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Semantic isometry for 3-D shape
correspondence

Xiang Pan and Ying Cui

Abstract
Isometry has been widely used in corresponding problem with pose variation. However, most existing methods are
causing wrong correspondences due to the ambiguity of geodesic distance. This article introduces the semantic isometry
to three-dimensional shape correspondence and proposes a new framework called detection–recognition–correspon-
dence. The idea of semantic isometry is to embed the semantic information and statistical learning through sparse cor-
respondence for better performance. Feature point detection is first utilized to extract the salient feature point of the
three-dimensional shapes. Then, instead of finding correspondence pairs directly by minimizing the isometric error of
the detected feature points, the semantic labels of these feature points are recognized using the support vector machine.
The semantic label is used to perform a priority-driven isometric correspondence.The highly reliable corresponding pairs
are then obtained to serve as the further constraint in the following corresponding process. During the experiments,
the robustness of the proposed algorithm is verified by different kinds of three-dimensional dynamic models, including
some very challenging data with pose variation and missing parts. Moreover, the proposed framework can greatly improve
the corresponding accuracy over the existing state-of-the-art algorithms.
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Introduction

Three-dimensional (3-D) shape correspondence is focusing

on building a mapping between two given shapes. It is one

of the fundamental problems of computer vision and com-

puter graphics. It has a wide application in humanoid

robot.1 The point–point matching among different poses

built by 3-D shape correspondence can be used for building

marker-less motion capture. In this way, humanoid robot

imitate without expensive full-body motion capture suit.2

In addition, the human shapes with different poses are gen-

erally isometric (or nearly isometric). Therefore, the corre-

spondence problem can be reduced to isometric mapping.

This article addresses the problem of establishing corre-

spondence between isometric (or nearly isometric) shapes,

which are very popular for human motion capture.

If two shapes are completely isometric, we can find a

distance-preserving mapping between two shapes using

geodesic distance.3 However, in real case, the two shapes

with different poses cannot be perfectly isometric due to

many factors, like topological noise, scanning accuracy,

geometry discretization errors, and missing data. Currently,

numerous optimizing methods have been proposed to
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minimize the amount of deviation from isometry. Most of

these methods are defined in embedding space instead of

original Euclidean space. However, these embedding meth-

ods require the input shapes to satisfy some strict conditions

like watertight and no holes. Moreover, some embedding

errors will also be carried in, affecting the shape of corre-

spondence accuracy. Recently, Sahillioglu and Yemez4

focus on using isometric model directly in 3-D Euclidean

space, which can avoid distortion error of embedding pro-

cess. Experimental results show that the optimizing method

in 3-D Euclidean space can get better accuracy. However,

the main problem of this method is how to roughly align two

shapes before isometric mapping. Sahillioglu and Yemez

developed two methods for initial alignments, including

spectral embedding and geodesic distance–based feature

point matching. However, the former method cannot work

on partial correspondence since spectral embedding is

highly affected by missing parts. While the latter method

is also not stable due to the ambiguity of geodesic distance.

In this article, we introduce the notion of semantic iso-

metry for 3-D shape correspondence. It can robustly obtain

sparse correspondence. Our motivation comes from the fol-

lowing observation: the detected feature points are visually

salient and distinguishable; if their semantic labels can be

firstly recognized and served as a constraint through the

following correspondence, the corresponding accuracy can

be greatly improved. Therefore, we perform a sparse-to-

dense correspondence with the constraint of semantic label

and propose a new framework called detection–recognition–

correspondence (DRC). The framework mainly consists of

the following steps. Firstly, the salient feature points of the

3-D shapes are detected. Secondly, the semantic labels of

these feature points are recognized using support vector

machine (SVM). Thirdly, the sparse correspondences are

obtained with the constraint of semantic labels. Finally, we

minimize the isometric distortion directly in the 3-D Eucli-

dean space by defining a bipartite graph with each edge

weight representing the geodesic distance of two points. Apart

from its robustness in the case of pose variation and deforma-

tion, the algorithm supports partial correspondence as well.

Our experiments further verify that the proposed method can

produce better performance over the similar method.

The rest of this article is organized as follows: “Related

work” section provides a brief review of some related work;

“semantic isometry for 3-D shape correspondence” section

gives the proposed algorithm in details; “experiments”

section presents the experimental analysis for shape corre-

spondence; And finally a conclusion is drawn in the fifth

section , followed by some future work.

