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Simultaneous Model Selection and Model Calibration

for the Proliferation of Tumor and Normal Cells

During In Vitro Chemotherapy Experiments
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TAYNÁ C.S. CARDOSO,3 and LEONARDO A.B. VARÓN2,4

ABSTRACT

In vitro experiments were conducted in this work to analyze the proliferation of tumor (DU-
145) and normal (macrophage RAW 264.7) cells under the influence of a chemotherapeutic
drug (doxorubicin). Approximate Bayesian Computation (ABC) was used to select among
four competing models to represent the number of cells and to estimate the model pa-
rameters, based on the experimental data. For one case, the selected model was validated in
a replicated experiment, through the solution of a state estimation problem with a particle
filter algorithm, thus demonstrating the robustness of the ABC procedure used in this work.

Keywords: approximate Bayesian computation, chemotherapy, DU-145 cells, RAW 264.7 cells,

state estimation.

NOMENCLATURE

A Holling’s type 2 constant that controls the drug intake by cells

d(z‚ z�) distance function

K support capacity of cells

M vector that indexes the models

N number of particles (samples of the approximate posterior distribution)

N(t) number of cells

P number of populations (iterations)

Q(t) mass of chemotherapeutic drug

z vector of measurements

z* vector of estimated state variables

Greek

a cell growth rate

b saturation rate

e user-prescribed tolerance
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k decay rate of the chemotherapeutic drug

l rate of cell reduction due to the chemotherapy

p � �jð Þ conditional probability

h vector of model parameters

Subscripts

1, 2, 3, 4 designate the model

p population number

Superscript

i particle number

INTRODUCTION

In accordance with the world health organization, neoplastic diseases are the cause of 13% of the

deaths in the world, with an estimated number of victims of 13.1 million in 2030. As a major cause of

deaths worldwide, cancer has been an important topic of research, involving basic and applied sciences, mainly

aiming at early diagnostics and effective treatment of the disease (Sanga et al., 2006).

Mathematical models play an important role in various aspects related to cancer, which range from the

modeling of biophysical and biochemistry phenomena at the cellular scale, to larger scale and multiple

scale phenomena related to imaging techniques and to treatments such as chemotherapy, radiotherapy,

hyperthermia, etc. (see, e.g., Spratt et al., 1996; Gatemby, 1998; Bellomo et al., 2003; Byrne, 2003;

Preziozi, 2003; Alarcón et al., 2004; Araujo and McElwain, 2004; Byrne et al., 2006; Sanga et al., 2006;

Mohammadi et al., 2008; Gatenby 2009; Pinho et al., 2011, 2013; and Rodrigues et al., 2012, 2016).

However, more detailed models certainly involve a larger number of input parameters and might not be

more accurate than simpler mathematical models with fewer parameters, for example, to represent mac-

roscopic variables like the number of tumor and normal cells or the mass of a chemotherapy drug in a

region of the body. Indeed, model parameters represent a large source of uncertainties for the dependent

variables, since, in general, they exhibit large variability from individual to individual and even for the

same individual under different physiological conditions. Therefore, the choice of a mathematical model to

accurately represent the phenomena under analysis, as well as the identification of the model parameters, is

a subject of great importance for the individualized detection and treatment of cancer.

The main objective of this article is to apply model selection and model calibration (estimation of the model

parameters) for the number of tumor and normal cells during in vitro chemotherapy experiments. Due to the

scarce number of measurements, their related uncertainties were not represented in terms of classical statistical

distributions and an Approximate Bayesian Computation (ABC) technique (Del Moral et al, 2007; Sisson et al.,

2007; Toni et al., 2009; Toni and Stumpf, 2010a; Del Moral et al., 2012) was used for the simultaneous model

selection/calibration based on the experimental data. The algorithm of Toni et al. (2009), which was suc-

cessfully applied by da Costa et al. (2017) for the simultaneous model selection/calibration with synthetic

measurements of the number of tumor cells in simulated experiments, is used in this work with actual

experimental data involving tumor (DU-145 prostate line) and normal (RAW 264.7 macrophage) cells treated

with doxorubicin. The different mathematical models examined in this work are systems of ordinary differential

equations for the dependent variables, given by the number of cells and the mass of chemotherapeutic drug.

