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Abstract

The misbehaving attitude of Ca®* signaling pathways could be the probable reason in many muscular disorders such as myop-
athies, systemic disorders like hypoxia, sepsis, cachexia, sarcopenia, heart failure, and dystrophy. The present review throws light
upon the calcium flux regulating signaling channels like ryanodine receptor complex (RyR1), SERCA (Sarco-endoplasmic
Reticulum Calcium ATPase), DHPR (Dihydropyridine Receptor) or Cavl.1 and Na+/Ca>* exchange pump in detail and how
remodelling of these channels contribute towards disturbed calcium homeostasis. Understanding these pathways will further
provide an insight for establishing new therapeutic approaches for the prevention and treatment of muscle atrophy under stress
conditions, targeting calcium ion channels and associated regulatory proteins.
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Introduction

Calcium ion (Ca*") is the 5th of the most abundant elements in
the earth’s crust and one of the universal intracellular messen-
gers which controls a variety of cellular processes such as gene
transcription, muscle contraction, cell proliferation, pro-
grammed cell death and neurotransmission (Berridge 2002;
Bootman et al. 2001) and also considered as an important con-
tributor in regulating skeletal muscle plasticity (Gehlert et al.
2015). In skeletal muscle fibers, Ca®* has a crucial role in
excitation-contraction coupling process which results into ac-
tion potential of muscle fiber and also involved with innumer-
able functions such as myosin-actin cross bridging, protein
synthesis, protein degradation, fiber type shifting, calcium-
regulated proteases and transcription factors, mitochondrial ad-
aptations, plasticity and respiration (Gehlert et al. 2015).
Abnormal cytosolic calcium ions [Ca®*] eyt Or dysregulated
calcium homeostasis caused by disturbances of Ca®* chan-
nels, exchangers, calcium ion pumps, calcium ion transport
channels and calcium ion binding proteins induce multiple
pathologies (Missiaen et al. 1992). Recent evidences implicate
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Ca®* dysregulation as a common underlying phenomenon in
the pathophysiology of muscles such as hypoxia, sepsis, ca-
chexia, sarcopenia, heart failure, and dystrophy (Fig. 1). Thus,
the review summarizes the latest findings and emerging con-
cepts in calcium ion signaling with a special focus on Ca**
channels/receptors and how they are engaged with the muscle
atrophic conditions. Laterally, clinical implication and novel
therapeutic strategies will be discussed to provide a probable
solution for muscular pathologies.

Excitation-contraction coupling

Calcium ions play a prime role in excitation-contraction cou-
pling process. It starts with the binding of acetylcholine with
receptors that lead to the opening of voltage-gated sodium
channels, present on sarcolemma and down the t-tubule into
the myofibers. The wave of depolarization leads to conforma-
tional change in L-type calcium channels (Cav1.1) which fur-
ther governs the direct gating of ryanodine receptors (RyR)
within the sarcoplasmic reticulum (SR) and this entire process
allows a very large release of calcium (Wei and Dirksen 2010).
The release of Ca** from SR via RyR1 channels facilitates a
rapid and the enormous amount of cytoplasmic Ca>* which
make a binding with troponin C and this Ca**-troponin C
binding forms a cross-bridge between actin and myosin fila-
ments. The actin-myosin cross bridging results into shortening
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Fig. 1 Schematic representation
of the different diseases involved
in causing muscle dystrophy and
changes occur in muscle fibres
which may finally lead to muscle
degeneration

Denervation

Diseases related to muscle dystrophy

of sarcomere that ultimately lead to muscle contraction and
force generation (Fill and Copello 2002; Catterall 1991). This
entire sequence of events is known as excitation-contraction
coupling (Fig. 2).

