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1. Introduction

The important notion of extremal Kähler metrics was first introduced by Calabi [3]. He
showed that the extremal condition is equivalent to the gradient of the scalar curvature being
a holomorphic vector field. Therefore, the extremal Kähler metrics generalize Kähler–
Einstein metrics and constant scalar curvature Kähler metrics. Calabi [3] constructed
a family of extremal Kähler metrics of non-constant scalar curvature depending on 4-
parameters on P(OPn−1(m) ⊕ OPn−1) for arbitrary m ∈ Z. Simanca [7] re-obtained these
examples and produced extremal metrics on other bundles by extending Calabi’s con-
struction. Abreu [1] presented Calabi’s family of U(n)-invariant extremal Kähler metrics
in symplectic action-angle coordinates. Tønnesen–Friedman [8–10] used the Hamiltonian
construction to get new extremal metrics on some P

1-bundles over products of Kähler–
Einstein manifolds of negative scalar curvature and other important results. For more
references, see the historical survey in [2].

In this paper, we will follow [5,6] to construct rotationally symmetric extremal pseudo-
Kähler metrics on various bundles over Pn−1 and consider the ‘phase change’ under the
variation of initial values. Firstly, we will start with a function depending only on u :=
r2 = ∑n

j=1 |z j |2 on C
n − {0} as the Kähler potential. Because of the globally rotational

symmetry, we can restrict it to the z1-axis (z2 = · · · = zn = 0), where the Kähler form
can be written as

ω = √−1

(

(uφ′(u))′dz1 ∧ dz̄1 + φ′(u)

n∑

i=2

dzi ∧ dz̄i

)

.

http://crossmark.crossref.org/dialog/?doi=10.1007/s12044-018-0376-5&domain=pdf


14 Page 2 of 27 Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:14

Consequently, the curvature properties can be expressed in terms of ordinary differen-
tial equations. Hence we will get an ordinary differential equation corresponding to the
extremal condition. The completeness of the constructed metric is related to the natu-
ral extension over u = 0 or u = ∞. The metric can be constructed on OPn−1(m), or
its disc subbundle, or its projective compactification P(OPn−1(m) ⊕ OPn−1) after taking
quotient by some cyclic subgroups of U (n). We will make the extensions of the met-
rics over u = 0 and u = ∞ more explicit by changing coordinates. Moreover, we
will consider the extension of Calabi’s construction to the pseudo-Kähler case and put
the constructed metrics in the families parametrized by the initial values of the corre-
sponding ODEs. This leads to some interesting ‘phase change’ phenomenon: When one
changes parameters suitably, the extremal Kähler metric may acquire some singularities
and become extremal pseudo-Kähler in some regions. This was inspired by the discussion
of the Candelas-de la Ossa metrics on the resolved conifold [4], which form a family
of Kähler Ricci-flat metrics that depend on a parameter a. When a → 0+, the metric
reduces to the one induced from a singular metric on the conifold; when a becomes neg-
ative, one gets a metric that can be understood as Kähler metrics on the space where
P

1 is flopped. In this way, one sees how the Kähler cones of the resolved conifold and
the flopped resolved conifold can be glued together. We expect this to be a very general
phenomenon, not just for the resolved conifold or just for Kähler Ricci-flat metrics. We
have presented in [5,6] some examples of this ‘phase change’ phenomenon in the case of
(pseudo-)Kähler metrics of constant scalar curvatures and Kähler–Einstein metrics respec-
tively. In this paper, we will make a similar study in the case of extremal (pseudo-)Kähler
metrics.

The rest of the paper is organized as follows. In §2, we will recall the main lem-
mas and notations in [5,6] and derive the ODEs corresponding to the U (n)-symmetric
extremal pseudo-Kähler metrics. In §3, we will get many rotationally symmetric extremal
pseudo-Kähler metrics on various holomorphic line bundles over projective spaces and
their disc bundles. Especially, we give a family of noncomplete rotationally symmet-
ric extremal Kähler metric on OPn−1(−k) for all k ∈ Z. And we can see clearly
the phase change under the variation of initial values. In §4, we get many rota-
tionally symmetric extremal (pseudo-)Kähler metrics on P(O(k) ⊕ O(−l)) for each
k, l ≥ 1. And we will discuss their phase changes which are manifest from our
approach.

2. Construction of rotationally symmetric extremal (pseudo-)Kähler metrics

In this section, we will recall the construction of some U (n)-symmetric extremal (pseudo-)
Kähler metrics and some closing conditions near the origin and near the infinity by some
natural changes of coordinates [3,5–7].

