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Abstract. Let R be a commutative ring with 1 �= 0 and the additive group R+. Several
graphs on R have been introduced by many authors, among zero-divisor graph �1(R), co-
maximal graph �2(R), annihilator graph AG(R), total graph T (�(R)), cozero-divisors
graph �c(R), equivalence classes graph �E(R) and the Cayley graph Cay(R+, Z∗(R)).
Shekarriz et al. (J. Commun. Algebra, 40 (2012) 2798–2807) gave some conditions under
which total graph is isomorphic to Cay(R+, Z∗(R)). Badawi (J. Commun. Algebra, 42
(2014) 108–121) showed that when R is a reduced ring, the annihilator graph is identical
to the zero-divisor graph if and only if R has exactly two minimal prime ideals. The
purpose of this paper is comparison of graphs associated to a commutative Artinian ring.
Among the results, we prove that for a commutative finite ring R with |Max(R)| = n ≥ 3,
�1(R) � �2(R) if and only if R � Z

n
2; if and only if �1(R) � �E(R). Also the

annihilator graph is identical to the cozero-divisor graph if and only if R is a Frobenius
ring.
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1. Introduction

Extensive studies have been done about graphs on a commutative ring R, see for instance,
[4,5,8,11]. The idea of a zero-divisor graph of R (denoted by �0(R)) was introduced by
Beck, in 1988, where he was mainly interested in colorings, see [9]. In 1999, Anderson and
Livingston [4] studied subgraph �1(R) whose set of vertices is Z∗(R) and investigated the
interplay between the ring theoretic properties of R and the graph theoretic properties of
�1(R). In 1995, Sharma and Bhatwadekar [11] proposed a new approach that constructed
another graph of R, later to be known as co-maximal graph (denoted by �2(R)). In 2008,
Anderson and Badawi [5] introduced and investigated the total graph of R (denoted by
T (�(R))). In 2012, Shekarriz et al. [12] studied relations between total graph and Cayley
graph on R. In 2011, Afkhami and Khashyarmanesh [6] introduced the cozero-divisor
graph (denoted by �c(R)), and later they studied the relations between two graphs �2(R)

and �c(R), see [7]. In 2014, Badawi [8] introduced and investigated the annihilator graph
of R (denoted by AG(R)). He showed that each edge of �1(R) is an edge of annihilator
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graph AG(R). It means that, the graph �1(R) is a spanning subgraph of the graph AG(R).
Also he demonstrated that AG(R) is identical to �1(R) if and only if R has exactly two
minimal prime ideals.

The purpose of this paper is to present necessary and sufficient conditions under which
two graphs associate to a commutative ring R to be identical. We give necessary and
sufficient conditions in which, AG(R) = �c(R) and �2(R) = �c(R).

Throughout this paper, all rings are assumed to be commutative and Artinian with unity.
Let R be a commutative Artinian ring with the additive group R+. We denote by U (R),
Z(R), Z∗(R), J (R) and Max(R), the set of unit elements, zero-divisors, nonzero zero-
divisors, Jacobson radical and maximal ideals of R, respectively. It is easy to see that
R = U (R) ∪ Z(R). A Boolean ring is a ring in which every element is idempotent. It is
known that an Artinian ring R is Boolean if and only if R � Z

n
2, where n = |Max(R)|. In

this case, R is said to be n-Boolean ring. It can easily be verified that R is n-Boolean ring
if and only if U (R) = {1}.

Several graphs have been introduced by many authors; among them we need to recall
the ones necessarily needed in this paper.

– �1(R), zero-divisors graph; the vertices are elements of Z∗(R) and two vertices a and
b are adjacent if and only if ab = 0.

– �2(R), comaximal graph; the vertices are elements of R − (U (R)∪ J (R)) = Z(R)−
J (R) and two vertices a and b are adjacent if and only if Ra + Rb = R.

– AG(R), annihilator graph; the vertices are elements of Z∗(R), and two vertices a and
b are adjacent if and only if AnnR(a) � AnnR(b) and AnnR(b) � AnnR(a).

– �c(R), cozero-divisors graph; the vertices are elements of Z∗(R) and two vertices a
and b are adjacent if and only if Ra � Rb and Rb � Ra.

– −T(�(R)), total graph; the vertices are elements of R and two vertices a and b are
adjacent if and only if a + b ∈ Z(R).

– Cay(G, S), Cayley graph; the vertices are elements of G, and two vertices a and b
are adjacent if and only if ab−1 ∈ S, where G is a group and S ⊂ G be such that S
generates G, 0 /∈ S and if a ∈ S, then a−1 ∈ S. The Cayley graphs Cay(R+, Z∗(R))

and Cay(R+,U (R)) are studied in [1] and [2].
– �E(R), equivalence classes graph.