Muscle relaxation involves SR calcium-ATPase (SERCA)
pumps by which cytosolic calcium is pumped back into the
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Fig. 2 Stress responses in skeletal muscle during E-C coupling.
Depolarization of the T-tubule membrane activates Cavl.1, triggering
SR Ca2+ release through RyR1 and leading to sarcomere contraction, a
process known as E-C coupling. During pathological stress intracellular
signaling pathways activated and affect RyR1 function and alter E-C
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sarcoplasm. Impaired skeletal muscle function due to altered
E-C coupling is associated with many muscular stress condi-
tions like running of the marathon, strenuous exercise or heart
failure etc. (Reiken et al. 2003; Lunde et al. 2001). A defect in
E-C coupling leads to decrease in Ca®* ions released from the
SR and impaired muscle contraction and force generation.
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coupling. Stress-induced RyR1 dysfunction can result in SR Ca®* leak,
which potentially activates numerous Ca>*-dependent cellular damage
mechanisms. AC, adenylate cyclise; CSQ, Calsequestrin; SERCAla,
Sarcoplasmic Reticulum Calcium-ATPase; RyR1, Ryanodine receptor 1
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While, consistent and continuing Ca®* release is possibly due
to impaired function of SR sarcoplasmic/endoplasmic reticu-
lum calcium ATPasel (SERCAIla), Ca®* reuptake pump
(Scherer and Deamer 1986; Bellinger et al. 2008). The
SERCA pump plays a major role in muscle contraction as its
decrement leads to aging and heart failure (Periasamy and
Kalyanasundaram 2007).

Resting intracellular calcium ion
concentration

Ca* concentration in the cytoplasm during unstimulated state
is very low, nearly 0.1 M (Endo 2009), while under stimulated
conditions, consequently mobilizes Ca”* from its sources to
cytoplasm which result in increase of local or global cytoplas-
mic Ca*. Once the concentration of Ca* crosses the thresh-
old level that could further conjure up cellular adverse re-
sponses. There could be two possible reasons for increased
calcium concentration either extracellular or intracellular cal-
cium pool or sometimes both. If both sources work together,
the concentration of Ca®* could be increased till millimolar
level that is fourfold higher concentrations as compared to
cytoplasmic calcium concentration. Stimulated conditions
provoke the Ca®* to be rapidly transported from the source
to cytoplasm and this transportation furnish a large electro-
chemical potential gradient. A calcium channel is an ion chan-
nel which is selective for calcium ions and there is a number of
calcium channels present in the cell.

Ca®* entry across the sarcolemma of muscles can occur
through a number of perceptible channels contributed by
members of the transient receptor potential (TRP) family or
ORALI family members, highly Ca®* selective channels or
Ca®* release activated Ca>* Channels (CRAC). The CRAC
channel is the best classified store operated channel (SOC)
with electrophysiological properties (Kiviluoto et al. 2011).

There are two types of cells: excitable and non-excitable
cells. In non-excitable cells, the influx of Ca®* from extracel-
lular medium occurs via calcium channels such as receptor-
operated channels, the second messenger operated channels,
and store-operated calcium entry (SOCE). As discovered re-
cently, the main participants of SOCE are plasma membrane
channel Orail and transmembrane protein of the reticulum
STIM1 (Avdonin 2012).

Basically, SOCs are plasma membrane calcium channels
that are opened in reaction to decreased calcium concentration
in the lumen of the SR (Parekh and Putney Jr 2005). The key
fact which initiates the opening of SOC is the decrement in
SR, but not calcium released from SR. Members of the ca-
nonical transient receptor potential cation channels family
(TRPC), especially TRPC1 are involved in SOCE in vascular
smooth muscles (Leung et al. 2008). Another single
membrane-spanning protein termed as STIM1 (stromal-

interacting molecule 1) also plays a major role in activation
of SOCs. STIMI protein serves to provide information regard-
ing stored Ca** (Roos et al. 2005). Orai 1 (Orai, the keepers of
the gates of the Heaven in Greek mythology) is a pore subunit
of the store-operated Ca®* release-activated Ca®* channels
(Parekh and Putney Jr 2005).

Normally, a complex of STIM1-Orai incorporating TRPC
proteins, advocated the mechanism controlling activation of
SOC in smooth muscle cells (Roos et al. 2005). Experimental
studies revealed that STIM1 interacts with TRPC channels
through electrostatic interactions. STIM1 was shown to directly
bind and regulate TRPC1, TRPC4, and TRPCS, while indirect
actions of STIM1 on TRPC3 and TRPC6 has been proposed
(Kiviluoto et al. 2011; Yuan et al. 2007; Zeng et al. 2008).

An entirely different story exists in excitable cells in which
influx of calcium ion occurs via voltage-operated channels.
There are various voltages-gated channels L-type (Cavl.l)
channels; N, P/Q, R and T-type channels which have been
described in Table 1.

A group of transmembrane ion channel proteins which al-
low transporting Na*, K*, Ca®*, or Cl ions via binding of
chemical messengers (ligands such as neurotransmitters) are
known as ligand-gated ion channels (LGICS) (Table 2).

