. . .
. ..

. ..
. ..

. . .
. ..

.

0 . . . 0 0 0 . . . 1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

However, G cannot be applied on R directly, otherwise, the col-
oured noise will appear and results in degraded estimation perform-
ance. Instead, a new weight matrix W = GHG

( )−1
GH is

constructed. Let Ã = [ã u1), ã(u2), . . . , ã(uK )]
(

, we have
AT⊙AR = GÃ. Note that

GHG = diag 1, 2, . . . , min (M , N ), . . . , min (M , N )|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
|M−N |+1

, . . . , 2, 1

0
B@

1
CA

(3)

which is a full rank matrix. Therefore, multiplying W with R
yielding

Y = WR = GHG
� �−1

GHGÃS +WE = ÃS + N (4)

where N = WE is the compressed noise matrix. Obviously, the
compressed array data Y is non-redundant, and the associated
loading matrix is Ã.

3 Proposed scheme

3.1 Sparse representation-based DOA estimation

Generally, sources can be considered to be sparse in the spatial
domain. Usually, a fixed grid w1, w2, . . . , wQ (K , R ≪ Q) is

set. Let B = b w1

( )
, b w2

( )
, . . . , b wQ

( )[ ]
is the virtual loading

matrix, and the associate qth (q = 1, 2, . . . , Q) steering vector is

b wq

( )
= 1, e−jp sin (wq), . . . , e−jp(R−1) sin (wq)
[ ]T

[ CR×1. Thus the

array data Y in (4) can be rewritten as

Y = BX + N , Xq,· = Sk,·, if wq = uk
0, else

{
(5)

Clearly, X is a row sparse matrix. If we can recovery the support of
X , the DOAs are tantamount obtained. However, this is an NP-hard
problem. Alternatively, approximate solutions are achieved via
solving the following relaxed optimisation problem:

argmin
X

‖Y − BX‖2F + 1d X( ) (6)
access article published by the IET under the Creative Commons
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where 1 is a tradeoff parameter balancing noise with row sparsity,
d X( ) is a regularisation term encouraging row sparsity. Different

strategies pursue various d X( ), e.g. d X( ) = S
Q
q=1‖Xq,·‖2 in

LASSO, d X( ) = S
Q
q=1 log ‖X q,·‖2 in Jeffreys and d X( ) =

S
Q
q=1‖Xq,·‖p2 in FOCUSS. Equations (5) and (6) are established

on the assumption that sources are on the grids. Unfortunately,
there is always a mismatch between the true DOAs and the fixed
grids, which is well known as the off-grid problem. To overcome
this drawback, a perturbed sparse representation model is utilised,
in which [26]

Y = B+ E( )X +W = FX +W (7)

where E is the perturbation to B, and it can be approximated by the
first-order Taylor expansion of the off-grid DOAs as

E = d1
∂a w1

( )
∂w1

,
∂d2a w2

( )
∂w2

, . . . , dQ
∂a wQ

( )
∂wQ

⎡
⎣

⎤
⎦,

dq represents the nearest grid interval with dq = wq − uk if

wq ≤ uk ≤ wq+1 and zeros elsewhere (q [ 1, 2, . . . , Q
{ }

,
k [ {1, 2, . . . , K}). F = B+ E is the perturbed measurement
matrix. Accordingly, the optimisation problem in (6) is modified
into

argmin
X ,E

‖Y −FX‖2F + 1d X( ) (8)

To obtain the real DOA, one need to find out the support of X as
well as the intervals dq (q = 1, 2, . . . , Q). In what follows, an
enhanced SBL algorithm is developed for the DOA estimation.

3.2 Bayesian model

As a statistical method, SBL is based on the assumption of white
Gaussian noise and linear system. In this paper, we assume the com-
pressed noise measurements fulfil a circular symmetric complexity
Gaussian distribution with zero mean and unknown variance s2.
Moreover, we suppose the noise is uncorrelated with the source
matrix X . According to the Bayesian principle, we have the follow-
ing Gaussian likelihood:

p Y ·l|X ·l; s
2, w

( ) = 2ps2( )−(R/2)
exp − 1

2s2
‖Y ·l −FX·l‖22

{ }
(9)

where w = w1, w2, . . . , wQ

[ ]
is the grid that determine F.

Generally, the rows of X are assigned with an L-dimensional
Gaussian prior, i.e.

p Xq·; gq
( )

� N 0, gqIL

( )
, q = 1, 2, . . . , Q (10)

where gq is a non-negative hyperparameter that controls the row
sparsity of X . To obtain a two-stage hierarchical prior to Xq·, gq
(q = 1, 2, . . . , Q) are modelled with independent Gamma hyper-
priors in the empirical Bayesian strategy, which is given by

p g
( ) =∏Q

q=1

G gq|1, r
( )

(11)

where g = [g1, g2, . . . , gQ], r is a small constant. In addition, the
unknown hyperparameter s2 is also modelled with a Gamma
This is an open access article published by the IET under the Creative
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hyperprior with

p s2; a, b
( ) = G s2|a, b( )

(12)

Usually, a, b are initialised with a, b � 0 to achieve a board
hyperprior.

