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Abstract: This research paper presents an advanced approach to enhance the short-term wind power prediction based on artificial intelligence
techniques. A high-quality wind power prediction is essential for power system planning, operation, and control. Thus, a new novel approach
has been developed to improve the quality and reliability of the calculated results by integrating advanced time series processing method and
the extreme learning machine technique. Moreover, historical records are utilised from numerical weather information and multiple observa-
tions points close to real wind farm sites within Australia regions. The wind speed is assessed by using the developed model in the first stage,
and then the wind power and capacity factor is calculated using wind power–speed curve for each observation site. Artificial neural network,
fuzzy logic (adaptive neuro-fuzzy inference system), and support vector machine models are used for model verifications, validations, and
practical applications. The developed model is tested using real wind measurements by Bureau of Meteorology, 15 selected weather stations
corresponded to the locations of nearby real wind farm sites in Australia. The demonstrated results and performance indicators, e.g. root mean
square error and mean absolute error are compared with Khalid, persistence, and Grey predictor models for validations and verifications
reasons. As the potential gains over other techniques, the proposed model has found more efficient and superior for wind power estimation
and prediction than other developed conventional methods and models, which in turn improves the power system performance, and reduces the
economic impacts.
1 Introduction

The evolution of wind power industry has experienced extensive
growth over the previous years due to environmental and sustain-
ability targets, and availability of wind resources in addition to
cost reduction. A lot of wind farms offshore and onshore have
been constructed in increasing quantities [1–4]. Thus, the world’s
energy portfolio becomes larger. Therefore, the wind turbines
become larger and more expensive. The Australian Energy
Market Operator forecasts of 8.88 GW additional wind generation
in National Electricity Market (NEM) by 2020 [5]. This results
around 11.5 GW in total installed NEM generation capacity. The
key factors to support this extra amount are reducing the power
system inertia and reducing the fault level. Nowadays, the
world’s wind power resources are tremendous and can cover a
big portion and power share of the global electricity consumption
[6]. It happened in numerous regions in the world with significant
installed wind power generation capacities [3]. Wind power has a
continuous growth in Europe, USA, Canada, and Australia [6–9],
due to the large installed capacity of the generators used.
Moreover, Denmark is a pioneer in developing commercial wind
power [10]. During the 1970s, and today, a substantial share of
wind turbines around the world are manufactured by Danish man-
ufacturers such as Vestas. Wind power provides 33% of the
Denmark’s total energy consumption in 2013 and 41% of the
Denmark electricity consumption in the first half year of 2014.
Furthermore, Denmark plans to meet 100% of its energy needs
with renewable resources by 2050. The wind power provides a
clean source of energy without carbon dioxide emission for future
power generation and smart grid, and it can be a valuable supple-
ment to conventional energy resources such as fossil fuels.
However, wind power is fluctuating in spatial and time because
of the uncertain nature of the wind, whereas wind shear and
tower shadow effects also cause periodic fluctuations [11]. These
may lead to severely forced oscillations when the frequencies of
the periodic variations approach the natural oscillations frequencies
of the connected power network. Therefore, the cost-effective
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This is an open
integration of wind power into NEM is of significant challenges
[12–15]. However, an accurate wind power prediction (WPP) is
one of the most critical aspects of the wind power integration and
control and can improve the power system operation [16, 17].
Moreover, it helps the decision makers to reschedule more efficient,
economical, and efficient power generators to achieve the power
demand of the NEM utility users. Furthermore, short-term WPP
enhances the power systems security and stability and increases
the reliability of wind power integration and unit commitment. It
reduces the reserve in the power demand, and allows the dispatcher
to optimise the generations and reduces the production cost. While
the high wind power forecasting errors impact on the decision
making by the power system operator and causes serious power
systems problems. Thus, WPP has been studied by many of aca-
demic researchers and scientists over many years [18–27].
However, the current forecasting methods have a lot of errors and