The model selected with the algorithm of Toni et al. (2009) was further validated in a replicated experiment

for one specific case, by solving a state estimation problem (Kalman, 1960; Sorenson, 1970; Maybeck, 1979;

Arulampalam et al., 2002; and Kaipio and Somersalo, 2004). In state estimation problems, uncertainties in the

mathematical model that represents the physical phenomena and uncertainties in the measurements are ap-

propriately accounted for within the Bayesian framework of statistics, to obtain more accurate estimates of the

state variables. Sequential Monte-Carlo techniques, also referred to as particle filters, are the most general for

the solution of state estimation problems and can be applied to nonlinear models with non-Gaussian un-

certainties (Liu and Chen, 1998; Carpenter et al., 1999; Doucet et al., 2000; Arulampalam et al., 2002; Andrieu

et al., 2004; Kaipio and Somersalo, 2004; Ristic et al., 2004; Del Moral et al., 2006; Johansen and Doucet,

2008; and Orlande et al., 2012). In this work, the particle filter algorithm of Liu and West (2001) was used for

the model validation; this algorithm was successfully applied for the simultaneous estimation of state variables

and parameters in the modeling of tumor growth by Costa et al. (2015).
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The experiment performed in this work is presented in the next section, which is followed by a de-

scription of the mathematical models that are proposed to represent the experimental data. The algorithm of

Toni et al. (2009), which is used in this study for model selection and model calibration, is then presented

and applied to our experimental data. The results obtained in this work for the model selection/calibration

are presented and discussed. Furthermore, the model selected for a specific case is validated with an

additional set of experimental data, by using the algorithm of Liu and West (2001) of the particle filter.

EXPERIMENTS

Cell culture

DU-145 prostate cancer cells and RAW 264.7 macrophage cells (ATCC—American Type Culture Col-

lection, Manassas, VA) were purchased from the cell bank of the Federal University of Rio de Janeiro. The

cell lines were grown in 75-cm3culture flasks with RPMI (Roswell Park Memorial Institute medium; Sigma-

Aldrich) and DMEM (Dulbecco’s modified Eagle’s medium; Sigma-Aldrich), respectively, supplemented

with 10% fetal bovine serum (FBS; Life Technologies, Grand Island, NY), 4 mM glutamine, and 100 U/mL

penicillin and 100mg/mL streptomycin. The cells were maintained at 37�C in a 5% CO2 humidified at-

mosphere. The medium was changed every 2 days until 90%–95% confluence of the culture. At confluence,

the cells were passaged by detaching them with 0.025% trypsin diluted in Verséne solution-EDTA (ethy-

lenediaminetetraacetic acid; NaCl 0.14 M, Na2HPO4 9 mM, KCl 3 mM, phenol red 0.02%, and EDTA

0.02%) and centrifuged at 1100 RPM for 10 minutes. After centrifugation, the sediments with the DU 145

cells and the RAW 264.7 cells were diluted in RPMI and DMEM, respectively, both containing 10% FBS.

The cells were then counted in a hemocytometer and seeded into 96-well plates for cell proliferation assay.

Cell proliferation assay

The cell proliferation was observed by using the colorimetric method of MTT (bromide 3-[4,5-dimethyl-

thiazole-2-il]-2,5-diphenyltetrazolium; Sigma-Aldrich). This assay detected viable cells through the con-

version of MTT into formazan by cell mitochondrial enzyme succinate dehydrogenase. In brief, DU-145

and RAW 264.7 macrophages were seeded into 96-well plates at a concentration of 103 and 104 cells per

well, respectively, in culture medium supplemented with 10% FBS for cell adhesion. After 3 hours, the

culture medium was removed and the cells were treated with doxorubicin (10 mM), diluted in RPMI or

DMEM (depending on the cell), and supplemented with 5% of FBS for the chemotherapy experiments.

The variation of the number of cells was measured by the addition of MTT (Sigma-Aldrich) solution (1 mg/

mL). At each time, the MTT was removed, the formazan crystals solubilized with isopropanol and the

absorbance measured in a spectrophotometer at 490 nm (Thermo Fisher). The measurements of the number of

cells were made in triplicates; the mean and the standard deviations of each triplicate are reported in the article.