Calcium ion storage in SR

The endoplasmic reticulum is the major intracellular Ca®* stor-
age site, contains thousands of times greater calcium concen-
tration in the cytosol (Xu et al. 2005). Under resting conditions,
a majority of Ca>* ions are bound to Ca®* binding proteins
which include calreticulin, parvalbumin, calsequestrin
(calretinin), calsequestrin-like proteins CLP-150, CLP-170,
CLP-220 (Schreiber et al. 2004) and sarcalumenin (SAR) in
the SR (Felix et al. 1997; Milner et al. 1992). In skeletal muscle
and cardiac muscle, calsequestrin is found to be the main Ca>*
binding protein (Beard et al. 2004), while for other tissues, Ca**
binds to calreticulin (Michalak et al. 2002) and other Ca*-
dependent chaperones or foldases like calnexin, 78-kDa glu-
cose-regulated protein/ immunoglobulin heavy chain binding
protein (GRP78/BiP), GRP94, and various protein disulfide
isomerases (PDI) (Papp et al. 2003). All these proteins perform
at least two of the following three properties for calcium ion
signaling: Ca®* binding, regulation of Ca>* pumps or Ca**-
release channels, and chaperone function (Berridge 2002)
which further emphasizes the close interrelation between the
[Ca’*]ER and ER function.

Hypoxic conditions stimulate the mitochondria to generate
excess ROS that further leads to activation of Ca®* channels
and protein folding enzymes to promote Ca”* release from the
ER and generate ER stress. Our recent study also made an
agreement as hypoxic exposure leads to oxidative stress and
disrupted intracellular calcium homeostasis (Agrawal et al.
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Voltage dependent calcium channels

Table 1
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Principal physiological functions

Most often found in

Voltage

S.No. Ca** current type

Excitation-contraction coupling in cardiac and smooth

HVA (high voltage activated) Skeletal muscle, smooth muscle, bone (osteoblasts),

L-type calcium channel (“Long-Lasting”

muscle, regulation of transcription endocrine

ventricular myocytes (also termed DHP receptors),
dendrites and dendritic spines of cortical neurones

AKA “DHP Receptor™)

secretion, neuronal Ca>* transients in cell bodies
and dendrites, regulation of enzyme activity,

cardiac pacemaking, neuronal, visual transduction

P-type calcium channel(“Purkinje”) /Q-type HVA (high voltage activated) Purkinje neurons in the cerebellum / Cerebellar granule cells Neurotransmitter release, Dendritic Ca** transients

2

calcium channel
N-type calcium channel(“Neural”/"Non-L”) HVA (high-voltage-activated) Throughout the brain and peripheral nervous system.

Neurotransmitter release, Dendritic Ca>* transients

3
4
5

Neurotransmitter release, Dendritic Ca>* transients

intermediate-voltage-activated Cerebellar granule cells, other neurons

R-type calcium channel(*“‘Residual)

Pacemaking and repetitive firing

Neurons, cells that have pacemaker activity, bone

low-voltage-activated

T-type calcium channel(“Transient™)

(osteocytes), thalamus (thalamus)

2017). The increased calcium levels further led to activation
of calcium-activated protease, calpain which was associated
with protein degradation (Jain et al. 2013b; Jain et al. 2013a).
Our findings also provided strong evidence that the elevated
protein turnover rate leads to skeletal muscle atrophy under
chronic hypobaric hypoxia exposure and this atrophy occurs
via the upregulation of ubiquitin-proteasome pathway and
calcium-activated protease, calpain, indicating the important
role of calcium in muscle atrophy (Chaudhury et al. 2012).

Besides this, another Ca®* binding protein is Calmodulin
(CaM), ubiquitously expressed 17- kDa protein which regu-
lates Ryanodine Receptors (RyR). CaM contains four calcium
ion binding pockets (two in the carboxy-terminal domain and
another two in the amino-terminal domain) and binds to one
site per RyR subunit (Moore et al. 1999). Calmodulin (CaM)
behaves in dual form: either apo-calmodulin (apoCaM) or
Ca**-calmodulin (Ca-CaM). If it is present in former form,
it could not bind with calcium, which provokes RyR1 channel
activity, but if it is present in the latter form, it shows channel
inhibitor activity (Yamaguchi et al. 2001). One of the com-
mon properties between both forms is its binding property
with skeletal Cavl.1. This common activity of calmodulin
makes it special and coordinate the RyR1 or Cavl.1 interac-
tion and controls skeletal muscle excitation-contraction cou-
pling (Takeshima 1993). Whether Ca®*-CaM binds with
Cavl.1 has now recently been questioned as a study present-
ed a comparison of abilities of CaM to bind to the proximal C
termini of two L-type Ca®* channels, Cavl.1 (skeletal iso-
form) and Cavl1.2 (cardiac isoform). The conclusion offered
by the result that Ca®*-CaM is bound strongly to the proximal
Cavl.2 C terminus, but not to that of Cav1l.1 (Ohrtman et al.
2008). One of the reasons for weak binding of CaM with
Cavl.l is to provide access of this region to other proteins
and these interactions might play a crucial role in excitation-
contraction coupling. Sencer et al. 2001 also reported Cavl.1
and RyR1 interaction could be stabilized via binding of Ca®*-
CaM with Cavl.1 and strong binding of CaM could be inter-
fering with the stabilization interaction of RyR1 and Cavl1.1.