3.3 Sparse Bayesian learning

It can be easily concluded from the Bayes rule that the posterior
density p X |Y( ) is Gaussian, i.e.

p X |Y ; w, g, s2( ) =∏L
l=1

N ml , S
( )

(13)

where the mean m = m1, m2, . . . , mL

[ ]
and the covariance S are

given by

ml = s2SFHyl , l = 1, 2, . . . , L

S = s2FHF+L
( )−1

{
(14)

where L = diag g
{ }

. In this paper, the well-known expectation-
maximisation (EM) method is explored to find the hyperparameters
V = g, s2, w

{ }
, which can be accomplished via maximising

p Y ; V( ). Equivalently, one need to minimise − ln p Y ; V( ). By
treating X as a hidden variable, the EM method try to maximise

Q V( ) = EX |Y ;V(old) ln p Y , X ; V( )[ ]
= EX |Y ;V(old) ln p Y |X ; s2, w

( )[ ]
+ EX |Y ;V(old) ln p X ; g

( )[ ] (15)

where V(old) is the estimated hyperparameters in the previous
iteration.

To update g, Q V( ) is firstly simplified by treating s2 and w as
hidden variables. The learning rule for g is therefore obtained by
setting the derivative of Q V( ) with respect to gq to zeros, leading to

g(new)q =
−L+

����������������������
L2 + r

∑L
l=1 Jl

[ ]
q,q

√
2r

(16)

where Jl = mlm
H
l + S, and ·[ ]q,q is to get the qth diagonal element

of a matrix. By treating g and w as hidden variables and forcing the
gradient of Q V( ) over s2 to zero yields to

s2(new) = RL+ a− 1( )
b+∑L

l=1 ‖yl − Bml‖22 + Ltr BSBH
( ) (17)

3.4 Grid update

Now we need to determine the precise grid. In [24], the grid interval
dq (q = 1, 2, . . . , Q) is assumed to fulfil a uniform distribution
between two adjacent grids. By setting the gradient of Q V( ) over
dq to zero, one can get the update rule for dq. Since the coarse dic-
tionary matrix B is known, then the measurement matrix can be
obtained via F = B+ E. Alternatively, the accurate grid w can
be directly achieved via a polynomial root method. By setting
Q V( ) over vwq

= exp −jp sinwq

{ }
to zero yields to [25]

aH wq

( )
a wq

( )
oq + pq

{ }
= 0 (18)
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where oq and pq are given by

oq =
∑L

l=1
|mq,l|2 + gq,q

( )
pq = L

∑
r=q

gr,qa wr

( )−∑L

l=1
m∗
q,lyl−q

⎧⎪⎨
⎪⎩ (19)

Also, (18) can be formulated as

vwq , 1, v
−1
wq
, . . . , v−M+2

wq

[ ]
R R− 1( )

2
pq

o
q( )
2

2o
q( )
3

..

.

R− 1( )o q( )
R

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (20)

According to (20), the grid wq can be updated by finding the roots
of a known polynomial. Therefore, the root method can work
with a very coarse grid. It has been suggested in [25] that the

updated w(new)
q is accepted if w(new)

q [ (w(old)
q−1 + w(old)

q )/2
( )

,
[

(w(old)
q + w(old)

q+1 )/2
( )

], where the superscripts ‘old’ and ‘new’

denote, respectively, the obtained grid in the last iteration and in
this iteration.
Since the polynomial rooting is computationally inefficient, thus

it is not recommended to update every wn in each iteration. Instead,
a hard threshold is set to select h (h ≥ R) ‘proper’ active grid
points, which is implemented by finding the first h maxima of
‖m̂q·‖2 (q = 1, 2, . . . , Q), where m̂ denotes the estimated mean
matrix m. However, this scheme still suffers from the slowness of
convergence. In fact, the number of active points would decrease
with the increasing iteration number, and it would barely change
after several iterations, which coincides a forgotten curve. An illus-
tration is given in Fig. 2, where three independent trails were carried
out (SNR=5 dB, other experiment conditions are the same to that
in the simulation section), the forgotten ratio is figured by calculat-
ing the ratio of dominate grids (recognised if the associated ele-
ments in m is bigger than a threshold) versus iteration number.
To accelerate the polynomial rooting, a soft threshold is set to
update the grid dynamically. The following forgetting factor f is
calculated to determine the active grid points:

f = sign
h

iter
≥ ht

( )
(21)

where h records the grid index, the qth element of which would add
one if the 2-norm of ‖m̂q·‖2 is larger than ht , iter represents the
iteration number. If f (q) = 1, the corresponding grid point will
be updated, otherwise it will invariant in the iteration. To guarantee
Fig. 2 Forgotten character of active grid points
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the ratio of the active grid points, ht should be increased with the
increasing iter. In this paper, ht is initialised with 0 and increase
with 0.0001 per iteration.