Table 1 summarizes the different experiments performed in this work. DU-145 (tumor) cells were used

for experiments 1 and 2, whereas RAW 264.7 (macrophage) cells were used for experiments 3–5. No

chemotherapeutic drug was used for experiments 1 and 3, but the interaction of the cells with doxorubicin

was analyzed in experiments 2, 4, and 5. Experiment 5 was a repetition of experiment 4.

MATHEMATICAL MODELS

There is a large number of mathematical models available in literature for the modeling of tumor growth

with different degrees of refinement, for the vascular and avascular stages, which are in general based on

Table 1. Experiments

Experiment Cell

Initial number

of cells Chemotherapy

1 DU-145 (tumor) 103 No

2 DU-145 (tumor) 103 Yes

3 RAW 264.7 (macrophage) 104 No

4 RAW 264.7 (macrophage) 104 Yes

5 RAW 264.7 (macrophage) 104 Yes
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systems of ordinary and/or partial differential equations (see, e.g., Spratt et al., 1996; Gatemby, 1998;

Bellomo et al., 2003; Byrne, 2003; Preziozi, 2003; Alarcón et al., 2004; Araujo and McElwain, 2004; Byrne

et al., 2006; Sanga et al., 2006; Mohammadi et al., 2008; Gatenby, 2009; Pinho et al., 2011, 2013; and

Rodrigues et al., 2012, 2016). We note, however, that more refined models do not necessarily predict the

dependent variables of interest more accurately, in special because a large number of uncertain input

parameters is required for their solutions (Beck and Arnold, 1977; Mantzaris et al., 2004; Roose et al.,

2007).

Four different models, based on ordinary differential equations, were used in this work to represent the

time variation of the number of cells in the wells, namely: (1) Generalized Logistic model (Spratt et al.,

1996; Tsoularis and Wallace, 2002); (2) Gompertz’s model (Winsor, 1932; Spratt et al., 1996); (3)

Exponential model (Spratt et al., 1996); and (4) Modified Gompertz’s model. They are referred hereafter

as models 1, 2, 3, and 4, respectively. Ordinary differential equation models were selected because of the

nature of the experiments, where the measurements do not possess a local (spatial) resolution, but

represent the average number of cells in each well at a specific time. Whenever the chemotherapy drug

was used in the experiments, the pharmacodynamics model was considered in the form of a Holling’s

type 2 function (Holling, 1959a,b; Pinho et al., 2013; Costa et al., 2015; Rodrigues et al., 2016) and a

first-order pharmacokinetics model was considered to govern the mass of drug in the well. The four

models are given by:

Model 1. Generalized logistic:

d N1(t)

dt
=

a1

c
N1(t) 1 -

N1(t)

K1

� �c

-
l1N1(t)Q(t)

a1 + N1(t)
(1:a)

Model 2. Gompertz:

d N2(t)

dt
= a2N2(t) ln

K2

N2(t)

� �
-

l2N2(t)Q(t)

a2 + N2(t)
(1:b)

Model 3. Exponential:

d N3(t)

dt
= a3N3(t) -

l3N3(t)Q(t)

a3 + N3(t)
(1:c)

Modelo 4. Modified Gompertz:

d N4(t)

dt
= a4N4(t) ln

K4

N4(t)

� �
e - bt -

l4N4(t)Q(t)

a4 + N4(t)
(1:d)

where

d Q(t)

dt
= - kQ(t) (2)

and N(t) and Q(t) are the number of cells and mass of chemotherapy drug in the well, respectively,

subscripts i = 1, 2, 3, 4 designate the model, a is the cell growth rate, K is the cell support capacity, l is the

cell reduction rate due to the chemotherapy, a is a Holling’s type 2 constant that controls the drug intake by

cells, b is the saturation rate, and k is the decay rate of the chemotherapy drug.

While models 1, 2, and 3 have been classically used to represent the growth of tumors (Spratt et al.,

1996), model 4 was proposed in this work to account for reductions in the growth rate of the number of

cells as time increases. Note that model 4 reduces to model 2 for small values of b.

