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Abstract.  Let R be acommutative ring with 1 # 0 and the additive group RT. Several
graphs on R have been introduced by many authors, among zero-divisor graph Iy (R), co-
maximal graph I' (R), annihilator graph AG(R), total graph T (I'(R)), cozero-divisors
graph I'¢(R), equivalence classes graph I'g (R) and the Cayley graph Cay(R™, Z*(R)).
Shekarriz et al. (J. Commun. Algebra, 40 (2012) 2798-2807) gave some conditions under
which total graph is isomorphic to Cay(R*, Z*(R)). Badawi (J. Commun. Algebra, 42
(2014) 108-121) showed that when R is a reduced ring, the annihilator graph is identical
to the zero-divisor graph if and only if R has exactly two minimal prime ideals. The
purpose of this paper is comparison of graphs associated to a commutative Artinian ring.
Among the results, we prove that for acommutative finite ring R with |Max(R)| =n > 3,
['1(R) ~ T'»(R) if and only if R ~ ZZ; if and only if I'j(R) ~ T'g(R). Also the
annihilator graph is identical to the cozero-divisor graph if and only if R is a Frobenius
ring.
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1. Introduction

Extensive studies have been done about graphs on a commutative ring R, see for instance,
[4,5,8,11]. The idea of a zero-divisor graph of R (denoted by I'g(R)) was introduced by
Beck, in 1988, where he was mainly interested in colorings, see [9]. In 1999, Anderson and
Livingston [4] studied subgraph I'{ (R) whose set of vertices is Z*(R) and investigated the
interplay between the ring theoretic properties of R and the graph theoretic properties of
I'1(R). In 1995, Sharma and Bhatwadekar [11] proposed a new approach that constructed
another graph of R, later to be known as co-maximal graph (denoted by I'2(R)). In 2008,
Anderson and Badawi [5] introduced and investigated the total graph of R (denoted by
T(I'(R))). In 2012, Shekarriz et al. [12] studied relations between total graph and Cayley
graph on R. In 2011, Afkhami and Khashyarmanesh [6] introduced the cozero-divisor
graph (denoted by I'¢(R)), and later they studied the relations between two graphs I'2 (R)
and "¢ (R), see [7]. In 2014, Badawi [8] introduced and investigated the annihilator graph
of R (denoted by AG(R)). He showed that each edge of I'1(R) is an edge of annihilator
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graph AG(R). It means that, the graph ' (R) is a spanning subgraph of the graph AG(R).
Also he demonstrated that AG(R) is identical to I'j (R) if and only if R has exactly two
minimal prime ideals.

The purpose of this paper is to present necessary and sufficient conditions under which
two graphs associate to a commutative ring R to be identical. We give necessary and
sufficient conditions in which, AG(R) = I'c(R) and I'2(R) = I'¢(R).

Throughout this paper, all rings are assumed to be commutative and Artinian with unity.
Let R be a commutative Artinian ring with the additive group R™. We denote by U (R),
Z(R), Z*(R), J(R) and Max(R), the set of unit elements, zero-divisors, nonzero zero-
divisors, Jacobson radical and maximal ideals of R, respectively. It is easy to see that
R = U(R) U Z(R). A Boolean ring is a ring in which every element is idempotent. It is
known that an Artinian ring R is Boolean if and only if R >~ Z5, where n = |[Max(R)|. In
this case, R is said to be n-Boolean ring. It can easily be verified that R is n-Boolean ring
if and only if U (R) = {1}.

Several graphs have been introduced by many authors; among them we need to recall
the ones necessarily needed in this paper.

— I'1(R), zero-divisors graph; the vertices are elements of Z*(R) and two vertices a and
b are adjacent if and only if ab = 0.

— I'>2(R), comaximal graph; the vertices are elements of R — (U(R)U J(R)) = Z(R) —
J(R) and two vertices a and b are adjacent if and only if Ra + Rb = R.

— AG(R), annihilator graph; the vertices are elements of Z*(R), and two vertices a and
b are adjacent if and only if Anng(a) ¢ Anng(b) and Anng(b) € Anng(a).

— I'¢(R), cozero-divisors graph; the vertices are elements of Z*(R) and two vertices a
and b are adjacent if and only if Ra ¢ Rb and Rb ¢ Ra.

— —T(I'(R)), total graph; the vertices are elements of R and two vertices a and b are
adjacent if and only if a + b € Z(R).