As noted in [13], for a, b ∈ R, it is defined a ∼ b if and only if Ann(a) = Ann(b).
Clearly ∼ is a equivalence relation and [a] denotes the class of a. Graph of equivalence
classes of Z∗(R) is the graph whose vertices are the classes of elements in Z∗(R), and
each pair of distinct classes [a] and [b] are adjacent if and only if ab = 0.

Let G be a simple graph consisted of an ordered pair of disjoint sets (V, E) such that
V = V (G) the notes the vertex set of G and E = E(G) is defined as the edge set of G.
Often, we write G for V (G). The neighborhood of a in G, denoted by NG(a), is defined by
{b ∈ G : a and b are adjacent in G} and degree of a in G, denoted by degG(a) is |NG(a)|.
We denote the minimum degree for vertices in G, by δG .

2. Main results

It is known that a commutative Artinian ring R, can be written as decomposition product∏
1≤i≤n Ri , where Ri ’s are the local rings and n = |Max(R)|. If a = (a1, a2, . . . , an) ∈ R,

we define supp(a) = {i ∈ In : ai �= 0}, where In = {1, . . . , n}. For any 1 ≤ i ≤ n, we
denoted ei = (0, 0, . . . , 0, 1, 0, . . . , 0).
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We first need the following lemma.

Lemma 2.1. Let R = ∏
1�i�n Fi , where Fi ’s are fields, |F1| ≤ |F2| ≤ · · · ≤ |Fn| < ∞

and a ∈ Z∗(R).

(1) deg�1(R)(a) = ∏
j /∈supp(a)|Fj |−1. Furthermore, δ�1(R) = deg�1(R)(e2 +· · ·+en) =

|F∗
1 |.

(2) deg�2(R)(a) = ∏
j /∈supp(a) |F∗

j |(
∏

j∈supp(a)|Fj | − ∏
j∈supp(a) |F∗

j |). Furthermore,
δ�2(R) = deg�2

(e1) = ∏
2� j�n|F∗

j |.

Proof.

(1) By hypothesis, supp(a) � In . For any b = (b1, b2, . . . , bn) ∈ N�1(R)(a), we have
b j ∈ Fj , if j /∈ supp(a) and b j = 0, if j ∈ supp(a). Therefore,

deg�1(R)(a) =
∏

j /∈supp(a)

|Fj | − 1.

(2) For any b = (b1, b2, . . . , bn) ∈ N�2(a), we have b j ∈ F∗
j , if j /∈ supp(a) and b j ∈ Fj ,

if j ∈ supp(a). Thus

deg�2(R)(a) =
∏

j /∈supp(a)

|F∗
j |

∏

j∈supp(a)

|Fj | −
∏

1� j�n

|F∗
j |

=
∏

j /∈supp(a)

|F∗
j |

⎛

⎝
∏

j∈supp(a)

|Fj | −
∏

j∈supp(a)

|F∗
j |

⎞

⎠ .

�

Now we present the necessary and sufficient condition under which the graphs �1(R)

and �2(R) are isomorphisms.

Theorem 2.2. Let R be a commutative finite ring with |Max(R)| = n. The following
statements are equivalent:
(1) �1(R) � �2(R).
(2) Either R is a n-Boolean ring or R � F1 ⊕ F2, where Fi ’s are fields.

Proof.

(1) ⇒ (2). Inasmuch as |V (�1(R))| = |V (�2(R))|, then |Z∗(R)| = |Z(R) − J (R)|,
hence J (R) = {0}. Thus R is semisimple, i.e, R = ∏

1�i�n Fi , where Fi ’s are fields.
Without loss of generality, assume that |F1| ≤ |F2| ≤ · · · ≤ |Fn|.

If n > 2, by hypothesis and Lemma 2.1, δ�1 = δ�2 and

|F∗
1 | =

∏

2� j�n

|F∗
j |.

Thus |F∗
1 | = · · · = |F∗

n | = 1, so |F1| = · · · = |Fn| = 2, hence R � Z
n
2. If n = 2, then

R � F1 ⊕ F2.
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(2) ⇒ (1). Suppose that R is a n-Boolean ring and a = (a1, a2, . . . , an), b =
(b1, b2, . . . , bn) ∈ R = Z

n
2. We define f : �1(R) → �2(R) with f (a) = 1 + a, for

any a ∈ V(�1(R)). It is easy to see that f is a bijection. Also f is a graph homomorphism.
To see this, let a, b ∈ V (�1(R)) be adjacent, so for all 1 ≤ i ≤ n, aibi = 0, and hence
either 1 + ai = 1 or 1 + bi = 1. Therefore we have supp(1 + a) ∪ supp(1 + b) = In .
Hence 1 + a and 1 + b are adjacent in �2(R). This means that f is a graph isomorphism.