Each model was subjected to the initial conditions given by the number of cells shown in Table 1,

depending on the case analyzed. The drug was administered as a single bolus at time t = 0 in the chemotherapy

experiments (cases 2, 4, and 5), so that the initial condition for the mass of drug was Q0 = 5.4352 mg.
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MODEL SELECTION AND MODEL CALIBRATION

Parameters appearing in the mathematical formulation of physical problems can be estimated by several

statistical techniques (Beck and Arnold, 1977; Ozisik and Orlande, 2000; Putter et al., 2002; Brown and

Sethna, 2003; Kaipio and Somersalo, 2004; Timmer et al., 2004; and Sisson et al., 2007). However,

techniques within the Bayesian framework, like the Markov Chain Monte Carlo method, recently became

popular because of nowadays available computer power. In the Bayesian framework, prior knowledge

about the parameters, modeled in the form of a statistical distribution, p(h), is used together with the

measured data coded as a likelihood function, p(zjh), for inference on the posterior distribution function

given by p(hjz) / p(h)p(zjh), where h is the vector of parameters and z is the vector of measurements

(Kaipio and Somersalo, 2004). The possibility of taking into account the information about the parameters

before the measurements are available is very attractive for the solution of inverse problems, because it

provides regularization to the ill-posed character and allows for uncertainties in the judged ‘‘known’’

parameters to be accounted for. On the other hand, the prior distribution introduces a bias on the solution of

the inverse problem.

The experimental uncertainties cannot be appropriately modeled for several practical cases and, thus, the

likelihood function might not be represented in terms of analytical statistical distributions. The so-called

ABC can be utilized for such cases, as well as for others, where the computation of the likelihood function

becomes intractable (Beaumont et al., 2002; Marjoram et al., 2003; Toni et al., 2009; Wegmann et al.,

2009; Toni and Stumpf, 2010a). The objective of ABC is to approximate the posterior distribution p(hjz) by

P(hjd(z‚ z�) < e), where d(z‚ z�) is a distance function between the measurements z and the estimated

observable variables z* (solution of the forward problem with h), while e is a user-prescribed tolerance.

Therefore, difficulties in the successful implementation of ABC include the specification of the distance

function, as well as of the tolerance e (Liepe et al., 2014).

ABC is used in this work for simultaneous model selection and parameter estimation because the

available measured data are too scarce to be appropriately represented in terms of an analytical statistical

distribution. Related works can be found in the literature, such as Toni et al. (2009), Toni and Stumpf

(2010b), and Drovandi and Pettitt (2011a,b). The algorithm of Toni et al. (2009), which is an extension of

the Sequential Monte Carlo algorithm of Sisson et al. (2007), is used for the selection of the four models

given by Equations (1.a–d), as applied to the experimental data described previously. Therefore, the

objective is to approximately obtain the combined posterior distribution (Toni et al., 2009):

p h‚ Mjzð Þ (3)

where M is the vector that indexes the models that are considered in the analysis. The ABC algorithm of

Toni et al. (2009) is presented in Table 2.

RESULTS AND DISCUSSIONS

For the application of the algorithm of Toni et al. (2009) to the measurements of the number of cells from

the experiments presented in Table 1, the distance function was specified as

d z‚ z�ð Þ =
XN

i = 1

z�(i) - z½ �T z�(i) - z½ � (4)

where z and z�(i) are the vectors of measurements and of the solution of the forward problem with particle

i, respectively. A particle represents a sample of the approximate posterior distribution for the model and its

parameters. Based on numerical experiments with simulated measurements, the number of particles was set

to N = 1000 (da Costa et al., 2017).

The tolerance for d(z‚ z�) (see steps 1 and 5 in Table 2) was started with a large value to avoid too many

rejections of particles in the first populations (Toni et al., 2009; Toni and Stumpf, 2010b; Liepe et al., 2014;

da Costa et al., 2017), specially because priors with very large variances were used for the parameters. The

tolerance was then gradually reduced to a value based on Morozov’s Discrepancy Principle (Morozov,

1966) as the populations advanced. The Discrepancy Principle has been commonly used to select

Tikhonov’s regularization parameter, as well as the number of iterations in Alifanov’s iterative

MODEL SELECTION/CALIBRATION FOR CELL PROLIFERATION 1289
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regularization method, for the solution of inverse ill-posed problems (Ozisik and Orlande, 2000; Orlande

et al., 2011). The tolerance based on the Discrepancy Principle is obtained by making

z�(i) - z½ �T z�(i) - z½ � = W (5)

In Equation (4), where W is the trace of the covariance matrix of the measurements. The tolerance for the

first iteration was set as e1 = 3 · 1013 cell2. The algorithm was then stopped either if the tolerance based on

the Discrepancy Principle was satisfied or if no new particles were accepted (a clear indication that the

representation of the experimental data could not be improved with the competing models).