Related work

Many existing methods have been proposed to find optimal

correspondence by minimizing isometric error.5 The opti-

mizing methods can be mainly defined in embedding or

Euclidean space.

The idea of embedding methods is to remove pose var-

iance by transforming 3-D shape from Euclidean space into

another space. Generally, this kind of method constructs a

pose-invariant representation of 3-D shape. Spectral

embedding6 is one of the most classical methods, which

approximates geodesic distances by Euclidean distances.

Similarly, Bronstein et al.7 performed correspondences by

embedding one into another using geodesic distance. Their

method is a generalization of the multidimensional scaling

method. Conformal mapping was first proposed by Lipman

and Funkhouser.8 It iteratively samples a random triplet

from each of the shape surfaces. Then, many improved

methods followed. For example, high-order graph matching

is used to combine geometry feature and appearance for

better correspondence.9 While Blended intrinsic maps

method is to search for a continuous blend of multiple

low-dimensional maps by Mobius transformations.10 They

combine many conformal maps with weights varying over

the surface to obtain a space of maps. Other embedding

methods include heat kernel.11 Recently, Chen and Koltun

cast isometric embedding as Markov random field optimi-

zation and apply efficient global optimization algorithms

based on linear programming relaxations.12

A common problem of embedding-based methods is that

they only compute deviations from isometry since embed-

ding space is actually an approximation. There are many

rooms to improve the corresponding accuracy. One way is

to incorporate local shape information. A point-based statis-

tical descriptor incorporates an approximation of the geode-

sic shape distribution and other geometric information to

define isometric mapping.13 Recently, Sahillioglu and

Yemez proposed to perform isometric optimization in orig-

inal Euclidean space. Their results show that the correspond-

ing results can be greatly improved over the embedding

methods. Their most recent work called rank-and-vote-

and-combine (RAVAC)14 measures a correspondence pair

based on only partial shape. The main advantage of RAVAC

method is to support partial correspondence. However,

RAVAC is not stable for any kinds of 3-D shapes since the

method ranks the confidence only using geodesic distance

through sparse correspondence. As we know, the ambiguity

of geodesic distance will cause wrong correspondence.

Another improvement is to define more robust distance

measure, like geodesic field estimate (GFE). It calculates

the probability of the geodesic between points x and y pass-

ing through the given point f .15 Its scale-, rotation-, and

isometry-invariant features are its main advantages. How-

ever, the authors did not give more details and experimental

results to demonstrate the performance of GFE.

Semantic isometry for 3-D shape
correspondence

Performing the shape correspondence from a sparse to

dense manner is the most common and effective scheme.

The proposed method in this section is also performed from
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sparse correspondence to dense correspondence. Our algo-

rithm is deduced by the following observation shown in

Figure 1. Due to the ambiguity of geodesic distance,

isometry-based RAVAC algorithm wrongly maps the head

point to the hand point (left figure). However, two points

have very obvious difference in local shape feature. There-

fore, we can build a recognition framework for feature

points. For each feature point, its label can be recognized

by a classifier via local features. Furthermore, the recog-

nized labels are used for a constraint of isometry mapping.

Based on this idea, we can obtain a better sparse correspon-

dence over the RAVAC algorithm. Right figure shows our

result of sparse correspondence with semantic isometry. To

give an overview at first, a flowchart of our proposed

framework is given in Figure 2. Firstly, some distinctive

feature points are identified on both shapes. Secondly, the

semantic label of each feature point is recognized by com-

bining feature descriptors and SVM. Thirdly, the mapping

confidence is ranked by semantic isometry to get an opti-

mal sparse correspondence. And finally, the corresponding

cost matrix is constructed with the constraint sparse corre-

spondence to compute the best correspondence, which is

obtained using the linear assignment.

In the following, we discuss the algorithm implementa-

tion in detail. To simplify the description in the following

subsection, here we give some common definitions for both

source and target shape. A 3-D shape is represented as a set

of vertices denoted by V . For any two vertices vq; vw 2 V ,

their geodesic distance is denoted by gðvq; vwÞ.