take a long time for a prediction. Several methods, techniques,
and strategies have been developed to overcome the wind power
forecasting problems whether stand alone or hybrid models such
as statistical models, persistence method (PM), Grey method,
Khalid method, and using artificial intelligence (AI) techniques
[23, 28–34]. Persistence wind power forecast assumes that the
wind power at a particular future time will be the same as it is
when the forecast is conducted [35, 36]. While in Grey model,
which has been widely applied in many prediction applications,
the first-order accumulated generating operation series is generated,
then the Grey dynamic model is formulated [37]. In Khalid model,
the prediction of wind speed and wind direction is achieved in the
first stage based on wind speed–direction coupling technique, then
the predicted wind speed is converted to predicted wind power
using the wind power–speed curve (PC) transform [31]. However,
varieties of techniques have been developed for WPP using linear
and non-linear models, including autoregressive moving average
method [38, 39], integrated neural networks model [40–44],
support vector machines (SVM), wavelet SVM methods [28,
45–47], and fuzzy logic models [48, 49]. Also, a hybrid method
for short-term wind power forecasting has been proposed in the
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recent years [40], such as applications of SVMs and fuzzy systems
for WPP. As the fuzzy clustering algorithm is initially used to clas-
sify the different wind speed patterns, while the support vector re-
gression is optimised to make the wind power forecast [50].
Moreover, an ensemble short-term wind power forecasting model
is developed based on artificial neural networks (ANNs) and
Gaussian processes (GP), where the integrated ANN and GP
improved the prediction accuracy [41, 51]. Furthermore, probabilis-
tic methods are widely utilised to solve the wind power forecasting
problems such as the application of neural network for wind power
generation prediction [52, 53]; temporally, local GP method [54],
fuzzy systems, and SVM method [55]. The extreme learning
machines (ELMs) are widely developed for probabilistic WPP
interval problems [56–59], and for solving the electricity market
prices prediction problems [60, 61]. Applications of ELMs are
widely utilised for short-term wind speed and power forecasting
[62–64] because the ELM as gradient free method has powerful
tool for modelling complex and non-linear systems. It has high ac-
curacy and very fast processing time, which in turn overcome the
expensive learning algorithms of conventional ANNs. As the
higher WPP error leads to inefficiency in power systems operation,
and economic impacts in the electricity market, where the economic
impacts of the forecast errors resulted in either wasted energy or not
enough energy to meet the demand and spinning reserve require-
ments, and higher costs of energy that not served. Thus, different
methods and models used different quantitative indices and indica-
tors for wind power performance and accuracy evaluations and
measurements such as root mean square error (RMSE), mean abso-
lute error (MAE), and mean average percentage error, while others
normalised these indices by the installed wind power capacity of the
case study. The advanced time series processing method has been
applied recently for WPP to reduce the prediction errors caused
by the volatility and non-linearity of wind power [65]. The wind
power is decomposed into components with different frequencies
by ensemble empirical mode decomposition (EEMD), a chaotic
time series analysis and a multiscale singular spectrum analysis
(MSSSA) are applied for further data manipulation. The least
square SVM method (LSSVM) is used for WPP. Table 1 describes
the performance evaluation indices; normalised RMSE (NRMSE),
normalised MAE (NMAE) for short-term 1 h ahead WPP based
on different methods and models such as PM, radial basis function
neural networks (RBFNN), LSSVM, EEMD-LSSVM, and
MSSSA-LSSVM [65], where a higher accuracy can be obtained
by further processing and manipulations to wind power time series.

In this research paper, multiple observations points based on 15
selected weather stations close to real wind farm within Australia in
the period from 2011 to 2014 are under study. Australia is a contin-
ent that experiences various climate conditions as shown in Fig. 1
[66], where periodic fluctuations characterise the temperature and
air density variations. However, on the contrary, the wind speed
is described by intermittent and volatility nature due to uncertainty.
Thus, the wind speed is decomposed into subsets intrinsic member-
ship realisation functions (IMFs), which is so called sifting process.
Then each IMF is further manipulated by using sample entropy
(SamEn) based complexity measure, where the SamEn and ap-
proximate entropy (ApEn) are complexity measure based techni-
ques that are used to measure the amount of regularity and
Table 1 NRMSE and NMAE for different forecasting models