In normal conditions, numerous mechanisms control Ca>*
overload or depletion in the ER. The cytosolic requirement of
Ca** promotes the release of calcium from the ER, but it
should not decrease the (Ca®*) ER to the level at which ER
functions and Ca®* signaling become compromised (Sammels
et al. 2010). On the requirement, a mechanism is initiated that
couple ER Ca** depletion to an increase of Ca* entry into the
cell. This mechanism is known as “capacitative” (Putney Jr
1986) or “store-operated” Ca®* entry.

In hypoxic or ischemic conditions, an increase in intracel-
lular calcium levels is observed as a primary response (Seta et
al. 2004). Hypoxia is also involved in modulating intracellu-
lar calcium levels in smooth muscle, cardiomyocytes, epithe-
lial, neuronal and in non-excitable cells such as astrocytes
(Aley et al. 2005, 2006; Chen et al. 2006). Although, the
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Table2 Ligand-gated ion channels

Type Gated by Location Function

IP3 receptor 1P3 ER/SR  Releases calcium from ER/SR in response to
IP; by e.g. GPCRs (Bosanac et al. 2002)

Ryanodine receptor Dihydropyridine receptors in T-tubules and increased ER/SR  Calcium-induced calcium release in myocytes

intracellular calcium (Calcium Induced Calcium Release - CICR)

(Bosanac et al. 2002)

effect of hypoxia on the mobilization of calcium pools from
skeletal muscle is vague. But few of the studies described that
chronic hypoxia increases the levels of cytosolic Ca** specif-
ically by boosting the release of calcium from the ER and
potentiating Ca”* influx via the L-type Ca®* channels
(Kanatous et al. 2009).

SR receptors control calcium ion homeostasis

In skeletal muscles, the following prime receptors are associ-
ated with maintaining calcium ion homeostasis during E-C
coupling.

1. Ryanodine Receptor (RyR)

2. SERCA (Sarco-endoplasmic reticulum calcium ATPase)
3. Ca,l.1 or Dihydropyridine Receptor (DHPR)

4. Na*/Ca®* exchange pump

Calcium is considered as an important secondary messen-
ger for signal transduction like excitation-contraction coupling
(E-C coupling). Intracellular Ca®* is mostly present in the
sarcoplasmic reticulum (SR) in striated muscle and the endo-
plasmic reticulum (ER) in other cell types. Major Ca®* release
channels which are localized in the SR/ER are ryanodine re-
ceptors (RyRs) (Otsu et al. 1990) and inositol 1, 4, 5-
triphosphate receptors (IP3Rs) (Nixon et al. 1994).

RyRs exist in multiple isoforms: RyR1 in skeletal muscle,
RyR2 in myocardium (heart muscle) whereas RyR3 is
expressed in brain (Hakamata et al. 1992). Vukcevic et al.
(2010) reported that RyR1 is also expressed in B-lympho-
cytes. RyR2 is highly expressed in Purkinje cells of the cer-
ebellum and cerebral cortex (Lai et al. 1992; Nakanishi et al.
1992; Furuichi et al. 1994) and very low levels in stomach,
kidney, adrenal glands, ovaries, thymus, and lungs
(Kuwajima et al. 1992; Giannini et al. 1995). RyR3 is
expressed in brain regions such as hippocampal neurons, thal-
amus, Purkinje cells, corpus striatum (Hakamata et al. 1992,
Lai et al. 1992; Furuichi et al. 1994), skeletal muscles
(highest expression in the diaphragm) (Neylon et al. 1995;
Marks et al. 1989), the smooth muscle cells of the coronary
vasculature, lung, kidney, ileum, jejunum, spleen, stomach of
mouse and aorta, uterus, ureter, urinary bladder, and esopha-
gus of rabbit (Giannini et al. 1995; Ottini et al. 1996).