Detection of feature points

To generate such a correspondence, we need to compute a

few salient feature points on both shapes. Our algorithm is

independent of the feature point detection methods. Many

methods can be used in extracting the feature points. In this

article, we focus on the correspondence of 3-D deformable

shapes. This kind of 3-D shapes is usually composed of a

main part (e.g. the torso of an animal) and several con-

nected exterior parts (e.g. the head, limbs, and tail). There-

fore, here we choose to use the feature point detection

method in part-based 3-D decomposition.16 Katz’s method

detects some exterior feature points to represent the struc-

tures of a 3-D shape before decomposition. We take this

idea to detect some exterior feature points for our feature

matching task. The detecting method firstly obtains the

core point f1 2 V by summing the geodesic distances to all

other vertices. Obviously for a deformable shape, the core

vertex lies on its main part. The feature points on the exter-

ior parts must be far away from the core point. Therefore,

the required feature points can be iteratively detected using

the following equation

f1 ¼ fvqjmin
X

vw2V
gðvq; vwÞ; vq 2 Vg; i ¼ 1

fi ¼ fvqjmaxj<iðminvq2V gðvq; fjÞÞ; i > 1g

(
ð1Þ

The second part of equation (1) maximizes their mini-

mum distance to previously detected feature points. The

iterative process exits if the following equation is satisfied

minfw2 pathðfi;f1Þgðfi; fwÞ < a�

X
vq2V Þgðvq; f1Þ
jV j

ð2Þ

Notice that the right side of the equation is the average

distance to the core feature point, f1, which can be consid-

ered as the minimum length of a single part. The parameter

a is used to control the number of feature points. If

the value is set to be small, more feature points can be

extracted. In our implementation, the value is set to

be 0.5. As a result, most important feature points can be

extracted to represent the structures of a 3-D shape. Figure

3 shows the extracted feature points of some 3-D shapes.

Notice that these feature points are mainly lying on the

protrusion of 3-D deformable shapes. Definitely, if we can

make a correct matching of these feature points, we can

easily perform a dense correspondence between two shapes

with the constraint of these matching.

Recognition of semantic labels

After feature point detection, we need to assign a semantic

label LðfiÞ for each detected feature point fi by SVM and

shape descriptor. Many shape descriptors can be used to

work out the recognizing task, like shape diameter func-

tion, heat kernel signature (HKS), or wave kernel.

Here, we use HKS shape descriptor, which is based on

the fundamental solutions of the heat equation. For each

point in the shape, HKS defines its feature vector represent-

ing the point’s local and global geometric properties. The

heat kernel is invariant under isometric transformations and

stable under small perturbations to the isometry. Figure 4

shows HKS distributions of two shapes. The red indicates

large HKS value and blue indicates small value. Notice that

Figure 1. Isometry versus semantic isometry.
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feature points on different parts are very distinguishable

from each other.

However, the HKS-based matching method is highly

affected by capturing noise and variant position of feature

points. To further improve the robustness of semantic label

recognition, we build a learning-based method. The power

of learning method has been verified by shape understand-

ing problems,17 such as the co-segmentation and shape

retrieval. For each feature point fi, its geometry vector

defined by HKS is represented by FEi. Notice that to mini-

mize the scale effect, a normalization is required to be

added to the geometry vector.

Then, the recognition task is to distinguish feature points

into different classes using the corresponding geometry

vectors. Therefore, it is a very typical multi-class problem.

The multi-class problem can be efficiently solved by SVM.

Notice that some feature geometry cannot be classified in

linear manner. Therefore, we define a kernel trick to impli-

citly map the feature vectors into a high-dimensional fea-

ture space, as shown in the following equation

LðFEÞ ¼ sgn
�Xn

t¼1
ytatKðFE;FEtÞ þ b

�
ð3Þ

where at is the lagrange multiplier and Kð�Þ is the Gaussian

kernel function, which is defined by the following equation

KðFE � FEtÞ ¼ expð�sjjFE � FEtjj2Þ ð4Þ

In equation (4), the value of kernel parameter s has a

great effect on the final recognition accuracy. Additionally,

we need to decide a penalty factor (denoted by C) during

the training stage. To make a best recognition rate, we use a

grid search method to make a hyperparameter optimization.

The gird search method measures the final performance by

cross validation on the training set. The best combination is

selected as the optimal parameters. Figure 5 shows the

performance on the range ½2�10; 210�. When parameters

satisfy the following condition ð log2ðCÞ; log2ðsÞÞ ¼
ð�1;�5Þ, SVM shows the best performance.