2.1 U (n)-symmetric Kähler metrics

On C
n − {0}, consider the potential function φ(u), where u = |z1|2 + · · · + |zn|2 and the

(1, 1)-form

ω = √−1∂∂̄φ(u) = √−1(φ′(u)∂∂̄u + φ′′(u)∂u ∧ ∂̄u). (1)

More explicitly,
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ω = √−1

⎛

⎝φ′(u)

n∑

i=1

dzi ∧ dz̄i + φ′′(u)

n∑

i=1

z̄i dzi ∧
n∑

j=1

z j d z̄ j

⎞

⎠ . (2)

Because of the symmetry, one can restrict to the z1-axis (z2 = · · · = zn = 0), where the
Kähler form can be written as

ω = √−1

(

(uφ′(u))′dz1 ∧ dz̄1 + φ′(u)

n∑

i=2

dzi ∧ dz̄i

)

. (3)

Write y(u) = uφ′(u), then one can rewrite (3) as

ω = √−1

(

y′(u)dz1 ∧ dz̄1 + y(u)

u

n∑

i=2

dzi ∧ dz̄i

)

. (4)

Therefore, we get the following

Lemma 2.1 [5,6]. If y(u) > 0 and y′(u) > 0 for all u > 0, then ω is a Kähler form on
C

n − {0}; if y(u) > 0 and y′(u) < 0 for all u > 0, then ω is a pseudo-Kähler form of
signature (2n − 2, 2) on C

n − {0}; if y(u) < 0 and y′(u) > 0 for all u > 0, then ω is a
pseudo-Kähler form of signature (2, 2n − 2) on C

n − {0}; if y(u) < 0 and y′(u) < 0 for
all u > 0, then −ω is a Kähler form on C

n − {0}.

Lemma 2.2 [5,6].

(1) If y(u) > 0 and y′(u) > 0 for 0 < u < a, where a > 0, then ω is a Kähler form on
the open ball B2n(

√
a) − {0}; if y(u) > 0 and y′(u) < 0 for 0 < u < a, where a > 0,

then ω is a pseudo-Kähler form of signature (2n − 2, 2) on the open ball B2n(
√

a) − {0};
if y(u) < 0 and y′(u) > 0 for 0 < u < a, where a > 0, then ω is a pseudo-Kähler form
of signature (2, 2n − 2) on the open ball B2n(

√
a) − {0}; if y(u) < 0 and y′(u) < 0 for

0 < u < a, where a > 0, then −ω is a Kähler form on the open ball B2n(
√

a) − {0}.
(2) If y(u) > 0 and y′(u) > 0 for u > a, where a > 0, then ω is a Kähler form outside
the sphere of radius

√
a; if y(u) > 0 and y′(u) < 0 for u > a, where a > 0, then ω is a

pseudo-Kähler form of signature (2n − 2, 2) outside the sphere of radius
√

a; if y(u) < 0
and y′(u) > 0 for u > a, where a > 0, then ω is a pseudo-Kähler form of signature
(2, 2n − 2) outside the sphere of radius

√
a; if y(u) < 0 and y′(u) < 0 for u > a, where

a > 0, then −ω is a Kähler form outside the sphere of radius
√

a.

Let m ≥ 1 be a positive integer, make the following change of variables:

z1 = v1/m, z2 = v1/mw2, . . . , zn = v1/mwn . (5)

The new coordinates (v,w2, . . . , wn) are local coordinates on OPn−1(−m), where
w2, . . . , wn are inhomogeneous coordinates on P

n−1, and v is the coordinate in the fiber
direction. With the coordinate change (5), the (1, 1)-form (2) becomes a differential form
ω̂. At (v, 0, . . . , 0), we have
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ω̂ = √−1

(
1

m2 |v|2/m−2 y′(|v|2/m)dv ∧ d v̄ + y(|v|2/m)

n∑

i=2

dwi ∧ dw̄i

)

.

From this one can get the following:

Lemma 2.3 [5,6]. If both y(|v|2/m) and |v|2/m−2 y′(|v|2/m) can be extended to smooth
functions in v whose values at v = 0 are nonzero, then ω̂ can be extended smoothly over
the zero section of OPn−1(−m).

Similarly, one can also add a copy of Pn−1 at infinity to (Cn − {0})/Zm to get the total
space of O(m) → P

n−1 by making the following change of variables:

z1 = 1/v1/m, z2 = w2/v1/m, . . . , zn = wn/v1/m . (6)

With the coordinate change (6), the (1, 1)-form (2) becomes a differential form ω̃. At
(v, 0, . . . , 0) we have

ω̃ = √−1

(
1

m2 |v|−2/m−2 y′(|v|−2/m)dv ∧ d v̄ + y(|v|−2/m)

n∑

i=2

dwi ∧ dw̄i

)

.

We have the following:

Lemma 2.4 [5,6]. If both y(|v|−2/m) and |v|−2/m−2 y′(|v|−2/m) can be extended to smooth
functions in v whose values at v = 0 are nonzero, then ω̃ can be extended smoothly over
the zero section of OPn−1(m).

In the following, we will consider the Ricci form of a pseudo-Kähler metric ω. We will
define it as follows. First of all, the Levi-Civata connection defined by the pseudo-Kähler
metric induces a connection on the canonical line bundle, we define its curvature form ρ as
the Ricci form of the pseudo-Kähler metric. In local coordinates, if ω = √−1hi j̄ dzi ∧dz̄ j ,
then as in the ordinary Kähler case

ρ = √−1∂̄

(
1

det h
∂ det(h)

)

= −√−1∂∂̄ log(det(h)),

where h is the Hermitian matrix (hi j̄ ), and when det(h) is negative, we take log(det(h)) =
log(| det(h)|) + √−1π .