— Cay(G, S), Cayley graph; the vertices are elements of G, and two vertices a and b
are adjacent if and only if ab~! € S, where G is a group and S C G be such that §
generates G, 0 ¢ S andif a € S, then a~! € S. The Cayley graphs Cay(R*, Z*(R))
and Cay(R™, U(R)) are studied in [1] and [2].

— I'e(R), equivalence classes graph.

As noted in [13], for a, b € R, it is defined a ~ b if and only if Ann(a) = Ann(b).
Clearly ~ is a equivalence relation and [a] denotes the class of a. Graph of equivalence
classes of Z*(R) is the graph whose vertices are the classes of elements in Z*(R), and
each pair of distinct classes [a] and [b] are adjacent if and only if ab = 0.

Let G be a simple graph consisted of an ordered pair of disjoint sets (V, E) such that
V = V(G) the notes the vertex set of G and E = E(G) is defined as the edge set of G.
Often, we write G for V(G). The neighborhood of a in G, denoted by N (a), is defined by
{b € G : a and b are adjacent in G} and degree of a in G, denoted by deg (a) is |[Ng(a)|.
We denote the minimum degree for vertices in G, by 8¢.

2. Main results

It is known that a commutative Artinian ring R, can be written as decomposition product
]_[1<i<n R;, where R;’s are the local rings and n = [Max(R)|.Ifa = (a1, a2, ...,a,) € R,
we define supp(a) ={i € I, : a; # 0}, where I,, = {1,...,n}. Forany 1 <i < n, we
denoted ¢; = (0,0,...,0,1,0,...,0).
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We first need the following lemma.

Lemma 2.1. Let R = ngignFi’ where F;’s are fields, |F1| < |F2| < --- < |Fy| < 00
anda € Z*(R).
(1) degr,(g)(@) = ]_[j¢supp(a)|Fj| — L. Furthermore, 81 () = degr, (g)(€2+---+€,) =
|FYl.
(2) degr,(g)(a@) = ]_[j¢supp(a) |F;|(1_[j€supp(a)|F/| — ]_[jesupp(a) |FJ’F|). Furthermore,

8ry(r) = degr, (e1) = Hzg‘/gnwﬁ-

Proof.

(1) By hypothesis, supp(a) ;Ct I,. For any b = (b1, by, ..., b,) € Nr,(r)(a), we have

bj € Fj,if j ¢ supp(a) and b; = 0, if j € supp(a). Therefore,
degr, (g)(a) = H |Fj| — 1.
J ¢supp(a)

(2)Forany b = (b1, b2, ..., by) € Nr,(a),wehave b; € F;“,ifj ¢ supp(a) and b; € F;,
if j € supp(a). Thus

degr,my@ =[] 1F;1 T[] 1Fil= [] IF]I
J¢supp(a) J€supp(a) I<jsn
= 1 wrl ] w#F1- ] 17
J¢supp(a) J €supp(a) J€supp(a)

O

Now we present the necessary and sufficient condition under which the graphs I'1 (R)
and 'y (R) are isomorphisms.

Theorem 2.2. Let R be a commutative finite ring with |Max(R)| = n. The following
statements are equivalent:

(1) T1(R) = T2(R).

(2) Either R is a n-Boolean ring or R >~ F| @& F», where F;’s are fields.

Proof.

(1) = (2). Inasmuch as |V(I'{(R))| = |[V(I'2(R))|, then |Z*(R)| = |Z(R) — J(R)|,
hence J(R) = {0}. Thus R is semisimple, i.e, R = ngignFi’ where F;’s are fields.
Without loss of generality, assume that |F|| < |F>2| < --- < |Fp|.

If n > 2, by hypothesis and Lemma 2.1, ér, = ér, and

IFil= [T IF;1.
2<j<n

Thus |F{'| =--- = |F}| = 1,50 |Fi| = --- = |F,| = 2, hence R >~ Z5. If n = 2, then
R~ F & F;.
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(2) = (1). Suppose that R is a n-Boolean ring and ¢ = (aj,a2,...,ay), b =
(b1,by,...,by) € R = Z5. We define f : I'1(R) — I'2(R) with f(a) = 1 + a, for
any a € V(I'1 (R)). Itis easy to see that f is a bijection. Also f is a graph homomorphism.
To see this, let a, b € V(I'1(R)) be adjacent, so forall 1 <i < n, a;b; = 0, and hence
either 1 +a; = 1 or 1 + b; = 1. Therefore we have supp(l + a) U supp(l + b) = I,.
Hence 1 + a and 1 4 b are adjacent in I'2(R). This means that f is a graph isomorphism.