Ca”* release channels (RyR1)

Mainly, ryanodine receptor 1 (RyR1) is abundant in skeletal
muscle. The receptor is a tetramer structure which consists of
four RyR1 (565 KD) polypeptide and four FK-506 binding
proteins (FKBP1) (12KD). The RyR1 complex also consists
of catalytic subunits, PKA (protein kinase A) and regulatory
subunits, PP1 (protein phosphatasel) (Gehlert et al. 2015).
One FKBPI12 bind with one RyR1 subunit hence four
FKBPI12 binds with four RyR1 polypeptides. The opening
probability (Po) depends on the binding of FKBP12 with the
RyR1 polypeptide. The dissociation of FKBP12 from RyR1
polypeptide leads to increase open probability of the channel
(Brillantes et al. 1994).

The cytoplasmic domain of the RyR1 channels include
several other complexes like cAMP-dependent protein kinase
(PKA), protein phosphatase 1 (PP1), and phosphodiesterase
4D3 (PDE4D3). Muscular A-kinase anchor protein (mAKAP)
targets PKA and PDE4D3 to RyR1, whereas spinophilin tar-
gets PP1 to the channel (Marks et al. 1989; Zalk et al. 2007).
Calmodulin also binds to RyR and the phosphorylation sites
for CaMKII and PKA, including Ser2808 and Ser2030, in
different subdomains within the clamp region of the channel
(Lehnart et al. 2005; Marx et al. 2000). Muscular A-kinase
anchoring protein (mMAKAP) restraint to RyR1 at the residue
0f' 3003 to 3039 via leucine zipper which tether PKA to come
close to phosphorylation sites (Bers 2004). Another protein,
sorcin also interacts with RyR1 via clamp domain. This bind-
ing further facilitates crosstalk between RyR1 and DHPRs and
[3-adrenergic receptors, surface protein membrane (Farrell et
al. 2003; Melzer et al. 1995). During prolonged periods of
stress condition, SNS get activated which leads to binding of
catecholamine to a 3-adrenergic receptor that resulted into the
activation of adenyl cyclase and formation of cAMP, the sec-
ondary messenger via G-protein coupled receptor and further
cAMP activates PKA.

PKA phosphorylation activates RyR1 and RyR2 by phos-
phorylating at serine2844and serine2843 respectively
(Reiken et al. 2003; Bellinger et al. 2008). In skeletal mus-
cles, Protein Kinase A (PKA) is phosphorylated at RyR1-
S2844 which further, reduces the affinity of FKBP12 from
the RyR1 channel (Reiken et al. 2003). This binding of
FKBP12 to the RyR1 stabilizes the closed state of the channel
and prevents a “leak” of calcium ion through channels, also
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facilitates coupled gating between neighboring channels that
enhances the Ca’* transients (Brillantes et al. 1994;
Jayaraman et al. 1992). Several studies have also made an
agreement that remodelling of RyR1 via nitrosylation, car-
bonylation and glutathionylation affects skeletal muscle func-
tion and Ca®* signaling (Aracena-Parks et al. 2006; Barreiro
and Hussain 2010; Hidalgo et al. 2006) (Fig. 3).

A few recent studies reported the remodelling of the RyR1
macromolecular complex during chronic stress conditions.
The remodelling of ryanodine receptor components include
oxidation of phosphodiesterase PDE4D3 channel or depletion
of Ca®* release channel stabilizing protein FKBP12 or PKA
hyperphosphorylation of the channel. Any conformation
change in the component of ryanodine receptor complex
leads to SR Ca”* leak into the cytoplasm. Thus, the amount
of Ca®* released during each contraction of the muscle is
reduced (Lehnart et al. 2005; Shan et al. 2010a; Shan et al.
2010b). Hence, these conformational changes under
prolonged pathological stress could contribute to defective
muscle function due to disturbances in Ca”* signaling.
Hence the elevated cytosolic calcium levels could be respon-
sible for excessive muscle stress and muscle pathologies re-
lated to muscles.