Now suppose R � F1 ⊕ F2, where Fi ’s are fields, if |F∗
1 | = m and |F∗

2 | = n, then
�1(F1 ⊕ F2) � �2(F1 ⊕ F2) � Km,n , see [4]. �

Theorem 2.3. Let R be a commutative finite ring. The following statements are equivalent:

(1) R is a Boolean ring.
(2) Cay(R+, Z∗(R)) is a |R| − 2-regular graph.
(3) T (�(R)) is a |R| − 2-regular graph.
(4) Cay(R+,U (R)) is the union 2n−1 line segment.
(5) �1(R) � �E (R).

Proof.

(1) ⇒ (2) and (3). It follows from [12, Theorems 2.7 and 5.2].
(2) or (3) ⇒ (1). By hypotheses U (R) = {1}, hence R is a Boolean ring.
(1) ⇔ (4). It is clear.
(1) ⇒ (5). Clearly, f : �1(R) → �E(R) with f (a) = [a], for any a ∈ Z∗(R), is a
isomorphism graph.
(5) ⇒ (1). Suppose R = R1 ⊕ R2 ⊕ · · · ⊕ Rn , where Ri ’s are local rings and n =
|Max(R)|. Since �1(R) � �E(R), then |Z∗(R)| = |{Ann(a) : a ∈ Z∗(R)}|. Thus for
each a, b ∈ Z∗(R), we have a = b if and only if Ann(a) = Ann(b). For each γ ∈ U (Ri ),
Ann(ei ) = Ann(γ ei ), where 1 ≤ i ≤ n, and this implies that ei = γ ei , consequently,
U (Ri ) = {1}. Therefore for all 1 ≤ i ≤ n, we have Ri = Z2, i.e., R is a n-Boolean ring.

�

Lemma 2.4. Let R be a commutative finite ring, if a ∈ Z∗(R) and a = ua, for some
u ∈ U(R), then R is Boolean.

Proof. Suppose R = R1 ⊕ R2 ⊕ · · · ⊕ Rn , where R,
i s are local rings. By hypothesis, for

each γ ∈ U (Ri ), ei = γ ei , hence γ = 1. Therefore U(Ri ) = {1} and so Ri = Z2, as a
result R is Boolean. �

If G is a graph and H is a subgraph of G, then we write H ⊆ G.

Lemma 2.5. Let R be a commutative ring, then �1(R) ⊆ AG(R) ⊆ �c(R).

Proof. �1(R) ⊆ AG(R) follows from [8, Lemma 2.1]. To prove AG(R) ⊆ �c(R), let a
and b be adjacent in AG(R) and they are not adjacent in �c(R). Then either a ∈ Rb or
b ∈ Ra. Therefore either Ann(a) ⊆ Ann(b) or Ann(b) ⊆ Ann(a), a contradiction. Thus
AG(R) ⊆ �c(R). �

A graph G is reduced if no two vertices of G have the same open neighbourhood, see
[10].
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Theorem 2.6. Let R be a commutative finite ring and |Max(R)| = n ≥ 3, the following
statements are equivalent:

(1) R is a n-Boolean ring.
(2) �2(R) is reduced.
(3) �c(R) is reduced.
(4) AG(R) is reduced.

Proof.

(1) ⇒ (2). By hypothesis, for any a, b ∈ Z∗(R), a = b if and only if N�1(R)(a) =
Ann(a) = Ann(b) = N�1(R)(b). Therefore �1(R) is reduced and Theorem 2.2 implies
that �2(R) is reduced.
(2) ⇒ (1). Suppose a ∈ Z∗(R) and u ∈ U (R), since N�2(R)(a) = N�2(R)(ua), hence
a = ua and Lemma 2.4 implies that R is a Boolean ring.
(1) ⇒ (3). Suppose a, b ∈ Z∗(R) and a �= b. Without loss of generality, there exists i ∈
supp(a)− supp(b) such that ai = 1 and bi = 0. Thus aei = ei ∈ N�c(R)(b)− N�c(R)(a).
This shows that N�c(R)(a) �= N�c(R)(b). As a result, �c(R) is reduced.
(3) ⇒ (1). Follows from Lemma 2.4.
(1) ⇒ (4). By hypothesis, �c(R) is reduced. Now for each a, b ∈ Z∗(R), Ra ⊆ Rb if
and only if Ann(a) ⊆ Ann(b). Hence AG(R) = �c(R), so AG(R) is reduced.
(4) ⇒ (1). Follows from Lemma 2.4. �

The next corollaries follow from Theorems 2.2, 2.3 and 2.6.