Each of the four models given by Equations (1.a–d) was initially assumed as equally probable for the

analysis of the experiments described in Table 1. Similarly, uniform priors were prescribed for each pa-

rameter. Table 3 shows the minimum and maximum values specified for these uniform distributions, which

differ by several orders of magnitude for most of the parameters. Therefore, from a practical point of view,

these uniform priors can be considered as noninformative despite their finite variances. The perturbation

kernel Kp (see step 3 in Table 2) was given in terms of a random walk process with uniform distribution

U(–r, r) for each parameter, where r is half of the interval of the uniform prior given by Table 3.

The results obtained for experiments 1 and 2 (Table 1) are first analyzed. These experiments dealt with

the DU-145 (tumor) cells without and with chemotherapy, respectively. Figure 1 presents the number of

particles selected for the models, as the populations advanced in the algorithm of Toni et al. (2009), for

experiment 1. We notice in this figure that the number of particles selected for model 1 steadily decreased

after population 12 and then disappeared at population 23. As the number of particles selected for model 1

Table 2. Approximate Bayesian Computation Algorithm

1. Define the tolerances e1‚ e2‚ . . . ‚ eP for each of the populations (iterations) used for selecting the model and its

parameters. Also, specify the distance function d(z‚ z�) that substitutes the likelihood function. Set the population

indicator p = 0.

2. Set the particle indicator i = 1, where each particle represents, at each iteration, a model and its parameters.

3. Sample the model M� from the prior distribution for the models p Mð Þ. If p = 0, sample the candidate parameters h**

from the prior distribution for the parameters of model M�, that is, p h(M�)ð Þ. Else, sample h* from the previous

population h(M�)i
p - 1 with weights w (M�)i

p - 1 and perturb this particle to obtain h�� � Kp(h�‚ h��), where Kp is a

perturbation kernel.

4. If p h��ð Þ= 0, return to step 3. Else, simulate from the forward problem (operator f) a candidate set of observable

variables with model M* and parameters h**, that is, z� � f (zjh��‚ M�).

5. If d(z‚ z�) > ep return to step 3. Otherwise, set Mi
p = M�, add h** to the population of particles h(M�)i

p and calculate

its weight as w(M�)i
p =

1 ‚ if p = 0
p h(M�)i

pð ÞPN
j = 1

w (M�)j

p - 1
Kp h(M�)j

p - 1
‚ h(M�)i

pð Þ
‚ if p > 0

8><
>:

6. If i < N, where N is the number of particles, set i = i + 1 and go to step 3.

7. Normalize the weights.

8. If p < P, where P is the number of populations (iterations), set p = p + 1 and go to step 2. Otherwise, terminate the

iterations.

Toni et al. (2009).

Table 3. Uniform Priors for the Parameters

Parameters Distribution Unit

ai‚ i = 1‚ 2‚ 3‚ 4 U 10 - 3‚ 5
� �

h - 1

Ki‚ i = 1‚ 2‚ 4 U 103‚ 107
� �

cell

c U 1‚ 3ð Þ cell - 1

li‚ i = 1‚ 2‚ 3‚ 4 U 10 - 3‚ 103
� �

mg - 1cell - 1

ai‚ i = 1‚ 2‚ 3‚ 4 U 10 - 3‚ 10
� �

cell

k U 10 - 3‚ 10 - 2
� �

h - 1

b U 10 - 3‚ 5
� �

h - 1
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decreased, the number of particles selected for model 4 increased after population 13. Models 2 and 4 might

closely compete for the representation of the experimental data, such as observed in Figure 1, since model 4

reduces to model 2 for small values of b. On the other hand, since the tolerance for the distance function

decreased as the populations advanced, model 4 provided the best representation for the measurements of

experiment 1, at population 23.

A comparison of the measurements and of the number of cells obtained with model 4 and its estimated

parameters are presented in Figure 2A, B, at the first and final populations, respectively, for experiment 1.