Model NRMSE,% NMAE,%

PM 9.7862 5.1654
RBFNN 11.0354 6.4792
LSSVM 11.3892 6.3665
EEMD-LSSVM 6.1853 3.2891
MSSSA-LSSVM 5.9457 3.3657
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unpredictability of fluctuation over time series. The main contribu-
tions and novelty of this research paper are highlighted as follows:
considers the intermittent nature of wind power, examines the
characteristics of wind speed at different Australian weather station
locations, and studies the wind speed components during both de-
composition and prediction stages. Integrating advanced time series
processing method such as complete EEMD with an adaptive
noise (CEEMDAN) technique with ELM and ApEn improved the
WPP accuracy, minimised the accumulated errors and the computa-
tional time, and then reduced the forecasting uncertainty. Also, it
takes into account the temporal and spatial variations of wind speed.

This paper is well-organised as follows. Section 2 presents the
CEEMDAN in addition to EEMD and EMD based methods.
Section 3 describes the ApEn and samples entropy as complexity
measures based method for data reconstruction. Section 4 explains
further information about the ELM-based method, while Sections 5
develops an advanced model based on CEEMDAN-ELM for WPP
and capacity factor estimation. Discussions, analysis, and simula-
tions are presented in Section 6, and finally, Section 7 concludes
the paper results.

2 Complete EEMD with an adaptive noise

The application of CEEMDAN is highly developed and can be used
to overcome the problems of EEMD [67–69]. CEEMDAN decreases
the complexity of calculations by demanding less than one-half
the sifting process. Also, it overcomes the significant drawbacks of
EMD method [70, 71], such as end effect, and mixing mode
problems, where the mixing mode is defined as either a single IMF
consisting of components of widely disparate scales, or a component
of a similar scale residing in different IMFs. The CEEMDAN decom-
position method can be applied and demonstrated to calculate the first
residue by using the following expression:

r1 [n] = x[n]− ÎMF1[n] (1)

where ÎMF1[n] is determined in a similar way as EEMD. Thus, com-
putes the initial EMD mode across an ensemble of r1 [n] plus
diverse realisations of a given noise, obtaining ÎMF2 by averaging
the following residue:

r2 [n] = r1 [n]− ÎMF2[n] (2)

This process continues with the remnant of the modes till the stop-
ping rule is achieved. Set the operator Ej (.) for a given signal,
produce the jth mode found by EMD, and let wi is the white
noise with N (0, 1), and x[n] is the target data, then the decompos-
ition procedures are as follows.

Step 1: Decompose using EMD I realisations x[n]+ 10w
i[n] to

determine their first modes and compute IMF as follows:

̂IMF1[n] =
1

I

∑I
i=1

IMFi1[n] = IMF1[n] (3)

Step 2: Obtain the first residue based on the first stage as

r1 [n] = x[n]− ̂IMF1[n] (4)

Step 3: Decompose the number of realisations r1 [n]+11E1 (w
i[n]),

i = 1, . . . I until getting the initial EMDmode, and then define next
mode as follows:

̂IMF2[n] =
1

I

∑I
i=1

E1 (r1 [n]+ 11E1 (w
i[n])) (5)
Step 4: For k = 2, . . .K determine the kth residue as

rk [n] = rk−1 [n]− ̂IMFk [n] (6)
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Fig. 1 Australia wind variations
a Australia wind speed distribution map,
b Australia daily wind speed variations,
c Australia daily air density variations,
d Australia daily air temperature variations
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Fig. 2 IMFs realisation decomposed by
a CEEMDAN method for ws58214,
b EEMD and EMD methods for ws58214
Step 5: Decompose the number of realisations rk [n]+1kEk (w
i[n]),

i = 1, . . . I until their initial EMD mode, and define (k + 1)th mode
as follows:

̂IMF(k+1)[n] =
1

I

∑I
i=1

E1 (rk [n]+ 1kEk (w
i[n])) (7)

Steps 6: Go to step 4 for the next k, and then steps 4–6 are repeated
until the determined residue has no possible solution to be decom-
posed anymore. Then, the final residue achieves the following ex-
pression:

R[n] = x[n]−
∑K
k=1

̂IMFk (8)

where K is the aggregated number of modes for the assigned signal
x[n], and can be explained as follows:

x[n] = R[n]+
∑K
k=1

̂IMFk (9)