COROLLARY 2.7

Let R be a commutative finite ring and |Max(R)| = n ≥ 3. The following statements are
equivalent:

(1) R is a n-Boolean ring.
(2) �1(R) = �2(R).
(3) Cay(R+, Z∗(R)) is a |R| − 2 a regular graph.
(4) T (�(R)) is a |R| − 2 a regular graph.
(5) Cay(R+,U (R)) is the union 2n−1 line segment.
(6) �1(R) � �E(R).
(7) �2(R) is reduced.
(8) �c(R) is reduced.
(9) AG(R) is reduced.

COROLLARY 2.8

Let R be a commutative finite ring and |Max(R)| = 2. The following statements are
equivalent:

(1) �1(R) � �2(R).
(2) R = F1 ⊕ F2, where F1, F2 are fields.

We use �′
2(R) to denote the co-maximal graph of R with vertex-set Z∗(R).
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Theorem 2.9. Let R be a commutative Artinian ring. The following statements are equiv-
alent:

(1) �c(R) = �′
2(R).

(2) R � F1 ⊕ F2, where F1, F2 are fields.

Proof.

(1) ⇒ (2). By hypothesis, R = R1 ⊕ R2 ⊕ · · · ⊕ Rn , where Ri ’s are local rings. Since
Re1 � Re2 and Re2 � Re1, then e1 and e2 are adjacent in �c(R) and so e1 and e2 are
adjacent in �′

2(R). If n > 2, then Re1 + Re2 � R, and this is a contradiction. Therefore
R = R1 ⊕ R2.

If R1 is not a field, there is 0 �= a ∈ R1 − U(R1), hence (a, 0) and (0, 1) are adjacent in
�c(R) and so are adjacent in �′

2(R). But R(a, 0) + R(0, 1) �= R, a contradiction, hence
R1 is a field. Similarly, R2 is a field.
(2) ⇒ (1). Clearly, �c(F1 ⊕ F2) = �′

2(F1 ⊕ F2) = Km,n , where |F∗
1 | = m and |F∗

2 | = n.
�

A commutative Artinian ring R is said to be Frobenius, if R is injective as a module
over itself. It is well-known that R is Frobenius if and only if Ann(Ann(I )) = I , for each
ideal I of R. Also if (R,m) is a commutative Artinian local ring then R is Frobenius if
and only if dimR/m Ann(m) = 1, see [13, Remark 1.3].

Next we show that AG(R) = �c(R) if and only if R is a Frobenius ring. We first need
the following lemma.

Lemma 2.10. Let R = R1 ⊕ R2 ⊕ · · · ⊕ Rn, where Ri ’s are Artinian local ring, the
following statements are equivalent:

(1) �c(R) = AG(R).
(2) �c(Ri ) = AG(Ri ), 1 ≤ ∀i ≤ n.

Proof.

(1) ⇒ (2). Suppose ai and bi are adjacent in �c(Ri ), where 1 ≤ i ≤ n. Then a = aiei
and b = biei are adjacent in �c(R) = AG(R). Therefore AnnRi (ai ) � AnnRi (bi ) and
AnnRi (bi ) � AnnRi (ai ). Hence ai and bi are adjacent in AG(Ri ), as a result �c(Ri ) =
AG(Ri ).
(2) ⇒ (1). Suppose a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are adjacent in �c(R).
There is 1 ≤ i, j ≤ m such that Rbiei � Raiei and Ra je j � Rb je j . So Ribi � Riai and
R ja j � R jb j . By hypothesis, AnnRi (ai ) � AnnRi (bi ) and AnnR j (b j ) � AnnR j (a j ).
Hence Ann(a) � Ann(b) and Ann(b) � Ann(a), i.e., a and b are adjacent in AG(R). �

Theorem 2.11. Let R be a commutative Artinian ring. The following statements are equiv-
alent:

(1) AG(R) = �c(R).
(2) R is a Frobenius ring.
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Proof. We know that R = R1 ⊕ R2 ⊕ · · · ⊕ Rn , where R,
i s are Artinian local rings and it

is well-known that R is Frobenius if and only if Ri ’s are Frobenius, see [3]. Therefore by
Lemma 2.10, it is enough to prove the case that R is local with the maximal ideal m.

(1) ⇒ (2). Suppose (R,m) is not Frobenius, then dimR/m Ann(m) > 1. Therefore there
exists a and b in Ann(m) such that Ra � Rb and Rb � Ra, i.e, a and b are adjacent in
�c(R) and so in AG(R). But Ann(a) = Ann(b) = m, a contradiction.
(2) ⇒ (1). Suppose a, b ∈ Z∗(R) are not adjacent in AG(R). Thus either Ann(a) ⊆
Ann(b) or Ann(b) ⊆ Ann(a). Therefore either Rb = Ann(Ann(b)) ⊆ Ann(Ann(a)) =
Ra or Ra = Ann(Ann(a)) ⊆ Ann(Ann(b)) = Rb. This implies that �c(R) ⊆ AG(R).

�
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