These figures show that the measurements were not correctly predicted in population 1. On the other hand, as

the populations advanced and the tolerances were reduced, the best model was selected and calibrated for the

most accurate prediction of the measurements. The median of the distance function of the particles selected for

model 4 was reduced by two orders of magnitude, from the first to the last populations, for experiment 1.

Figure 2A, and B show that, without the use of the chemotherapeutic drug in experiment 1, the number of

tumor cells increased very fast from the initial condition of 103 cells to about 3.5 · 105 cells in 60 hours.

The number of particles selected in each population is presented in Figure 3 for experiment 2, which also

involved DU-145 cells, but under the effects of doxorubicin. Model 2, which is actually a special case of

model 4 for small b, was selected as the one that better represents the measurements in this experiment.

Figure 3 shows that both models 3 and 4 were not selected from population 26 onward. At population 26,

model 2 exhibited the largest number of selected particles, except for few selections of model 1. As the

tolerances were further reduced, there was a clear competition between models 1 and 2 to represent the

experimental data. However, the particles of model 2 were the most selected after population 26 and, at

population 36, no other model was selected.

A comparison of measurements and number of cells predicted with model 2 at the final population is

shown in Figure 4. Due to the large uncertainties in the measurements for this experiment, a reduction of

only 4.5-fold was obtained for the median of the distance function of particles selected for model 2, from

the first to the last populations. The number of cells predicted with model 2 follows the same trend of the

experimental data, as shown in Figure 4. A comparison of Figures 2 and 4 reveals that the chemothera-

peutic drug was capable of limiting the number of tumor cells. On the other hand, the tumor cells have still

proliferated from their initial condition, thus demonstrating that the amount of drug used in this case

(10 mM bolus at time t = 0) was not sufficient for their eradication.

Table 4 shows the mean and 1% and 99% quantiles of the estimated parameters, for models 4 and 2 in

experiments 1 and 2, respectively. It is noticed in this table that, with the exception of the parameters

related to the pharmacodynamics (l and a), all the others are estimated with quite small uncertainties.

Experiments 3 and 4, which involved RAW 264.7 (macrophage) cells, without and with chemotherapy,

respectively, are now analyzed. Such as for the tumor cells (Fig. 1), model 4 was selected to represent the

measurements of experiment 3 for macrophage cells without chemotherapy, as shown in Figure 5. This

figure shows that the number of particles selected for model 4 gradually increased from population 14

onward. At populations 22 and 23, model 4 was the only one selected. Although the algorithm had already
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FIG. 1. Number of particles selected for the

models in each population. Experiment 1 (DU-145

cells without chemotherapy).
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FIG. 3. Number of particles selected for the

models in each population. Experiment 2 (DU-145

cells with chemotherapy).
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FIG. 2. Measurements and number of cells es-

timated with model 4 for experiment 1 (DU-145

cells without chemotherapy). (A) Population 1, and

(B) Final population. ABC, Approximate Bayesian

Computation; SMC, Sequential Monte Carlo.
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selected model 4 among the competing models at population 22, one more population was needed to

improve the parameter estimation for a more accurate representation of the experimental data. In fact, the

agreement between the measurements and the estimated number of cells obtained with this model and its

estimated parameters is quite good, as shown in Figure 6. Such as for experiment 1, the median of the

distance function of the particles selected for model 4 was reduced by two orders of magnitude from the

first to the last populations in experiment 3. Similar results were obtained for experiment 4 (macrophage

cells with chemotherapy), where model 4 was also selected as the one that better represents the experi-

mental data (Fig. 7). The comparison between measurements and estimated number of cells is presented in

Figure 8 for experiment 4.

It is interesting to compare Figures 4 and 8, for experiment 2 (tumor cells with chemotherapy) and for

experiment 4 (macrophage cells with chemotherapy), respectively. Although doxorubicin, with the dosage

used in the experiments of a single 10 mM bolus at time t = 0, was not capable of completely killing the

tumor cells (Fig. 4), it substantially affected the macrophage cells (Fig. 8). After a sudden proliferation, the

macrophage cells were practically reduced to the initial condition (104 cells) after 60 hours. This reduction

of the number of macrophage cells was not observed in experiment 3 without chemotherapy, as shown in

Fig. 6.