This equation achieves decomposition process and gives an exact
reconstruction of the original data. Moreover, the error (the differ-
ence between the correct decomposition of original data time
series and the result of ensembles procedure) caused by the added
white noise in the decomposition can be given by using the follow-
ing formula:

1n =
1���
N

√ (10)

where N is the number of ensembles, 1 is the magnitude of the
added white noise, and 1n is the eventual standard deviation. wi(t)
can be calculated using wi(t) = 1∗noise (t). By comparing
EEMD and EMD ensemble modes, the only difference is that
EEMD requires averaging the number of realisations to get each
IMF, but EMD does not. The given wind time series are decom-
posed by EMD, EEMD, and CEEMDAN as shown in Fig. 2 by
setting the number of realisations, noise standard deviation, and
a maximum number of iterations to 150, 0.3, and 16,000,
respectively.

3 Approximate entropy

ApEn is a complexity measure based technique used for quantifying
amount of data time series [72, 73]. It is widely used for assessing
the time series signal and diagnosing disease. Also, it can be exe-
cuted by using the data stream of length N, window size m, and dis-
tance measure for comparing reasons. The ApEn is designed to
work with data samples, relies on the record length of data time
series intensively [74, 75], and it lacks relative consistency.
SamEn is an improvement of ApEn, and indicates a substantial ad-
vantage like independency of data length. It does not require any
assumption to be made regarding the data stationery [76], and con-
siders trouble free tools in measuring the complexity of data time
series. The novel approach is that SamEn parameters distinguish
various systems by adjusting the SamEn m, r, N( ) parameters,
e.g. for a given embedded dimensions m, tolerance r, and number
of data points N, thus, SamEn can be defined as the negative
logarithm of conditional probability in which two similar sequences
of m data points remain similar at the next point, except in
the self-matching. The SamEn algorithm for data samples
N = [x1, x2, . . . xN , ] defines the window size m as vectors of
data sequence x(i)m = xi,xi+1, xi+2, . . . , xi+m+1

[ ]
, i = 1, 2, . . .,

N − m+ 1 in the Rm range. The distance between vectors can be
calculated as the absolute maximum difference between their
scalar components, and can be expressed by using the
This is an open access article published by the IET under the Creative
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following equation:

dm xm(i), xm(j)
[ ] = Max

k=0�m−1 x(i+ k)− x(j + k)
∣∣ ∣∣ (11)

where dm represents the distance between the window size vectors
xm(i) and xm(j), Bi can be defined for each xm(i) as the number of j
that distance between xm(i) and xm(j) is less than or equal to the pre-
defined tolerance r that services as a noise filter

Bi = num dm[x(i), x (j)] ≤ r
{ }

, i = j (12)

Bm
i (r) =

1

N − m− 1

∑N−m

i=1

Bi (r) (13)

where Ai defines number of xm+1(i) within r of xm+1(j), where
1 ≤ j ≤ N − m and i = j, and it can be calculated by increasing
the window size dimension to m+ 1

Ai = num dm+1[x(i), x(j)] ≤ r
{ }

, i = j (14)

Am
i (r) =

1

N − m− 1

∑N−m

i=1

Ai (r) (15)

Define Bm(r) and Am(r) as

Bm(r) = 1

N − m

∑N−m

i=1

Bm
i (r) (16)

Am(r) = 1

N − m

∑N−m

i=1

Am
i (r) (17)

where Bm(r) and Am(r) are the probability that two sequences will
match for m and m+ 1 points, respectively, as result, the SamEn
Commons J. Eng., 2018, Vol. 2018, Iss. 1, pp. 29–38
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for finite data length of N can be obtained by using the following
equation:

SamEn(m, r, N ) = − ln[Am(r)/Bm(r)] (18)

It is obviously indicated that Am(r) have smaller values than Bm(r).
Thus, the calculated value of SamEn will be zero or positive.
Moreover, the best values of window size m are 1 or 2, while the
tolerance r is between 0.1 and 0.25 times the standard deviation
[25]. In this study, m sets to 2 while r sets to 0.2 times the standard
deviation of wind speed data series. However, based on the theory
of CEEMDAN, EEMD, and EMD, the first IMF is the original time
series, and with increment order of IMF number, as result, the
SamEn value becomes smaller. The calculated IMFs realisation
functions are reconstructed into noise components, cyclic compo-
nents, and trend components based on the group rule of Fig. 3a
with a λ sets to 0.3 for CEEMDAN, EEMD, and END, respectively.
The SamEn values for IMFs decomposed by CEEMDAN, EEMD,
and EMD for different weather stations within NSW and SA
regions are shown in Figs. 3b and c, where the SamEn values are
decreased with increasing the order of intrinsic membership
functions.