The above binary classifier can be easily extended to the

multiple classier by the voting rule as defined in the fol-

lowing equation

HðFEiÞ ¼ fyijmaxðVTðyiÞÞg ð5Þ

where VTðyiÞ denotes the voting number belonging to the

label yi. Finally, the final label of each feature point is

decided by maximizing rule.

Figure 6 shows some results of the semantic label rec-

ognition. Different labels are described by different colors.

It can be seen that the semantic labels are very distinctive

for different parts of the deformable 3-D shapes. In

Figure 2. The flowchart of our proposed DRC algorithm. DRC: detection–recognition–correspondence.

Figure 3. Feature points of some 3-D shapes. 3-D: three-
dimensional.

Figure 4. HKS shape descriptor of different feature points. HKS:
heat kernel signatures.
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addition, it remains locally stable in the process of motion

variation since it is based on statistical learning method.

Even for some low-quality 3-D scanning data under occlu-

sion (see the first model in Figure 6), the SVM can reliably

recognize the semantic label.

Sparse correspondence with semantic label constraint

Let fs ¼ s1; s2; :::sn denotes the feature point set corre-

sponding to the source shape S and ft ¼ t1; t2 ; :::tm denotes

the feature point set corresponding to the target shape T .

Notice that not every feature point in the source shape can

find a corresponding point in the target shape. If the algo-

rithm forces to find a corresponding point for each point of

the source shape, the corresponding results might be wrong.

To solve this problem, we choose to build a very sparse

correspondence that only need to search three key points in

the source shape. Figure 7 gives an example of finding the

best correspondence in 2-D space. Suppose five feature

points are detected in the source shape, while four feature

points are detected in the destination shape. The dashed

lines show the best triplet. For each pair in the mapped

triplet, the two mapped points share the same semantic

labels. Furthermore, it has similar geodesic distance to

other mapped points due to isometric constraint. Therefore,

the algorithm can select the best correspondence even if

some feature points are wrongly detected or recognized.

In this way, we can robustly find those highly reliable

corresponding points while ignoring some possible wrong-

corresponding points. In consequence, the problem of our

sparse corresponding is reduced to searching three match-

ing feature point pairs between the source shape and the

target shape. Since we use geodesic distance to extract

feature points, the number of extracted points is usually

less than 10. Therefore, we can perform a combinational

searching for all possible matching. Finally, those match-

ing pairs with the highest confidences are selected as the

sparse corresponding pairs. We can rank all the possible

triplets by combining their isometric errors and semantic

labels. We can formulate the semantic isometry using the

following function

F ¼ min
X

w1 � jgðfsi; fsjÞ � gðftp; ftkÞj ð6Þ

where

w1 ¼
1; LðfsiÞ ¼ LðftpÞ; LðfsjÞ ¼ LðftkÞ

1; otherwise

�
The main difference with the traditional isometry lies on

the factor, w1, which is defined by the semantic consis-

tence. The triplet correspondence with the semantic label

constraint is very stable under different poses. Furthermore,

it can tolerate distortion and noise. To verify this point, we

show some corresponding results of distorted 3-D shapes.

Figure 8 shows some triplets obtained by our method.

Notice that these 3-D shapes are distorted by a few noises.

For these 3-D shapes, the geodesic distance and shape

descriptors are not stable enough to build a correct corre-

spondence. Fortunately, semantic labels can work very well

under noise. As a result, the proposed algorithm can

robustly output triplet correspondence.

Dense correspondence with linear assignment

After finding the three-point matching pairs, we can use

isometric searching to build a dense correspondence. Here,

we use a minimum cost perfect matching algorithm.18 The

algorithm performs isometric searching by computing the

cost matrix. Firstly, the algorithm evenly samples some

points both over two shapes. To make sampling points

cover the whole surface, we set the sampling radius to be

0:17�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:31� S
p

(here S denotes the area of surface). As

a result, it can get almost 100 points to sufficiently cover

Figure 7. The best triple correspondence by semantic isometry.

Figure 5. Optimal parameters searching for unique point
recognition.

Figure 6. Some results of semantic label recognition.

Pan and Cui 5



the whole surface. Secondly, for two sampling point set of

two shapes, we can build a cost matrix by geodesic dis-

tance. In consequence, the corresponding problem is

reduced to a perfect matching of the minimum cost. And

finally, we can perform the minimum weight perfect

matching to obtain the final dense correspondence  S!T .