The estimated parameters for model 4 in experiments 3 and 4 are presented in Table 5, in terms of their

mean, as well as their 1% and 99% quantiles. Model 4 was also selected for experiment 5, which is a

repetition of experiment 4. The parameters estimated for experiment 5 are also presented in Table 5. Except

for the support capacity, K, and the rate of cell reduction due to the chemotherapy, l, the mean estimated

for the parameters fall within the credibility intervals of the replicated experiment. Differences in the

estimated support capacities and rates of cell reduction for experiments 4 and 5 can be associated to linear

dependence among parameters, in special, a, K, and b.

Table 4. Estimated Parameters for Experiments 1 and 2 at the Final Population

Experiment Model Parameter Quantile 1% Mean Quantile 99%

1 4 a4 ‚ h - 1 0.16 0.17 0.18

K4, cell 2.78 · 105 2.80 · 105 2.84 · 105

b4 0.10 0.12 0.13

2 2 a2 ‚ h - 1 2.63 3.47 4.25

K2, cell 5.4 · 103 5.8 · 103 6.3 · 103

l2, mg - 1cell - 1 3.6 · 102 6.3 · 102 8.4 · 102

a2, cell 2.0 5.2 8.6

k, h - 1 0.004 0.006 0.009
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FIG. 4. Measurements and number of cells es-

timated with model 2 for experiment 2 (DU-145

cells with chemotherapy) at the final population.
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After the application of Toni et al.’s algorithm (2009) for the model selection and model calibration

described previously, the particle filter algorithm of Liu and West (2001) was used for the solution of state

estimation problems in the replicated experiments (experiments 4 and 5). State estimation problems are also

referred to as nonstationary inverse problems (Kaipio and Somersalo, 2004). In this kind of problems, the

available measured data are used together with prior knowledge about the physical phenomena and the

measuring devices, to sequentially produce estimates of the desired dynamic variables. This is accom-

plished in such a manner that the error is minimized statistically (Maybeck, 1979; Winkler, 2003; Kaipio

and Somersalo, 2004; Orlande et al., 2012). In state estimation problems, uncertainties in the mathematical

model and in the measurements are taken into account for the better prediction of the state variables, which

are given in the present work by the number of cells and the mass of chemotherapy drug. The algorithm of

Liu and West (2001) is an extension of the Auxiliary Sampling Importance Resampling algorithm of the

particle filter (Pitt and Shephard, 1999; Arulampalam et al., 2002; Doucet et al., 2001; Ristic et al., 2004)

for simultaneous estimation of state variables and model parameters, where the uncertainties in the pa-

rameters are modeled in terms of a combination of Gaussian kernels (Liu and West, 2001).

Details of Liu and West’s algorithm (2001) are avoided in this study for the sake of brevity, but they can

be readily found in Doucet et al. (2001), Da Silva et al. (2014), Orlande et al. (2012), Costa et al. (2015),
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FIG. 5. Number of particles selected for the

models in each population. Experiment 3 (RAW

264.7 cells without chemotherapy).
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timated with model 4 for experiment 3 (RAW

264.7 cells without chemotherapy) at the final

population.
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and Váron et al. (2015). Costa et al. (2015) applied Liu and West’s algorithm (2001) for the simultaneous

estimation of state variables and parameters in ordinary differential equation models of tumor growth,

which included as state variables the number of tumor, normal and angiogenic cells, as well as the mass of

chemotherapy drug in the body.

The solution of the state estimation problem is illustrated by using the measurements of experiment 4 and

by initially taking the parameter values as those estimated in experiment 5, for model 4. Uncertainties in the

mathematical model were assumed as additive, uncorrelated, Gaussian, with zero mean and a standard

deviation of 10% of the value of the state variables. Uncertainties in the model parameters were also

assumed as additive, uncorrelated, Gaussian and with zero mean, but with a standard deviation of 15% of

the parameter values. The particle filter algorithm of Liu and West (2001) was applied with 2000 particles

(Costa et al., 2015).