4 Extreme learning machines

Applications of AI techniques such as ANN, fuzzy, ELM, SVM in
power system modelling and load forecasting is an area of growing
Fig. 3 SamEn based
a Grouping rules for data recombination components,
b CEEMDAN’s IMF for different weather stations,
c EMD and EEMD’s IMF for various weather stations
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interest [77–79]. ELM has better advantages for power system op-
eration and control than others AI methods, due to higher accuracy,
gradient free method, and very high computational speed [79].
ELM-based prediction method is developed for short-term wind
speed prediction based on the obtained noise, trend, and cycle com-
ponents, where the next point value ahead can be predicted by using
the ELM method. The variations of these components are well-
behaved and more predictable. ELM has a novel algorithm for train-
ing single hidden layer feed-forward network. Also, ELM randomly
generates all input weights and bias parameters, and then analytic-
ally obtains the output weights using simple matrix computation
[80, 81]. For N distinct samples (xj , tj)

N
j=1, where the input

xj [ Rn and the target tj [ Rm, ELM is constructed with
number of hidden nodes K and the activation function g(x) can ap-
proximate non-linear function with uncertain nature. The ELM can
be modelled by using the following equation:

∑K
i=1

bigi wi.xj + bi

( )
= tj, j = 1, . . . , N (19)

where wi = [wi1, wi1, . . . , wiN ]
T is the weight vector which is con-

necting between the ith hidden neuron and the input nodes,
bi = [bi1, bi1, . . . , biN ]

T is the weight vector which is connecting
the ith hidden neuron and the output nodes,
bi = [bi1, bi1, . . . , biN ]

T is the hidden nodes bias and threshold of
the ith hidden neuron. The above equation can be written in
compact form as follows:

H .b = T (20)

H = gi(w1.x1 + b1) . . . gi(wK .x1 + bK )

gi(w1.xN + b1) . . . gi(wK .xN + bK )

[ ]
N×K (21)

whereH is the hidden layer matrix, b is the output layer vector, and
T is the matrix of targets. It is clearly demonstrated that ELM with
randomly chosen input weights and hidden layer biases can exactly
learn N distinct observations [80]. H matrix can remain unchanged
once the random values have been assigned. Therefore, the training
method in ELM techniques is corresponding to find the least
squares solution of H .b = T and can be expressed as follows:

b̂ = H†.T (22)

where H† is the Moore–Penrose generalised inverse of matrix H,
compared to conventional gradient based ANN, ELM averts
many difficulties, such as local minima and high computational
burdens, and it can determine a good generalisation performance
with increased learning speed. To improve generalisation perform-
ance and make the solution more robust, a regularisation term C can
be added as shown in the following equation:

b̂ = I

C
+H†H

[ ]−1

HT T (23)