Oxidative stress responsible for RyR1 channel
modifications

RyR1 channel activity is highly sensitive to redox active
reagents. ROS and NO have been shown to modify the
RyR1 channel functions (Aracena et al. 2003; Favero et al.
1995; Stamler and Meissner 2001) and are potentially impli-
cated in impaired Ca®>" signaling in heart failure and
sarcopenia (Andersson et al. 2011). Oxidative stress is one
of the major contributing factors which tend to increase
ROS, RNS and the stress-induced protein oxidation
(Jackson 2009; Muller et al. 2007). Recent studies reported
that RyR1 activity is increased due to the presence of ROS
and RNS, such as molecular oxygen (O,), superoxide anion
(0y7), hydrogen peroxide (H,O,), hydroxyl radical (OH),
nitric oxide (NO ), nitroxyl (HNO) species, glutathione di-
sulfide (GSSG), and S-nitrosoglutathione (GSNO) (Stamler
and Meissner 2001; Aghdasi et al. 1997; Eu et al. 2000;
Feng et al. 2000; Oba et al. 2002; Xia et al. 2003; Cheong
et al. 2005; Sun et al. 2001a). In contrast, the RyR1 activity
gets decreased by intracellular reducing agent, glutathione
(GSH) (Feng et al. 2000; Oba et al. 2002; Cheong et al.
2005; Sun et al. 2001b).

Fig. 3 A model of “leaky” RYR1
channel in pathological skeletal
muscles. a RyR1 from normal
skeletal muscle is not “leaky” and
the sequestration of calcium ion
occurred due to RYR1 activation
which triggers muscle contraction
b In pathological state, ROS and
RNS mediated remodelling of
RYRI channel and impaired
calcium homeostasis which may
lead to decreased muscle force
and moreover, it may lead to
muscular atrophy
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Skeletal muscle Ca”* release channel RyR 1 contains a large
number of free thiol group whose oxidation or nitrosylation
influences channel function (EU et al. 2000; Sun et al. 2001a;
Salama et al. 2000). Nitric oxide involved to create S-
nitrosylation of RyR1 that increases the same activity, on the
other hand, calmodulin has an antagonist effect of nitric oxide
(CaM 50 residues appeared to be in the reduced state of these,
nearly 10-12). The RyR1 channel contains 100 cysteine res-
idues (Takeshima 1993) which are highly susceptible to
oxidation/modifications by exogenous sulthydryl (SH) re-
agents (Sun et al. 2001a) (Table 3).

The modulation of RyR1, either S-nitrosylation or S-
glutathionylation, both could reduce the affinity with calmodu-
lin (Aracena et al. 2005). It has been reported that CaM, bound
at a site of intersubunit contact, protects RyR1 from oxidation
and possibly nitrosylation. However, during stress conditions
and high concentrations of oxidants could lead to a loss of the
interaction between RyR 1 and CaM. Further this might contrib-
ute to altered muscle function or damage during periods of high
oxidative stress, such as in fatigue (Moore et al. 1999).

SR Ca”* leak is reported as aberrant calcium sparks in
myofibres in numerous circumstances like after vigorous ex-
ercise, muscle dystrophy, a progression of heart failure,
sarcopenia (Bellinger et al. 2008; Andersson et al. 2011).
One of the general observations reported during these adverse
conditions is disturbed Ca”* homeostasis which could be as-
sociated with stress-induced remodelling of RyR1 channels.

Ryanodine receptors (RyRs) are highly susceptible to redox
modifications due to the presence of hyperactive cysteine and
serine residues. Hyperphosphorylation and redox
modifications of RyRs perturbed calcium ion homeostasis.
Reiken et al. (2003) reported hyperphosphorylation of RyR1
during heart failure (HF) in rats and humans, which lead to
dissociation of FKBP12 from RyR1 and enhance its activity.
During exhaustive exercise, remodelling of the RyR1 com-
plex was noted that the resulted into limiting exercise capacity,
decreased muscle contractility and calcium dysfunction.
Remodelling of the RyR1 complex could be various types,
including PKA-mediated phosphorylation of serine residues
(Ser-2844), RyR1 S-nitrosylation, PDE4D3 depletion, and
calstabinl depletion (Bellinger et al. 2008). Some other in-
vivo investigations also reported the role of S-nitrosylation
of RyR1 in muscular atrophy, malignant hyperthermia and
sarcopenia, which ultimately led to pathological calcium ion

leak into the cytoplasm and reduced binding affinity of
FKBP12 and other macromolecular complex to RyR1
(Bellinger et al. 2009; Durham et al. 2008; Andersson et al.
2011). Researchers also reported the role of RyR1 in arthritis-
induced muscle weakness due to increased production of RNS
and impaired calcium signaling (Yamada et al. 2015). RyR1
dysfunction due to excessive oxidation/nitrosylation was also
observed during spinal cord injury (SCI) (Liu et al. 2016). A
current report was also submitted on RyR1 mutations in
Korean patients who suffered from congenital myopathy.
The C-terminal dominant variant of RyR1 mutation were ob-
served in core myopathy suffered patients (Jeong et al. 2018).