For each point si in the source shape, its mapping point in

the destination shape is tj ¼  ðsiÞ. Without loss of general-

ity, we assume  S!T to be a one-to-one mapping. In con-

sequence, the obtained mapping can be represented as

n� n matrix  , where n is the number of mapping pairs.

Furthermore, we can obtain an inverse mapping  T!S

with the precondition  S!T . In this way, we can estimate

a point bsi for each point tj. A good mapping means that the

geodesic distance gðsi; bsiÞ should be very small. Therefore,

we can further refine isometric mapping by the minimum

mean squared error. For this purpose, we can define the

following linear assignment problem

b ¼ arg min
 
ð TPÞ

Pi;j ¼ exp �
ðMT Þ;2j

2s2

0@ 1AðMSÞ2ij
ð7Þ

where MT and MS denote the matrix built by the geodesic

distance of mapping points, respectively. The above opti-

mization problem is actually maximum a posteriori with

the solved mapping  S!T . It firstly builds a Bayesian esti-

mator given by the observations  S!T . Then, the Bayesian

estimator is used to refine the inverse mapping by solving a

linear assignment problem.

Experiments

To demonstrate the performance of our proposed algo-

rithm, we conducted experiments on two types of data-

bases containing different poses. We mainly compare our

method with RAVAC algorithm.17 RAVAC algorithm

improves mapping confidence by accumulating vote

matrix with the constraint isometric mapping. We have

used the same publicly available RAVAC code with the

settings identical to the one used in the correspondence

experiments. Firstly, we perform an experimental analysis

to show the robustness of semantic label recognition. Sec-

ondly, we perform an experimental comparison on a pub-

lic whole-to-whole correspondence database. Thirdly, we

further verify our method by part-to-whole corresponding

experiments, including some very challenging and com-

plicated 3-D shapes.

Database and evaluation metrics

To evaluate our method, we used two kinds of database.

Besides correspondence benchmark, we also collect some

reconstructed data from real senses. The correspondence

benchmark includes SCAPE19 and TOSCA20 Generally,

3-D shapes in this database are of high quality and very

smooth, with no topological noise. In addition, these data-

bases have ground truth. Therefore, we can evaluate corre-

spondence error by standard curves.10 The other database

contains some very challenging data reconstructed from

real scenes (denoted by SCANNING in the following),

including Dancing Woman21 and Kicker Man22 Among

them, Kicker Man is very difficult to be resolved since the

scanner is not able to resolve the gap between the arms and

the body. Moreover, the topology is ambiguous and the

geometry shows systematic low-frequency artifacts. For

this kind of data, the quantitative measures used in this

article show isometric error. The main advantage of iso-

metric error is that it is independent of ground truth data.

That means, we can evaluate results on some challenging

real-scan data without ground truth. To quantify the iso-

metric distortion, we use the average distortion error

defined in the following equation

Figure 8. Matching results under noise distortion.
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d isoðxÞ ¼
1

jxj
X
ðsi;tjÞ

d isoðsi; tjÞ ð8Þ

where x denotes the set of correspondence pairs between

two 3-D shapes S and T. For each pair, we can use the

following equation to compute the isometric error

d isoðsi; tjÞ ¼
1

jxj � 1

X
ðsl; tmÞ 2 x
ðsl; tmÞ 6¼ ðsi; tjÞ

ðgðsi; slÞ � gðtj; tmÞÞ

ð9Þ

The metric d iso take values in the interval [0; 1] since the

function g is normalized with respect to the maximum geo-

desic distance over the shape. Obviously, the isometric

error is expected to be very close to zero for natural defor-

mations. Generally, the wrong correspondence will cause a

big value of this metric. Therefore, the smaller the value,

the better the corresponding accuracy.

Robustness of semantic label recognition

The algorithm’s accuracy mainly depends on the robust-

ness of semantic label recognition. The training set of SVM

is created on a collection of representative shapes and their

feature points. Then, the recognition accuracy of shapes in

the testing set is calculated to show how robust the algo-

rithm is. The results of the recognition rate are shown in

Table 1. Notice that the accuracy for synthesis models

(shown in the top three rows of Table 1) is 100% for the

testing data since these data are smooth and of high quality.

Even for real-scanning data with high noise, our algorithm

still obtains a very high recognition rate.