5 Proposed method

The proposed WPP system is developed based on multiple observa-
tions points taken from different weather stations close to real wind
farms within Australia as shown in Fig. 4, where the prediction
steps are highlighted as follows: recording wind data, decomposing
data into IMFs, grouping based SamEn strategy, develops ELM,
and finally WPP and capacity factor estimation. The focus in this
study is to improve the wind prediction at a given wind farm loca-
tion using wind speed measurements and to compare the proposed
method with other approaches and models for accuracy, verifica-
tions, and validations reasons. The main objective of this study is
to propose a complete wind power predictor which is capable of
dealing with uncertainty, intermittent nature, and fluctuations, and
access article published by the IET under the Creative Commons
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Fig. 4 Diagram of the proposed approach for optimal WPP
enhancing the power prediction over 30 min time scale. The accur-
ate prediction system can support the system operators to reschedule
an efficient, reliable, and economical energy production to achieve
the required demand of the utility customers. Moreover, the short-
term power prediction enhances to power system security, reliabil-
ity, and stability. The proposed method has two stages, where in the
first stage, the wind time series are decomposed by using advanced
time series processing techniques such as CEEMDAN, EEMD, and
EMD. The ApEn is calculated for each membership function, and
then grouping or data reconstruction into three components: noise
component, cyclic component, and trend component by using the
grouping method is done which has been described in Fig. 3a.
Moreover, decomposition by the time series by EEMD and EMD
are used for accuracy and comparison purposes. Application of
advanced time series based processing methods with AI techniques
are developed to predict the wind speed, and temperature variations,
then the predicting wind speed, and temperature values are used to
calculate the air density and wind power for each location. In the
second stage, the PC with rated wind power generation of
Table 2 CEEMDAN-based ELM – RMSE training accuracy

Weather stations CEEMDAN RMSE

Noise Cyclic Trend Noise

ws18116 0.532 0.021 0.153 0.533
ws18120 0.552 0.023 0.153 0.553
ws18191 0.563 0.022 0.154 0.568
ws18192 0.571 0.022 0.155 0.578
ws20062 0.552 0.023 0.159 0.554
ws21131 0.573 0.020 0.149 0.578
ws21133 0.584 0.020 0.154 0.587
ws22031 0.558 0.021 0.152 0.559
ws22046 0.529 0.022 0.153 0.529
ws23875 0.554 0.022 0.148 0.556
ws26021 0.580 0.024 0.153 0.579
ws58212 0.555 0.024 0.156 0.558
ws58214 0.604 0.021 0.159 0.695
ws69132 0.573 0.022 0.157 0.578
ws70330 0.615 0.023 0.166 0.617

This is an open access article published by the IET under the Creative
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3.6 MW is developed to calculate the predicted short-term wind
power and then estimates the capacity factors associated with
each weather station under the study, which is close to real wind
farms location within Australia regions/areas. Different models con-
figurations and network structures, and various training algorithms
have been tested to extract the optimal model. Therefore, ELM
network with 250 sigmoid single hidden layer neurons is used in
this paper. The CPU time and RMSE is used for testing the
model accuracy, and training time. Also, three models are built
by ANN, fuzzy logic, and SVM in addition to ELM model to
verify the output results. A feed-forward back propagation ANN
is developed with input and output layers, and two sigmoid
‘tansig’ hidden layers’ neural network with 20 and 40 neurons, re-
spectively. The model is trained with Levenberg–Marquardt train-
ing algorithm. Moreover, a fuzzy logic Sugeno-type system is
developed by using the neuro-fuzzy designer with three ‘trimf’
memberships’ functions, and trained using adaptive neuro-fuzzy in-
ference system fuzzy hybrid learning algorithms. Furthermore,
SVM model is built using the radial basis RBF kernel function,
which is trained using sequential minimal optimisation technique.
Finally, persistence, Grey and Khalid models and methods are uti-
lised for comparative studies, model validations and verifications.

6 Discussions, analysis, and results

Wind power is proportional to cubic variations of the wind speed.
Thus, any small change in the wind speed leads to significant
changes in the wind power. The PC is developed based on
3.6 MW rated value, cut-in, corner, and cut-out wind speed value
are 4, 14, 25 m/s, respectively. The air density and wind power
per unit area at a different temperature and wind speed values can
be determined by using the air density and wind power equations:

r = patom
(Rair × Tair )

(24)

Pwind =
1

2
r v3i (w/m

2) (25)

where r is air density (kg/m3), patom is atmospheric pressure in
Pascal (101 × 103 Pa), Rair is air gas constant (287 J/kg K). T is
average air temperature for the weather station, and v3i equals the
cube of ith wind speed (m/s) value. The model is tested using the
data obtained by Bureau of Meteorology for different locations
close to real wind farms within Australia, and compared with
other models. Tables 2 and 3 show the accuracy (%) of the wind
EEMD RMSE EMD RMSE