Besides RyR1 remodelling, few other Sarco (endo) plasmic
reticulum (SR) receptors have also played an essential role in
some diseases. Recently, Ravel-Chapuis et al. (2017) reported
that SERCAI1, SLN, and CSQ levels were ungoverned in
myotonic dystrophy type 1 (DM1), suggested that the reduced
capacity of pumping back calcium into SR which resulted into
an aberrant release of calcium ion into the cytoplasm.
Currently, Schartner et al. (2017) also highlighted the impor-
tance of Cavl.1 or DHPR in ECC and also revealed ten reces-
sive or dominant mutations in CACNA1S (Cavl.1) in exome
sequencing. Dominant CACNAI1S mutations in Cavl.l or
DHPR of skeletal muscles associated with the muscle dys-
function and congenital myopathy (Schartner et al. 2017).
These findings strengthened the importance of SR receptors
in maintaining calcium ion homeostasis and ECC.

SERCA, a Sarco-Endoplasmic Reticulum Ca**ATPase,
an enzymatic pump that scavenges calcium from the cytosol
and the transportation is coupled to ATP hydrolysis
(MacLennan et al. 1997). This Ca** transport makes the cyto-
solic calcium three to four folds lower as compared to intra- SR/
ER calcium concentration. But dystrophic mice or DMD pa-
tients show defects in calcium ion handling and uptake during
relaxation (Divet and Huchet-Cadiou 2002; Goonasekera et al.
2011). Hence there is a possibility that skeletal muscle atrophy
could be caused due to modulation of SERCA activity. Three
homologous genes which encoded for SERCAs are SERCAL,
SERCA2, and SERCA3 (Burk et al. 1989). Transcripts of these
genes further endure for splicing and converted into isoforms
which differ due to its C-terminal region (MacLennan et al.
1997). Fast-twitch (type 2) skeletal muscle encompass
SERCAla (adult form) and 1b (neonatal form). SERCA 2a is
expressed in slow-twitch (type 1) skeletal and cardiac muscles,

Table 3  Modificatation of RyR1 on cystein residues sites

Modification on RyR1 Cystein residue sites References

S-nitrosylated Cys-1040, Cys-1303 (Sun et al. 2001b; Aracena-Parks et al. 2006)
S-glutathionylated Cys- 1591, Cys-3193, Cys-36, Cys-2326, Cys-2363,