It is not hard to see that

ωn

n! = √−1
n

y′(u)

(
y(u)

u

)n−1 n∏

i=1

dzi ∧ dz̄i . (7)

Now if ω is nondegenerate, by (7), the Ricci form is given by

ρ = −√−1∂∂̄ψ, (8)

where

ψ = log

[

y′ ( y

u

)n−1
]

. (9)

So

ψ ′ = y′′

y′ + (n − 1)
y′

y
− (n − 1)

1

u
. (10)
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And the scalar curvature of ω is given by

ρ ∧ ωn−1 = Rωn . (11)

Plugging (3), (7) and (8) into (11), we get

(uψ ′)′
( y

u

)n−1 + (n − 1)ψ ′ ( y

u

)n−2
y′ = −n Ry′ ( y

u

)n−1
,

i.e.

(uψ ′)′yn−1 + (n − 1)(uψ ′)yn−2 y′ = −n Ryn−1 y′. (12)

2.2 Extremal metric condition

The notion of extremal metric was first introduced by Calabi as critical points of the
functional

∫

M

S(ω)2ωn

n! , (13)

where S(ω) is the scalar curvature determined byω. And Calabi proved that: a Kähler metric
is extremal if and only if R,ī j̄ = 0, or equivalently the vector field X = ∑n

i, j=1 gi j̄ ∂ R
∂ z̄ j

∂
∂zi

is holomorphic. But here R is only the function of u, hence X = ∑n
i, j=1 gi j̄ R′z j ∂

∂zi . From
(1),

gi j̄ = δi j

φ′ − φ′′ z̄ j zi

φ′(φ′ + uφ′′)
, (14)

hence by plugging this into the last expression, we get

X =
n∑

i=1

R′zi

φ′ + uφ′′
∂

∂zi

=
n∑

i=1

R′zi

y′
∂

∂zi
.

Since zi is holomorphic, X is holomorphic if and only if

R′

y′ = C1 (15)

for some constant C1, i.e.

R = C1 y + C2 (16)

by integrating (15). Therefore, by plugging (12) and (10) into the above expression, we
get

[yn−1(
uy′′
y′ + (n − 1)u y′

y − (n − 1))]′
−nyn−1 y′ = C1 y + C2. (17)

Integrating this, we get
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yn−1
(

uy′′

y′ + (n − 1)u
y′

y
− (n − 1)

)

= −C1n/(n + 1)yn+1 − C2 yn + C3,

(18)

where C2, C3 are integral constants.
Multiplying it by y′ on both sides and integrating, we get

uyn−1 y′ = yn − C1
n

(n + 1)(n + 2)
yn+2 − C2

n + 1
yn+1 + C3 y + C4. (19)

Hence, we have the following:

PROPOSITION 2.1

A pseudo-Kähler form as in (1) is extremal if and only if
∫

yn−1dy

−C1
n

(n+1)(n+2)
yn+2 − C2

n+1 yn+1 + yn + C3 y + C4
= ln u, (20)

for some constants C1, C2, C3, C4.

Remark 2.1. When C1 = 0, (20) reduces to the constant scalar curvature case [6], in the
following we will always assume C1 
= 0.

3. Examples of U(n)-symmetric extremal metrics C4 = 0

In this section, we first construct various families of extremal (pseudo-)Kähler metrics
depending on two parameters on the line bundles OPn−1(−k) and other bundles. Then we
study the effect of changing parameters on the constructed metrics.

By rescaling we can take C1 = ± (n+1)(n+2)
n . We will first discuss C1 = − (n+1)(n+2)

n
and later we will discuss the positive case.

3.1 C1 < 0

When C4 = 0, take C1 = − (n+1)(n+2)
n and write − C2

n+1 as C2 for convenience. Now (19)
becomes

y′ = yn+1 + C2 yn + yn−1 + C3

uyn−2 (21)

Write C3 = −bn+1 − C2bn − bn−1 for some number b 
= 0. Now the above equation
becomes

y′ = yn+1 + C2 yn + yn−1 − bn+1 − C2bn − bn−1

uyn−2 (22)

Recall in the case of U (n)-symmetric constant scalar curvature Kähler metrics with
nonzero scaler curvature, we have the following equation [6]:

y′ = yn+1 + yn + C1 y − bn+1 − bn − C1b

uyn−1 . (23)
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We will modify the treatment of this equation in [6] to study solutions to (22). We consider
the solution curve of this ODE in the region u > 0, y 
= b and y 
= 0. In this subsection,
we will discuss the extension of the solution over 0. The extension over the infinity can be
treated similarly, and will be discussed later. Assume furthermore that (n +1)b2 +nC2b+
n − 1 
= 0. Then we have

yn−2

yn+1 + C2 yn + yn−1 − bn+1 − C2bn − bn−1 = 1

(n + 1)b2 + nC2b + n − 1
(

1

y − b
− p(y)

bn + C2bn−1 + bn−1 y + ∑n
j=2 bn− j (y2 + C2 y + 1)y j−2

)

,

where

p(y) =

⎧
⎪⎨

⎪⎩

yn−1 + (2b + C2)yn−2 − ∑n−3
j=0(n − 2 − j)

(b2 + C2b + 1)b j yn−3− j , n ≥ 3

y + C2 + 2b, n = 2

After integration, one gets

ln |y − b| −
∫

p(y)dy

bn + C2bn−1 + bn−1 y + ∑n
j=2 bn− j (y2 + C2 y + 1)y j−2

= ln u(n+1)b2+nC2b+n−1. (24)