Cyclic Trend Noise Cyclic Trend

0.024 0.158 0.699 0.103 0.161
0.024 0.158 0.613 0.098 0.184
0.022 0.153 0.656 0.325 0.156
0.022 0.156 0.636 0.103 0.178
0.025 0.157 0.612 0.109 0.178
0.020 0.147 0.634 0.117 0.175
0.022 0.157 0.640 0.104 0.183
0.023 0.158 0.625 0.102 0.176
0.025 0.153 0.606 0.099 0.174
0.025 0.155 0.622 0.102 0.174
0.025 0.150 0.645 0.106 0.178
0.029 0.156 0.626 0.116 0.186
0.020 0.151 0.690 0.318 0.186
0.024 0.155 0.641 0.124 0.189
0.025 0.163 0.664 0.105 0.190
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Table 3 CEEMDAN-based ELM – RMSE testing accuracy

Weather stations CEEMDAN RMSE EEMD RMSE EMD RMSE

Noise Cyclic Trend Noise Cyclic Trend Noise Cyclic Trend

ws18116 0.562 0.030 0.158 0.563 0.032 0.158 0.621 0.119 0.161
ws18120 0.552 0.029 0.152 0.553 0.029 0.157 0.608 0.108 0.188
ws18191 0.558 0.029 0.157 0.562 0.029 0.156 0.662 0.333 0.155
ws18192 0.575 0.029 0.155 0.581 0.024 0.156 0.631 0.113 0.182
ws20062 0.584 0.030 0.155 0.588 0.030 0.156 0.631 0.135 0.082
ws21131 0.569 0.025 0.146 0.573 0.025 0.148 0.628 0.138 0.177
ws21133 0.575 0.025 0.154 0.576 0.027 0.157 0.625 0.116 0.186
ws22031 0.561 0.027 0.151 0.565 0.028 0.159 0.613 0.102 0.182
ws22046 0.531 0.029 0.154 0.532 0.030 0.150 0.697 0.112 0.178
ws23875 0.556 0.029 0.147 0.565 0.029 0.155 0.618 0.114 0.183
ws26021 0.589 0.032 0.150 0.595 0.027 0.150 0.641 0.111 0.181
ws58212 0.566 0.032 0.157 0.573 0.036 0.157 0.629 0.134 0.190
ws58214 0.600 0.028 0.163 0.693 0.028 0.155 0.685 0.321 0.182
ws69132 0.575 0.033 0.157 0.577 0.036 0.156 0.629 0.142 0.194
ws70330 0.616 0.029 0.166 0.617 0.032 0.165 0.652 0.120 0.192
speed prediction components using ELM after decomposing the
time series to IMFs, then grouping it back into three components
using methods described above. Tables 4 and 5 show a comparison
of the proposed model with other models. Figs. 5 and 6 show the
training time, error variations, wind speed, and WPP in stage 1,
while Fig. 7 shows the estimated wind power and capacity factor
in stage 2. Based on the tested results, the approach added reason-
able improvements in WPP. However, further improvements can be
obtained by further processing and manipulations to wind speed
IMFs, and minimising the wind speed prediction horizon/time
scale, e.g. scale 5 min.
Comparing the statistical results, analysis, and simulations, it can

be clearly demonstrated based on the figures and tables that decom-
posing the wind speed time series into three components: cyclic,
trend, noise components is much better than predicting with origi-
nal speed time series. The CEEMDAN is much better than EEMD
and EMD due to increasing the number of the realisations IMFs,
which has higher correlation coefficient and more robust.
Application of ELM as a gradient-free algorithm is much better
than using the conventional neural networks, e.g. with tapped
delay, which need very long time for training. The
CEEMDAN-ELM has higher accuracy and less noise, and lower
training times, where the average training accuracy for
ELM-CEEMDAN for noise, cyclic, and trend components are
0.5, 0.02, and 0.155, respectively, while the average training time
Table 4 MAE and RMSE of WPP stage 1

Model MAE,% rated power RMSE,% rated power

persistence 6.35 9.47
Grey predictor 2.94 3.97
Khalid predictor 2.27 2.69
proposed ELM model 0.33 0.66

Fig. 5 Different models output results
a Wind speed training times based model,
b Wind speed prediction based CEEMDAN,
c Wind speed prediction based on ELM