Up to now, we have achieved the proposal of our DOA estima-
tion algorithm for monostatic MIMO radar, which can be sum-
marised as following steps:

Step 1: Arrange the matched measurements into R according to (1).
Construct the dimensionality reduction matrix according to (3), and
compute the non-redundant measurement matrix Y .
Step 2: Set a coarse grid dictionary B. Initial max item = 500,
tol = 10−4, f = 01×R and s2 = 1.
Step 3: Update the means ml and the covariance matrix S via (14),
and update gq and s2 via (16) and (17), respectively.
Step 4: Compute the forgotten factor f according to (21), and refine
the active grid points via (20).
Step 5: Repeat steps 3 to 4 until algorithm convergence, i.e. iteration
number reaches max_item or the relative residual is smaller than tol.

3.5 Advantages of our algorithm

Compared with the traditional subspace-based methods, e.g.
RC-MUSIC method, RC-ESPRIT method and the off-grid SBL
methods, the advantages of the proposed method are given as
follows:

(a) The proposed algorithm does not require the prior of sources
number, which means the proposed method has a blind characteris-
tic, while the subspace methods are not blind;
(b) The proposed method can work with a small snapshot as well as
coherent sources while the traditional subspace methods may
invalid in such backgrounds.
(c) The proposed method can achieve an accurate DOA estimation
while the traditional peak-searching methods can only find the
on-grid solutions.
(d) The proposed require fewer iteration steps than the existing
off-grid SBL methods, and it has better estimation accuracy than
the existing off-grid SBL methods.

4 Simulation results

In this section, 200 Monte Carlo trials were performed to verify the
improvement of the proposed method (Matlab code is available on
https://pan.baidu.com/s/1dF6MyTb). The ULA-based monostatic
MIMO radar is configured with M = 6 transmit elements and
N = 4 receive elements. Assume that there exist K uncorrelated
sources located at the angles uk , (k [ 1, 2, . . . , K{ }). Assume the
RCS coefficients fulfil the Swirling II model and L snapshots are
collected. The signal-to-noise ratio (SNR) is defined as
SNR = 10 log10 R− E‖ ‖22/ E‖ ‖22 dB[ ], where R and E are the matri-
ces in (1). The following root mean square error (RMSE) is used for
performance assessment

RMSE = 1

K

∑K
k=1

����������������������
1

200

∑200
i=1

û i,k − uk
( )2√√√√

where ûi,k represents the estimates of uk for the ith Monte Carlo
trial.

In the first simulation, we assume K = 2 sources located at direc-
tions u1 = −25.4°, u2 = 7.54°, L = 1 and SNR=10 dB are consid-
ered. The coarse grid in the proposed method is set to −90°, 90°[ ]
with an interval 6°. Fig. 3 shows the result of 200 independent trials.
Clearly, the proposed method is effective for one snapshot scenario.

In the second simulation, we test the DOA estimation perform-
ance versus grid interval, and we compare the proposed method
access article published by the IET under the Creative Commons
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Fig. 3 Estimated results of the proposed methods for 200 independent trails Fig. 6 RMSE performance comparison versus SNR
with OGSBI and ROGSBL. In this simulation, K = 2 uncorrelated
sources are uniformly generated within intervals −30°, − 20°[ ]
and 0°, 10°[ ], respectively, where the resolution is set to 0.01°.
Other conditions are the same to that in the first simulation.
Fig. 4 depicts the resultant RMSEs at the different grid interval.
It can be observed that the RMSE performance of the proposed
method gradually improves with the growing grid interval, and it
will keep stable after the interval is larger than 4°. Besides, the pro-
posed method provides more accurate DOA estimation performance
than OGSBI and ROGSBL. Fig. 5 gives the average iteration
number versus grid interval, from which we can observe the pro-
posed method requires nearly the same iteration number than
ROGSBL. Note that in each iteration, the rooting time of the pro-
posed method is no more than that in the ROGSBL, thus the pro-
posed is more efficient than ROGSBL.

In the third simulation, we test the DOA estimation versus SNR,
where L = 40 and other conditions in the first simulation keep
Fig. 4 RMSE performance comparison versus grid interval

Fig. 5 Average iteration number comparison versus grid interval

This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
unchanged. Fig. 6 illustrates the comparison, from which we can
see that RMSE of the proposed method and ROGSBL gradually
improved with the increasing SNR. Moreover, the proposed has
lower RMSR performance than ROGSBL and OGSBI, since the
dynamic determination of the updated grid number results in a
more accurate dictionary matrix.

5 Conclusion

In this paper, we have developed a reduced-dimensional SBL-based
DOA estimation method for monostatic MIMO radar. It can deal
with the off-grid problem in DOA estimation, and it has an estima-
tion better accuracy than the existing off-grid SBL methods and
subspace-based methods. The proposed method does not require
the prior information of source number, and it supports small snap-
shot scenario, which will lead to a brighter prospect in applications.
Finally, numerical simulations are given to verify the improvement
of the proposed method.
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