Now suppose R >~ F| @ F,, where F;’s are fields, if |F|'| = m and |F5| = n, then
['1(F @ F) >~ T2(F ® F) >~ Ky, see [4]. U

Theorem 2.3. Let R be a commutative finite ring. The following statements are equivalent:

(1) R is a Boolean ring.

(2) Cay(R™, Z*(R)) is a |R| — 2-regular graph.
(3) T(I'(R)) is a |R| — 2-regular graph.

(4) Cay(R™, U(R)) is the union 271 Jine segment.
(5) T'1(R) ~TE(R).

Proof.

(1) = (2) and (3). It follows from [12, Theorems 2.7 and 5.2].

(2) or (3) = (1). By hypotheses U (R) = {1}, hence R is a Boolean ring.

(1) & (4). Itis clear.

(1) = (5). Clearly, f : T'1(R) — T'g(R) with f(a) = [a], for any a € Z*(R), is a

isomorphism graph.

(5) = (1). Suppose R = Ry ® R» @ --- & R,, where R;’s are local rings and n =

[Max(R)|. Since I'{(R) =~ I'g(R), then |Z*(R)| = |{Ann(a) : a € Z*(R)}|. Thus for

eacha, b € Z*(R), we have a = b if and only if Ann(a) = Ann(b). For each y € U (R;),

Ann(e;) = Ann(ye;), where 1 < i < n, and this implies that e¢; = ye;, consequently,

U(R;) = {1}. Therefore for all 1 <i < n, we have R; = Zj, i.e., R is a n-Boolean ring.
O

Lemma 2.4. Let R be a commutative finite ring, if a € Z*(R) and a = ua, for some
u € U(R), then R is Boolean.

Proof. Suppose R = Ri @ Ry @ --- @ R, where R;s are local rings. By hypothesis, for
each y € U(R;), e; = ye;, hence y = 1. Therefore U(R;) = {1} and so R; = Z», as a
result R is Boolean. |

If G is a graph and H is a subgraph of G, then we write H C G.
Lemma 2.5. Let R be a commutative ring, then I'1(R) € AG(R) C I'c(R).

Proof. T1(R) € AG(R) follows from [8, Lemma 2.1]. To prove AG(R) C I'c(R), leta
and b be adjacent in AG(R) and they are not adjacent in I'c(R). Then either a € Rb or
b € Ra. Therefore either Ann(a) € Ann(b) or Ann(b) € Ann(a), a contradiction. Thus
AG(R) CT(R). O

A graph G is reduced if no two vertices of G have the same open neighbourhood, see
[10].
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Theorem 2.6. Let R be a commutative finite ring and |Max(R)| = n > 3, the following
statements are equivalent:

(1) R is a n-Boolean ring.
(2) T2(R) is reduced.

(3) T<(R) is reduced.

4) AG(R) is reduced.

Proof.

(1) = (2). By hypothesis, for any a,b € Z*(R), a = b if and only if Nr,(gy(a) =
Ann(a) = Ann(b) = Nr,(g)(b). Therefore I'; (R) is reduced and Theorem 2.2 implies
that "> (R) is reduced.

(2) = (1). Suppose a € Z*(R) and u € U(R), since Nr,(r)(a) = Nr,(r)(ua), hence
a = ua and Lemma 2.4 implies that R is a Boolean ring.

(1) = (3). Suppose a, b € Z*(R) and a # b. Without loss of generality, there exists i €
supp(a) — supp(b) such thata; = 1 and b; = 0. Thus ae; = e; € Nr (r)(b) — Nr.(r)(a).
This shows that Nr (gy(a) # Nr.(r)(b). As aresult, I'c(R) is reduced.

(3) = (1). Follows from Lemma 2.4.

(1) = (4). By hypothesis, I'c(R) is reduced. Now for each a, b € Z*(R), Ra C Rb if
and only if Ann(a) € Ann(b). Hence AG(R) = I'¢(R), so AG(R) is reduced.

(4) = (1). Follows from Lemma 2.4. O

The next corollaries follow from Theorems 2.2, 2.3 and 2.6.
COROLLARY 2.7

Let R be a commutative finite ring and [Max(R)| = n > 3. The following statements are
equivalent:

(1) R is an-Boolean ring.

(2) T1(R) = Ta(R).

(3) Cay(R™, Z*(R)) is a |R| — 2 a regular graph.
@) T(I'(R)) isa |R| — 2 a regular graph.