Table 5 MAE and RMSE of WPP stage 2

Model MAE,% rated power RMSE,% rated power

persistence 4.07 7.06
Grey predictor 4.05 4.74
Khalid predictor 2.87 3.27
proposed ELM model 0.56 0.58
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Fig. 6 Different models output results
a Wind speed prediction with time,
b WPP with time,
c Error variations for different ws in stage 1,
d Wind speed and WPP with time

Fig. 7 Estimated ws wind power and capacity factors stage 2
is 0.7 s. The average training accuracy for CEEMDAN-based ANN,
fuzzy logic, and SVMs models for noise, cyclic, and trend compo-
nents are ‘1.020, 0.023, 0.371’, ‘1.021, 0.049, 0.389’, and ‘1.023,
0.111, 0.389’, respectively. The ANN has a higher training time
and more accuracy than SVM, and fuzzy system models.
Therefore, and based on the results, the CEEMDAN-based ELM
method is much better, superior, and state-of-the-art technology
for short-term wind speed and WPP systems than using convention-
al ANN, SVM, or fuzzy systems. Moreover, the CEEMDAN-based
This is an open access article published by the IET under the Creative
Attribution License (http://creativecommons.org/licenses/by/3.0/)
ELM has higher accuracy than persistence, Grey, and Khalid
models.

It can be indicated and highlighted from simulation results that
the proposed ELM method is much better than ANN, fuzzy logic,
and SVM methods. Also, decomposition of the wind speed time
series by CEEMDAN is much better than EEMD and EMD due
to increasing the number of realisations by adding adaptive noise.
Moreover, the SamEn as complexity measure based techniques is
a useful tool for assessing the wind speed time series.
Furthermore, the proposed ELM method has higher accuracy than
persistence, Grey, and Khalid methods, e.g. the MAE for the pro-
posed ELM method is 0.33% in stage 1, and 0.56% in
stage 2. While the MAE for persistence, Grey, and Khalid
methods are 6.35, 2.94, 2.27% for stage 1, and 4.07, 4.05, and
2.87% for stage 2, respectively, which indicated the effectiveness
of the proposed ELM model for solving the short-term WPP pro-
blems, and it can be highly recommended for practical applications.
However, further processing to wind speed IMFs is under study.

7 Conclusion

The intermittent, volatility, and uncertainties nature of wind power
creates significant challenges and impacts for both power system
economic operation and control. Therefore, accurate WPP system
enhances the power system operation and decision making. In
this research paper, an advanced approach has been developed for
short-term WPP by integrating advanced time series processing
methods with AI techniques such as ELMs technique, ANNs,
fuzzy systems, and SVMs. Also, real-time wind data resources
have been collected and assessed for several geographical locations
close to real wind farms within Australia. In the first stage, the fore-
casting system predicts the wind speed value based on multiple
observations from nearby weather stations which are close to the
wind farms regions, and then the wind power is predicted based
on the PC in the second stage. The estimated capacity factor for
each weather station is of high importance when assessing the re-
newable energy resources. Different models structure and training
algorithms were developed to get the optimum model’s construc-
tion and configurations for all models under the study ‘ELM,
ANN, fuzzy system, and SVM’ and based on the available wind
data resources. Decomposing the wind speed time series by
CEEMDAN and grouping it finally into three components is
more efficient when using a separate intelligence forecaster for
each component than building predicting system by using the ori-
ginal wind speed signal. ELM is a very efficient and fast processing
method dealing with complex relationships. An integrating
CEEMDAN with ELM was developed for WPP. Moreover, an in-
tegrating EEMD, EMD with ANN, fuzzy logic, and SVMs were
developed for validations and verifications purposes. The proposed
ELM method has been compared with other techniques used for
predictability such as Khalid method, Grey method, and PM, and
the performance indices MAE and RMSE indicated and highlighted
that the proposed ELM method is more accurate and efficient for
Commons J. Eng., 2018, Vol. 2018, Iss. 1, pp. 29–38
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short-termWPP problems. Consequently, and based on the statistic-
al analysis, and simulations results, the proposed approach has an
excellent improvement in performance, state-of-the-art technology,
and superiority in the final WPP, and it can be highly recommended
for wind power practical applications.
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