From this, we see that it is natural to regard y as a function of u(n+1)b2+nC2b+n−1. We now
make this more precise. Suppose that (n + 1)b2 + nC2b + n − 1 is a positive integer m,
i.e., (n + 1)b2 + nC2b + n − 1 = m for m ≥ 1. One can consider the action of Z/mZ on
C

n − {0}, and consider the extension of the metric on (Cn − {0})/Zm by adding a copy of
P

n−1 over 0. For this, we need to check the conditions in Lemma 2.3.
Because (n + 1)b2 + nC2b + n − 1 
= 0, y = b being a simple root of yn+1 + C2 yn +

yn−1 − bn+1 − C2bn − bn−1, therefore,
⎛

⎝bn + C2bn−1 + bn−1 y +
n∑

j=2

bn− j (y2 + C2 y + 1)y j−2

⎞

⎠ |y=b 
= 0.

It follows that
∫ y(u)

b
p(y)dy

bn+C2bn−1+bn−1 y+∑n
j=2 bn− j (y2+C2 y+1)y j−2 for y(u) close to b is finite.

Therefore by (24),

lim
y→b

u = 0

for solutions with initial values near y = b. Let

y(u) = b + a1u + a2u2 + · · · (25)

be an asymptotic expansion of y near u = 0. Then by (24) again, we have

ln |a1u + · · · | ∼ m ln u, (26)

therefore,

y(u) ∼ b + amum + am+1um+1 + · · · . (27)
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Now plug this into (24) and we get

ln

∣
∣
∣
∣1 + am+1

am
u + · · ·

∣
∣
∣
∣

= −
∫ y(u)

b

p(y)dy

bn + C2bn−1 + bn−1 y + ∑n
j=2 bn− j (y2 + C2 y + 1)y j−2 ,

(28)

where am 
= 0. Asymptotically, the right-hand side is of order um , hence by comparing
with the left-hand sides one gets

y(u) ∼ b + amum + a2mu2m + · · · . (29)

By repeating this procedure, one shows that y(u) = g(um) for some smooth function
g. Furthermore, because b 
= 0 and am 
= 0, the conditions in Lemma 2.3 are satisfied.
Therefore, the solution can be extended smoothly over the zero section of OPn−1(−m).

We summarize the result as follows:

PROPOSITION 3.1

When (n+1)b2+nC2b+n−1 = m, for some m ∈ N, a solution of (22) with limy→b u = 0
induces a smooth metric on a neighborhood of the zero section of OPn−1(−m).

For the extension over ∞, we have a similar result as follows:

PROPOSITION 3.2

When (n + 1)b2 + nC2b + n − 1 = −m, for some m ∈ N, a solution of (22) with
limy→b u = +∞ induces a smooth metric on a neighborhood of the zero section of
OPn−1(m).

Remark 3.1. It is easy to see that

(n + 1)b2 + nC2b + n − 1

= 1/Res

(
yn−2

yn+1 + C2 yn + yn−1 − bn+1 − C2bn − bn−1 , b

)

in the above two propositions.

To understand the solutions of (22) better, in particular, the sign of its right-hand side,
we consider the vector field corresponding to (22) on the half plane {(u, y) ∈ R

2 | u > 0}.
It will tell us the behavior of the solutions corresponding to different initial values. We
first have to find the places where

yn+1 + C2 yn + yn−1 − bn+1 − C2bn − bn−1

uyn−2 = 0 (30)

or
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Figure 1. For n even and (C2)2 ≤ 4(n2−1)

n2 .

Figure 2. For n even and C2 < −
√

4(n2−1)

n2 .

yn+1 + C2 yn + yn−1 − bn+1 − C2bn − bn−1

uyn−2 = ∞. (31)

The latter is possible only along the u-axis, i.e., y = 0, while the former is more com-
plicated. Clearly y = b is a solution of (30). To understand the sign of the numerator
yn+1 + C2 yn + yn−1 − bn+1 − C2bn − bn−1, we consider

f (y) = yn+1 + C2 yn + yn−1 (32)

We have f ′(y) = yn−2((n +1)y2 +nC2 y +n −1). Hence the graphs are as in figures 1–6.
We will discuss various cases in the following subsections as indicated in the figures

1–6. For convenience, we denote g(y) = yn+1 + C2 yn + yn−1 − bn+1 − C2bn − bn−1.

3.1.1. Assume n is even, take suitable b > 0, C2 ∈ R, m ∈ Z satisfying (n + 1)b2 +
nC2b + n − 1 = m, such that g(y) = 0 has exactly one solution y = b > 0. We have for
u > 0,
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Figure 3. For n even and C2 >

√
4(n2−1)

n2 .

Figure 4. For n odd and (C2)2 ≤ 4(n2−1)

n2 .

y′ = g(y)

uyn−2

= yn+1 + C2 yn + yn−1 − bn+1 − C2bn − bn−1

uyn−2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

> 0, y > b,

= 0, y = b,

< 0, 0 < y < b,

< 0, y < 0.

The phase diagram of the solution curves are as in figure 7.
From this one sees that all solutions are defined for bounded u: u < C for some C > 0.

We will check this below. Except for the constant solution y = b, y = y(u) is monotonous
in u, and let u = u(y) be its inverse function. We have three cases to consider.



Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:14 Page 11 of 27 14

Figure 5. For n odd and C2 >

√
4(n2−1)

n2 .

Figure 6. For n odd and C2 < −
√

4(n2−1)

n2 .

Figure 7. Phase diagram of the solution curves in §3.1.1.
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Region 1. y > b. Then u is monotonically increasing in y. By (20),

ln um(y2) − ln um(y1)

= ln |y − b|∣∣y2
y1

−
∫ y2

y1

p(y)dy

bn + C2bn−1 + bn−1 y + ∑n
j=2 bn− j (y2 + C2 y + 1)y j−2

.

When y1 → b+, the integral on the right-hand side is finite and ln |y1 − b| → −∞,
therefore, the right-hand side tends to +∞ when y1 → b+. Hence by looking at the
left-hand side when y1 → b+, we must have

lim
y1→b+ u(y1) = 0. (33)

We now look at the behavior of the solution when y2 → +∞.
Because

lim
y2→+∞

(

ln |y − b|∣∣y2
y1

−
∫ y2

y1

p(y)dy

bn + C2bn−1 + bn−1 y + ∑n
j=2 bn− j (y2 + C2 y + 1)y j−2

)

= lim
y2→+∞ m

∫ y2

y1

yn−2

yn+1 + yn + C1 y − bn+1 − bn − C1b
dy

= m
∫ +∞

y1

yn−2

yn+1 + yn + C1 y − bn+1 − bn − C1b
dy < +∞,

it follows that

lim
y2→+∞ u(y2)=u(y1) · exp

(∫ +∞

y1

yn−2

yn+1+yn +C1 y−bn+1 − bn − C1b
dy

)

.

Denote the right-hand side by u∞.
By Proposition 3.1, when m > 0, the metric can be extended smoothly over the zero

section of OPn−1(−m). Moreover, since we have as u → u∞,

ρ(u) =
∫ u

0

√
y′(t)/tdt =

∫ y(u)

b

1
√

t y′(t)
dy

=
∫ y(u)

b

√
yn−2

yn+1 + yn + C1 y − bn+1 − bn − C1b
dy

∼
∫ y(u)

b

dy
3
√

y
< +∞,

the extremal metric we get here is not complete. Hence we get a family of extremal metrics
on a disk bundle contained in OPn−1(−m).

Region 2. 0 < y < b. Similarly, we have

lim
y1→b− u(y1) = 0, (34)

and it is easy to see that

lim
y2→0+ u(y2) (35)
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Figure 8. Phase diagram of the solution curves in §3.1.2.

exists as a finite positive number. By Proposition 3.1, when m > 0, the metric can also be
extended smoothly over the zero section of OPn−1(−m). In this case the metric is extremal
pseudo-Kähler.
Region 3. y < 0. Similar to the above arguments, one can see that both limy1→−∞ u(y1)

and limy2→0+ u(y2) exist as positive numbers. So a solution in Region 3 gives rise to
an extremal pseudo-Kähler metric ω defined on an open subset of OPn−1(−m) bounded
between two sphere subbundles. Moreover, one can combine a solution in Region 2 with
a solution in Region 3 to define a generalized Kähler extremal metric on a disc bundle
D → C Pn−1 contained in OPn−1(−m), which is pseudo-Kähler inside a smaller sphere,
blows up along it and becomes pseudo-Kähler outside it. Hence when we vary the initial
values continuously from Region 1 to Region 2 in figure 7, the extremal Kähler metric on
D → C Pn−1 contained in OPn−1(−m) first degenerates to the solution y = b and then
changes to be a generalized Kähler extremal metric.

3.1.2. Assume n is even, take suitable b > 0, C2 ∈ R, m ∈ Z satisfying (n + 1)b2 +
nC2b + n − 1 = m such that yn+1 + C2 yn + yn−1 − bn+1 − C2bn − bn−1 = 0 has exactly
one solution y = b < 0. So we have the phase diagram as in figure 8.

By Proposition 3.1, when m > 0, a solution in Region 2 gives rise to an extremal
pseudo-Kähler metric on a disc bundle D → C Pn−1 contained in OPn−1(−m), and a
solution in Region 1 gives rise to an extremal Kähler metric ω defined on an open subset
of OPn−1(−m) bounded between two sphere subbundles. Moreover, one can combine a
solution in Region 1 with a solution in Region 2 to define a generalized Kähler extremal
metric on a disc bundle D → C Pn−1 contained in OPn−1(−m), which is pseudo-Kähler
inside a smaller sphere, blows up along it and becomes Kähler outside it. Hence when we
vary the initial values continuously from Region 3 to Region 2, the extremal pseudo-Kähler
metric on D → C Pn−1 contained in OPn−1(−m) first degenerates to the solution y = b,
then changes to be a generalized Kähler extremal metric.
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Figure 9. Phase diagram of the solution curves in §3.1.3.