Quantitative comparing with similar algorithm

We have conducted quantitative evaluation on the three

databases to compare our method with the RAVAC

method. For RAVAC, we used the publicly available Cþþ
code which uses combinational searching. Firstly, we give

the performance comparison for benchmark SCAPE. This

database only contains scanning results for one human

with different poses. Figure 9 shows the results of two

methods. For this database, RAVAC method also shows

good accuracy. Our method has a slight improvement over

RAVAC method. Next, we perform comparisons for

TOSCA. Compared to SCAPE, TOSCA is more compli-

cated since it contains different kinds of 3-D shapes. Fig-

ure 10 shows the results of the two methods. It can be

found that the correspondence performance has improved

greatly. Finally, we perform experiments on the SCAN-

NING database. The isometric error is used for measuring

since there are no benchmark for this kind of data. The

quantitative results of the comparison tests are shown in

Table 2. It can be seen that our DRC method still signif-

icantly outperforms RAVAC method. For the real-scan

data Kicker with the lowest quality, our method makes a

great improvement of almost three times on the

Table 1. The semantic label recognition accuracy.

Category Testing number Correct number Accuracy (%)

Centaur 24 24 100
Michael 65 65 100
Horse 30 30 100
Kicker 45 45 100
Samba 820 814 99.3

Figure 9. Comparison of two methods for SCAPE.

Figure 10. Comparison of two methods for TOSCA.

Table 2. Isometric error comparision for SCANNING.

Category DRC method RAVAC method

Kicker 0.275618 0.648419
Samba 0.156517 0.25747

DRC: detection–recognition–correspondence; RAVAC: rank-and-vote-
and-combine.
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corresponding accuracy. The reason is that RAVAC

method builds sparse correspondence only by geodesic

distance, which makes the method very unstable under

distortions and noisy data. And the proposed DRC method

has addressed this problem.

To give a visual demonstration, some correspondence

results are shown in Figure 11. For a better visualization,

matching points are rendered in different colors. Each of

the two matching points have the same color and are con-

nected by a line. From the top row of Figure 11, it can be

seen that the RAVAC method cannot correctly match all

the shape extremities. It shows that RAVAC is not general

for each case. For example, it can output good correspon-

dence for the horse. However, it causes a very serious

problem that leads the leg point to the head point for the

kicker man. This is mainly due to the fact that RAVAC is a

searching process without local shape descriptor and learn-

ing strategy. In our proposed DRC method, a matching

priority is introduced to the problem. The matching priority

is effectively obtained by learning shape descriptor of fea-

ture points. From the top row of Figure 11, it can be seen

that the DRC method obtains better correspondence results

in all the three cases with semantic recognition.

The main limitation is the symmetrical flip problem,

which is natural to isometric mapping. Our recognition

framework is still suffering from this problem since it cannot

distinguish the left and right side. It remains a future study.

Conclusions

The 3-D shape extremities-based correspondence directly

builds a mapping in Euclidean space. Therefore, it can

support partial correspondence. However, existing methods

will cause wrong correspondence under non-isometric

cases. This work addresses the problem and proposes a

framework DRC of building 3-D correspondence by

semantic isometry. Semantic label recognition is intro-

duced to constrain the correspondence work. For two points

on the source shape and their matching points on the desti-

nation shape, their isometries depend not only on their

geodesic distance but also on their semantic labels. Seman-

tic labels of the feature points are recognized by SVM and

local shape descriptors. As a result, the dense correspon-

dence between two shapes is obtained with the constraint of

sematic labels. The approach is shown to obtain promising

results on different kinds of 3-D shapes over the existing

methods.

In the future, we plan to resolve the flip problem by

space–time feature. The flip problem is very common in

nonrigid correspondence. In addition, it is very difficult to

distinguish flip parts by different kinds of local features.

Most nonrigid correspondences are addressing 3-D

dynamic model. For these 3-D shapes, the continuous space

information can be incorporated into 3-D correspondence

to remove the flip problem.

Figure 11. Comparison of correspondence results. Top: results of RAVAC; Bottom: results of DRC. RAVAC: rank-and-vote-and-
combine; DRC: detection–recognition–correspondence.
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11. Ovsjanikov M, Mérigot Q, Mémoli F, et al. One point

isometric matching with the heat kernel. Comput Graph

Forum 2010; 29(5): 1555–1564.

12. Chen Q and Koltun V. Robust nonrigid registration by convex

optimization. In: IEEE international conference on computer

vision, Santiago, Chile, December 2015, pp. 2039–2047.

IEEE.
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