Figures 9 and 10 present the transient variations of the number of cells and of the mass of the che-

motherapy drug, estimated with Liu and West’s algorithm (2001). Figure 9 shows that the particle filter is

capable of very accurately tracking the measured data by using model 4, which was selected above with

the ABC algorithm. The mass of chemotherapeutic drug, for which there are no measurements available, can

also be estimated with small uncertainties as presented in Figure 10. This figure shows the reduction of the
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FIG. 7. Number of particles selected for the

models in each population. Experiment 4 (RAW

264.7 cells with chemotherapy).
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FIG. 8. Measurements and number of cells es-

timated with model 4 for experiment 4 (RAW

264.7 cells with chemotherapy) at the final popu-

lation.
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Table 5. Estimated Parameters for Experiments 3, 4, and 5 at the Final Population

Experiment Model Parameter Quantile 1% Mean Quantile 99%

3 4 a4 ‚ h - 1 0.39 0.42 0.44

K4, cell 3.3 · 105 3.6 · 105 3.8 · 105

b4 0.45 0.50 0.53

4 4 a4 ‚ h - 1 1.5 2.4 3.4

K4, cell 1.2 · 106 4.7 · 106 8.2 · 106

l4, mg - 1cell - 1 1.5 · 103 2.3 · 103 3.1 · 103

a4, cell 1.8 5.5 8.8

k, h - 1 0.03 0.06 0.09

b4 2.3 3.6 4.7

5 4 a4 ‚ h - 1 1.5 3.3 4.4

K4, cell 1.8 · 105 5.6 · 105 9.1 · 105

l4, mg - 1cell - 1 433.4 704.8 897.5

a4, cell 1.2 5.1 9.1

k, h - 1 0.01 0.03 0.05

b4 1.3 3.0 4.7
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FIG. 9. Number of cells estimated with the

particle filter algorithm of Liu and West (2001) for

experiment 4.

10 20 30 40 50 60

Time, h

0

1

2

3

4

5

6

7

8

M
as

s 
of

 D
ru

gs
, m

g

Estimated particle filter
Credibility Interval 99%

FIG. 10. Mass of chemotherapy drug estimated

with the particle filter algorithm of Liu and West

(2001) for experiment 4.
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mass of chemotherapy drug in the well, as it is consumed by the cells during the experiment. Figure 11A–E

presents the time evolution of the model parameters estimated with the particle filter algorithm of Liu and West

(2001) for experiment 4. The parameter values estimated with the ABC algorithm of Toni et al. (2009; Table 5)

are also presented in these figures. Figure 11A–E shows that the values estimated with the ABC algorithm of

Toni et al. (2009) are all inside the credibility intervals predicted with the particle filter algorithm of Liu and

West (2001).
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FIG. 11. Parameters estimated with the particle filter algorithm of Liu and West (2001) for experiment 4: (A) cell

growth rate, (B) support capacity, (C) rate of cell reduction, (D) Holling’s type 2 constant, (E) saturation rate, and (F)

decay rate of the chemotherapy drug.
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CONCLUSIONS

In this article, we presented the application of an ABC algorithm for the simultaneous model selection and

parameter estimation in chemotherapy in vitro experiments. The experiments dealt with tumor (DU-145) and

normal (macrophage RAW 264.7) cells under the influence of doxorubicin. In each experiment, the time

evolution of the number of cells was measured. Four models based on ordinary differential equations were

proposed to represent the number of cells as a function of time, where the pharmacodynamics was considered

in the form of a Holling’s type 2 function and the pharmacokinetics as a first-order model. The ABC algorithm

of Toni et al. (2009) used in this work was capable of selecting the model and estimating the parameter values

that most accurately represent the measurements, in experiments with and without chemotherapy for the two

cell lines. Such was the case, despite that all models were initially considered as equally probable and the prior

information for the parameters were considered as uniform distributions with large variances.

While the Gompertz model was selected for the experiment with the tumor cells under chemotherapy, the

Modified Gompertz model was selected for the other experiments. With the chemotherapy dosage used in

the experiments, of one single 10 mM bolus of doxorubicin at the initial time, the tumor cells have still

proliferated from their initial condition, although their support capacity was smaller than that for the case

without chemotherapy. On the other hand, the chemotherapy drug substantially affected the macrophage

cells, which were reduced to their initial condition at the end of the experiment. This reduction of the

number of macrophage cells was not observed in the experiments without chemotherapy.

A state estimation problem was solved with the particle filter algorithm of Liu and West (2001) as a

validation of the approach used in this work for model selection and parameter estimation. Indeed, in a

replicated experiment for the case with macrophage cells under chemotherapy, the particle filter was

capable of very accurately tracking the measured data, by using the model selected with the ABC algorithm

used in this work.
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