3.1.3. Assume n is even, take suitable b > 0, C2 ∈ R, m ∈ Z satisfying (n + 1)b2 +
nC2b + n − 1 = m such that yn+1 + C2 yn + yn−1 − bn+1 − C2bn − bn−1 = 0 has exactly
three solutions: z1 > 0, z2 > 0, b > 0. So we have three cases to discuss. The phase
diagram is as in figure 9.
Case 1: b > z2 > z1. By Proposition 3.1, when m > 0, a solution in Region 1
gives rise to an extremal Kähler metric on D → C Pn−1 contained in OPn−1(−m),

and a solution in Region 2 gives rise to an extremal pseudo-Kähler metric ω defined
on OPn−1(−m). When we vary the initial values continuously from Region 1 to Region
2, the extremal Kähler metric on D → C Pn−1 contained in OPn−1(−m) first degen-
erates to the solution y = b, then changes to be an extremal pseudo-Kähler metric on
OPn−1(−m).

Case 2: z2 > b > z1. By Proposition 3.2, when m < 0, a solution in Region 3 gives
rise to an extremal Kähler metric on OPn−1(−m). A solution in Region 2 gives rise to an
extremal pseudo-Kähler metric ω defined on OPn−1(−m). When we vary the initial values
continuously from Region 3 to Region 2, the extremal Kähler metric on OPn−1(−m) first
degenerates to the solution y = b, then changes to be an extremal pseudo-Kähler metric
on OPn−1(−m).

Case 3: z2 > z1 > b. By Proposition 3.1, when m > 0, a solution in Region 3 gives rise to
an extremal Kähler metric on OPn−1(−m). A solution in Region 4 gives rise to an extremal
pseudo-Kähler metric ω defined on D → C Pn−1 contained in OPn−1(−m). Moreover,
one can combine a solution in Region 4 with a solution in Region 5 to define a generalized
Kähler extremal metric on a disc bundle D → C Pn−1 contained in OPn−1(−m), which
is pseudo-Kähler inside a smaller sphere, blows up along it and becomes pseudo-Kähler
outside it. Hence when we vary the initial values continuously from Region 3 to Region 4,
the extremal pseudo-Kähler metric on OPn−1(−m) first degenerates to the solution y = b,
then changes to be a generalized Kähler extremal metric on D → C Pn−1 contained in
OPn−1(−m).
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Figure 10. Phase diagram of the solution curves in §3.1.4 when g(y) has exactly three
negative roots.

Figure 11. Phase diagram of the solution curves in §3.1.4 when g(y) has exactly one
positive root and two negative roots.

Remark 3.2. We recover the family of extremal Kähler metrics on OPn−1(−m), for all
m ∈ Z in [7].

3.1.4. For convenience, we just list the other cases in figures 10–12. When n is odd, we
have the phase diagrams as in figures 13–16

3.2 C1 > 0

When C4 = 0, C1 > 0 by rescaling and we can take C1 = (n+1)(n+2)
n . Write − C2

n+1 still
as C2 for convenience. Now (19) becomes

y′ = −yn+1 + C2 yn + yn−1 + C3

uyn−2 . (36)
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Figure 12. Phase diagram of the solution curves in §3.1.4 when g(y) has exactly two
positive roots and one negative root.

Figure 13. Phase diagram of the solution curves in §3.1.4 when g(y) has exactly one
positive root and one negative root.

Figure 14. Phase diagram of the solution curves in §3.1.4 when g(y) has exactly one
positive root and three negative roots.
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Figure 15. Phase diagram of the solution curves in §3.1.4 when g(y) has exactly two
negative roots.

Figure 16. Phase diagram of the solution curves in §3.1.4 when g(y) has exactly two
positive roots.

Write C3 = bn+1 − C2bn − bn−1 for some number b 
= 0. Now the above equation
becomes

y′ = −yn+1 + C2 yn + yn−1 + bn+1 − C2bn − bn−1

uyn−2 (37)

Assume furthermore −(n + 1)b2 + nC2b + n − 1 
= 0. Then we have
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yn−2

−yn+1 + C2 yn + yn−1 + bn+1 − C2bn − bn−1

= 1

−(n + 1)b2 + nC2b + n − 1

(
1

y − b

− p(y)

yn + (b − C2)yn−1 + ∑n
j=2 b j−2(b2 − C2b − 1)yn− j

)

,

where

p(y) =

⎧
⎪⎨

⎪⎩

yn−1 − (−2b + C2)yn−2 − ∑n−3
j=0(n − 2 − j)

(b2 − C2b − 1)b j yn−3− j , n ≥ 3

y − (−2b + C2), n = 2

After integration, one gets

ln |y − b| −
∫

p(y)dy

yn + (b − C2)yn−1 + ∑n
j=2 b j−2(b2 − C2b − 1)yn− j

= ln u−(n+1)b2+nC2b+n−1. (38)

From this we see that it is natural to regard y as a function of u−(n+1)b2+nC2b+n−1. Suppose
that −(n+1)b2 +nC2b+n−1 is a positive integer m, i.e., −(n+1)b2 +nC2b+n−1 = m
for m ≥ 1. Then one can consider the action of Z/mZ and the extension of the metric on
(Cn − {0})/Zm by adding a copy of Pn−1 over 0. So we have the following.

PROPOSITION 3.3

When −(n + 1)b2 + nC2b + n − 1 = m, i.e.

1/Res

(
yn−2

yn+1 + C2 yn + yn−1 − bn+1 − C2bn − bn−1 , b

)

= m

for some m ∈ N, a solution of (37) with limy→b u = 0 induces a smooth metric on a
neighborhood of the zero section of OPn−1(−m). When −(n +1)b2 +nC2b+n −1 = −m,
for some m ∈ N, a solution of (37) with limy→b u = +∞ induces a smooth metric on a
neighborhood of the zero section of OPn−1(m).