(5) Cay(R™, U(R)) is the union 21 line segment.
(6) T't(R) ~Te(R).

(7) T2(R) is reduced.

(8) I'c(R) is reduced.

9) AG(R) is reduced.

COROLLARY 2.8

Let R be a commutative finite ring and |Max(R)| = 2. The following statements are
equivalent:

(1) T1(R) = T2(R).
(2) R = F| & F,, where Fy, F; are fields.

We use I')(R) to denote the co-maximal graph of R with vertex-set Z*(R).
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Theorem 2.9. Let R be a commutative Artinian ring. The following statements are equiv-
alent:

(1) Te(R) =T5(R).
(2) R~ F1 & F,, where Fy, F; are fields.

Proof.

(1) = (2). By hypothesis, R = R1 & R, & --- & R,,, where R;’s are local rings. Since
Re; g Re> and Re; §Z Rejp, then e; and e, are adjacent in I'¢(R) and so e; and e, are
adjacent in F%(R). If n > 2, then Re; + Re> ; R, and this is a contradiction. Therefore
R =R ® R».

If R; is not a field, there is 0 # a € Ry — U(R}), hence (a, 0) and (0, 1) are adjacent in
I'c(R) and so are adjacent in I')(R). But R(a, 0) + R(0, 1) # R, a contradiction, hence
R is a field. Similarly, R; is a field.

(2) = (1). Clearly, I (F1 @ F») = T'5(F1 @ F2) = Ky, where | F'| = m and | F| = n.
O

A commutative Artinian ring R is said to be Frobenius, if R is injective as a module
over itself. It is well-known that R is Frobenius if and only if Ann(Ann(/)) = I, for each
ideal I of R. Also if (R, m) is a commutative Artinian local ring then R is Frobenius if
and only if dimg/m Ann(m) = 1, see [13, Remark 1.3].

Next we show that AG(R) = I'c(R) if and only if R is a Frobenius ring. We first need
the following lemma.

Lemma 2.10. Let R = Ry ® Ry & --- ® R;,, where R;’s are Artinian local ring, the
following statements are equivalent:

(1) Te(R) = AG(R).
(2) Te(Ri) = AG(R;), 1 =Vi <n.

Proof.

(1) = (2). Suppose a; and b; are adjacent in I'c(R;), where 1 < i < n. Then a = a;e;
and b = b;e; are adjacent in I'c(R) = AG(R). Therefore Anng, (a;) ¢ Anng, (b;) and
Anng, (b;) Q Anng, (a;). Hence g; and b; are adjacent in AG(R;), as a result I'¢(R;) =
AG(R;).

(2) = (1). Suppose a = (a1, az, ...,ay) and b = (b1, ba, ..., b,) are adjacent in ['¢(R).
Thereis 1 <1i, j < m suchthat Rb;e; 7¢_ Raje; and Raje; ¢_ Rbje;.So R;b; 7¢_ R;a; and
Rja; € Rjb;. By hypothesis, Anng, (a;) ¢ Anng,(b;) and Anng,(b;) € Anng,(a;).
Hence Ann(a) SZ Ann(b) and Ann(b) ¢ Ann(a), i.e., a and b are adjacent in AG(R). O

Theorem 2.11. Let R be a commutative Artinian ring. The following statements are equiv-
alent:

(1) AG(R) =T(R).
(2) R is a Frobenius ring.



Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:56 Page 70of 7 56

Proof. We know that R = Ry ® R, @ - - - ® Ry, where R;s are Artinian local rings and it
is well-known that R is Frobenius if and only if R;’s are Frobenius, see [3]. Therefore by
Lemma 2.10, it is enough to prove the case that R is local with the maximal ideal m.

(1) = (2). Suppose (R, m) is not Frobenius, then dimg, Ann(m) > 1. Therefore there
exists @ and b in Ann(m) such that Ra gZ Rb and Rb Q Ra, i.e, a and b are adjacent in
I'c(R) and so in AG(R). But Ann(a) = Ann(b) = m, a contradiction.

(2) = (1). Suppose a,b € Z*(R) are not adjacent in AG(R). Thus either Ann(a) C
Ann(b) or Ann(b) € Ann(a). Therefore either Rb = Ann(Ann(b)) C Ann(Ann(a)) =
Ra or Ra = Ann(Ann(a)) € Ann(Ann(b)) = Rb. This implies that ['c(R) € AG(R).

O
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