Other discussions about the solutions are similar to the former subsections, so we just
list the phase diagrams. When n is even, we have figures 17–20. When n is odd, we have
figures 21–24. In summary, we have the following.

Remark 3.3. For any C1 > 0 or C1 < 0, there is always a family of extremal Kähler
metrics on OPn−1(−m) for all m ∈ Z.

4. Examples of U(n)-symmetric extremal metrics: C4 �= 0

In this section, we will first discuss C1 < 0 and later we will discuss the positive C1 case.
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Figure 17. Phase diagram of the solution curves in §3.2 when g(y) has exactly positive
root.

Figure 18. Phase diagram of the solution curves in §3.2 when g(y) has exactly one
negative root.

4.1 C1 < 0

Take C1 = − (n+1)(n+2)
n and write − C2

n+1 still as C2 for convenience and C4 = −bn+2 −
C2bn+1 − bn − C3b for some number b 
= 0. Now (19) becomes

y′ = yn+2 + C2 yn+1 + yn + C3 y − bn+2 − C2bn+1 − bn − C3b

uyn−1 . (39)

Clearly y = b is a solution. When ((n + 2)b2 + (n + 1)C2b + n + C3/bn−1 
= 0, we have

yn−1

yn+2 + C2 yn+1 + yn + C3 y − bn+2 − C2bn+1 − bn − C3b

= 1

(n + 2)b2 + (n + 1)C2b + n + C3
bn−1
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Figure 19. Phase diagram of the solution curves in §3.2 when g(y) has exactly one
positive root and two negative roots.

Figure 20. Phase diagram of the solution curves in §3.2 when g(y) has exactly two
positive roots and one negative root.

(
1

y−b
− p(y)

yn+1+(b+C2)yn + ∑n−1
j=0(b

2 + C2b + 1)b j yn−1− j + C3

)

,

where

p(y) = yn + C2 yn−1 + 2byn−1 −
n−2∑

j=0

[

(n − 1 − j)b j yn−2− j + C3

b j+1 y j
]

.

After integration, one gets

ln |y − b| −
∫

p(y)dy

yn+1 + (b + C2)yn + ∑n−1
j=0(b

2 + C2b + 1)b j yn−1− j + C3

= ln u(n+2)b2+(n+1)C2b+n+C3/bn−1
. (40)
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Figure 21. Phase diagram of the solution curves in §3.2 when g(y) has exactly one
positive root and one negative root.

Figure 22. Phase diagram of the solution curves in §3.2 when g(y) has exactly two
negative roots.

From this, we see that y is a function of (n + 2)b2 + (n + 1)C2b + n + C3/bn−1, and so
when (n + 2)b2 + (n + 1)C2b + n + C3/bn−1 is a positive integer m, i.e., (n + 2)b2 +
(n + 1)C2b + n + C3/bn−1 = m for m ≥ 1, one can consider the action of Z/mZ and
consider the extension of the metric on (Cn − {0})/Zm by adding a copy of Pn−1 over 0.
For avoidance of repetition we will skip the details and just list the results as follows:

PROPOSITION 4.1

When (n + 2)b2 + (n + 1)C2b + n + C3/bn−1 = m, m ∈ N, a solution of (39) with
limy→b u = 0 induces a smooth (pseduo-) Kähler extremal metric on a neighborhood of
the zero section of OPn−1(−m).
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Figure 23. Phase diagram of the solution curves in §3.2 when g(y) has exactly two
positive roots.

Figure 24. Phase diagram of the solution curves in §3.2 when g(y) has exactly two
positive roots and two negative roots.

Similarly, we have the following.

PROPOSITION 4.2

When (n + 2)b2 + (n + 1)C2b + n + C3/bn−1 = −m, m ∈ N, a solution of (39) with
limy→b u = 0 induces a smooth (pseduo-) Kähler extremal metric on a neighborhood of
the zero section of OPn−1(m).

Remark 4.1. In the above two propositions, it is obvious that

(n + 2)b2 + (n + 1)C2b + n + C3/bn−1

= 1/Res

(
yn−1

yn+2 + C2 yn+1 + yn + C3 y − bn+2 − C2bn+1−bn −C3b
, b

)

.
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Figure 25. Phase diagram of the solution curves in §4.1.1 when g(y) has exactly three
positive roots and one negative root.

Then we can do the same thing as in the last section. Based on the graph of yn+2 +
C2 yn+1 + yn + C3 y, we can classify the phase diagrams by the solutions of yn+2 +
C2 yn+1 + yn + C3 y − bn+2 − C2bn+1 − bn − C3b = 0. For simplicity, we just list several
interesting ones.

4.1.1 The case of three positive roots and one negative root for n even

Case 2. If (n + 2)b2 + (n + 1)C2b + n + (n − 1)C3/b = −k, k ∈ N and (n + 2)z2
2 +

(n + 1)C2z2 + n + C3/z2 = l, l ∈ N both hold, i.e., b and z2 both satisfying Proposition
4.2 and Proposition 4.1 respectively, then the corresponding metric in Region 3 can be
extended smoothly through both the zero and the infinity. In other words, it is defined on
the whole compact manifold P(O(k) ⊕ O(−l)). Therefore, we get a family of extremal
Kähler metrics on P(O(k)⊕O(−l)). This generalizes calabi’s result. Moreover, when we
change the initial values from Region 3 to Region 2 or Region 4, the phase change happens
(see figure 25).

Remark 4.2. For any C1 < 0, there is always a family of extremal Kähler metrics on
P(O(k) ⊕ O(−l)).for all k, l ∈ N.

4.1.2 The case of three positive roots for n odd

Case 2. If (n + 2)b2 + (n + 1)C2b + n + (n − 1)C3/b = −k, k ∈ N and (n + 2)z2
1 + (n +

1)C2z1 + n + C3/z1 = l, l ∈ N both hold, i.e., b and z1 both satisfying Proposition 4.2
and Proposition 4.1 separately, then the corresponding metric in Region 3 can be extended
smoothly through both the zero and the infinity. In other words, it can be defined on the
whole compact manifold P(O(k)⊕O(−l)). Therefore we get a family of extremal Kähler
metric on P(O(k) ⊕ O(−l)). Moreover, when we vary the initial value from Region 3 to
Region 2 or Region 4, the phase change happens (see figure 26).

4.1.3 Other complicated cases for n odd

For other complicated cases when n is odd, see figures 27–30.
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Figure 26. Phase diagram of the solution curves in §4.1.2 when g(y) has exactly three
positive roots.

Figure 27. Phase diagram of the solution curves in §4.1.3 when g(y) has exactly four
positive roots and one negative root.

4.2 C1 > 0

Take C1 = (n+1)(n+2)
n , C4 = bn+2 − C2bn+1 − bn − C3b for some number b 
= 0 and

write − C2
n+1 still as C2 for convenience. Now (19) becomes

y′ = −yn+2 + C2 yn+1 + yn + C3 y + bn+2 − C2bn+1 − bn − C3b

uyn−1 . (41)

Clearly y = b is a solution. When −(n +2)b2 + (n +1)C2b +n +C3/bn−1 
= 0, we have

yn−1

−yn+2 + C2 yn+1 + yn + C3 y + bn+2 − C2bn+1 − bn − C3b

= 1

(n + 2)b2 + (n + 1)C2b + n − 1 + C3
bn−1
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Figure 28. Phase diagram of the solution curves in §4.1.3 when g(y) has exactly four
negative roots and one positive root.

Figure 29. Phase diagram of the solution curves in §4.1.3 when g(y) has exactly three
positive roots and two negative roots.

Figure 30. Phase diagram of the solution curves in §4.1.3 when g(y) has exactly two
positive roots and three negative roots.
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Figure 31. Phase diagram of the solution curves in Proposition 4.4 when g(y) has
exactly three positive roots.

(
1

y − b
− p(y)

yn+1 + (b − C2)yn + ∑n−1
j=0(b

2 − C2b − 1)b j yn−1− j

)

,

p(y) = yn + (2b − C2)yn−1

+
n−2∑

j=0

[

(n − 1 − j)(C2b + 1 − b2)b j yn−2− j + C3

b j+1 y j
]

, n ≥ 3.

After integration, one gets

ln |y − b| −
∫

p(y)dy

yn+1 + (b − C2)yn + ∑n−1
j=0(b

2 − C2b − 1)b j yn−1− j

= ln u−(n+2)b2+(n+1)C2b+n+C3/bn−1
. (42)

From this, we see that y is a function of −(n + 2)b2 + (n + 1)C2b + n + (n − 1)C3/b,
and so when −(n + 2)b2 + (n + 1)C2b + n + C3/bn−1 is a positive integer m, i.e.,
−(n + 2)b2 + (n + 1)C2b + n + C3/bn−1 = m for m ≥ 1, one can consider the action
of Z/mZ and consider the extension of the metric on (Cn − {0})/Zm by adding a copy of
P

n−1 over 0. By the similar discussion as last subsection, we have

PROPOSITION 4.3

When −(n + 2)b2 + (n + 1)C2b + n + C3/bn−1 = m, m ∈ N, a solution of (39) with
limy→b u = 0 induces a smooth (pseduo-) Kähler extremal metric on a neighborhood of
the zero section of OPn−1(−m).

Similarly, we have as follows.
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PROPOSITION 4.4

When −(n + 2)b2 + (n + 1)C2b + n + C3/bn−1 = −m, m ∈ N, a solution of (39) with
limy→b u = 0 induces a smooth (pseduo-) Kähler extremal metric on a neighborhood of
the zero section of OPn−1(m) (see figure 31).

Case 3. If (n + 2)b2 + (n + 1)C2b + n + (n − 1)C3/b = −k, k ∈ N and (n + 2)z2
1 +

(n + 1)C2z1 + n + C3/z1 = l, l ∈ N both hold, i.e., b and z1 both satisfying Proposition
4.5 and Proposition 4.4 respectively, then the corresponding metric can be defined on the
whole compact manifold P(O(k)⊕O(−l)). Therefore we get a family of extremal Kähler
metric on P(O(k) ⊕O(−l)). Moreover, when we vary the initial values from Region 3 to
Region 2 or Region 4, the phase change happens.
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