S-glutathionylated or S-nitrosylated

Cys-253, Cys-315, Cys-811, Cys-906, and Cys-3635
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whereas SERCA 2b in smooth muscle and non-muscle tissues
(Wuytack et al. 1992). Further, non-muscle tissues comprises of
SERCA 3 at variable levels (Reuben et al. 1974). In skeletal
muscle, SERCA activity can be modulated by two small regu-
latory proteins, sarcolipin and phospholamaban (Kranias and
Hajjar 2012; MacLennan et al. 2003). Both are expressed in
slow-twitch skeletal muscles and cardiac muscles and are an
important regulator of muscle performance and cardiac dis-
eases. Sarcolipin and phospholamban, both belong to the same
family of proteins that bind to the same domain on SERCA2a
(Kranias and Hajjar 2012; Tupling et al. 2011; Treves et al.
2016). Recently, Anderson et al. (2015) discovered the unrec-
ognized functional open reading frames (ORFs) in RNA tran-
script encoding a conserved 46 amino acid micro peptide,
named myoregulin. Myoregulin is a skeletal muscle-specific
micro peptide and interacts with SERCA1 and decreases the
SERCA-ATPase activity. Enhanced exercise capacity in
myoregulin knock-out mice suggests its role in maintaining
calcium homeostasis. It is reported that altered mRNA splicing
or expressions might be impaired in DM1 (myotonic dystrophy
Type 1) muscle and thus contribute to altered calcium homeo-
stasis in skeletal muscle of DM1 patients. It is still questionable
whether modulation of SERCA expression is responsible for
muscular atrophy or remodelling of ryanodine receptors are
responsible for the same as recent studies suggested the altered
expression of SERCA in impaired DM1 (Kimura et al. 2005).
Cayl.1 or Dihydropyridine Receptor (DHPR) resides at
the t-tubule region of the sarcolemma of skeletal muscles.
Cavl.1 is a heteropentamer formed by the x1s, «2-81, 1a,
and vy subunits (tetrads). Among all subunits, «l1s is the prin-
cipal subunit of CaV1.1 which involved in the L-type voltage-
activated Ca®* channel of EC coupling (Samso 2015).
During E-C coupling, four Cavl.1l formed a tetrad which
are located on the alternate RyR1 in the case of a skeletal
muscle while Cavl.2 tetrad not formed in cardiac muscle.
Once an action potential reaches the t-tubule membrane, it
leads to conformational changes of Cavl.1 which further in-
duces direct protein-protein interaction of Cavl.l and Ca**
release channel, RyR1 to release calcium ion from the SR
(Franzini-Armstrong et al. 1998). But in case of cardiac mus-
cles, the mechanism is slightly different as the trigger for Ca”*
release through is RyR2. RyR2 is dependent on the influx of
Ca®* via Cavl.1. Once Ca®" is entering via L-type calcium
channel, it activates ryanodine receptor (RyR2) through
CICR. However, the role of CICR in skeletal muscle is still
questionable (Dulhunty et al. 2002). It is further reported that
Cavl.1 is modulated by other protein components also such as
Stac3, Rem, and JP45 (Mosca et al. 2016). Few latest studies
mentioned about the novel component, Stac3 which is osten-
sible muscle specific adaptor protein. Stac3 binds to both
Cavl.1 and RyR1 maintaining core protein complex and func-
tional E-C coupling machinery (Dulhunty et al. 2017). Stac3
synchronizes the organization of Cavl.l and RyRlIs at triad
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junction of'the t-tubules and SR. The amount of Cav1.1 and/or
RyR1 at triads, regulated by Stac3, perhaps by modulating
protein trafficking and/or stability of Cavl.l and/or RyR1.
Horstick et al. (2013) described the Stac3 in Zebrafish reveal-
ing, NAM (Native American Myopathy) mutation decreases
E-C coupling. That Stac3 has been recognized only in the last
3—4 years highlight the interaction between RyR1 and Cavl.1
in skeletal muscles.

Calcium induced calcium release (CICR)

Calcium-induced calcium release (CICR) was first discovered
and proposed in skeletal muscle (Endo et al. 1970; Endo 1975).
It is a biological process in which calcium is able to activate
calcium release from intracellular Ca”* stores like endoplasmic
reticulum or sarcoplasmic reticulum. During the excitation -
coupling process, few calcium ions cross the sarcolemma but
this limited amount is not sufficient to activate myofilaments
hence this small amount calcium induce the sarcolemma to
release more calcium and activate the EC process. Some of
the studies reported that superficial calcium is required to en-
courage the release of sarcoplasmic calcium. This act is highly
required to activate “depolarization-induced” release of calci-
um (Fabiato and Fabiato 1975). This phenomenon is called
“Calcium-Induced Calcium Release” (CICR). CICR is also
an important process for excitation-contraction coupling in car-
diac muscle (Fabiato 1989). Both types of Ca”* channels such
as RyRs and IP; receptors (IP;Rs) exhibit CICR behavior. But
an important difference exists between these two receptors for
CICR behavior that Ca®* alone, without the help of any other
agents or stimuli, can cause Ca”* release via ryanodine recep-
tors (Endo 1981; Smith et al. 1986) but in the case of IPsR, can
cause Ca’" release only in the presence of IP; (Foskett et al.
2007). Due to these findings, CICR is an important activity of
RyR, but not for IPsR. In cardiac muscle, the Ca®* release is
considered a prime physiological mechanism for contraction
process. As per the contraction procedure, an influx of Ca**
occurs via L-type voltage-dependent calcium channel which
activates t-tubule membrane of myocytes and generates the
action potential and Ca** release from SR (Bers 2001;
Cannell and Soeller 1997).

CICR was first discovered in skeletal muscle, still the same
was not considered as a primary mechanism of physiological
Ca** release and whether it has secondary participates in skel-
etal muscle contraction is still controversial (Rios and Pizarro
1991; Schneider 1994).

Na*/Ca** exchange pump (NCX)
NCX is a membrane-associated protein that catalyzes the elec-

tronic exchange of three Na* ions and one Ca”* ion across the
plasma membrane in a high capacity, and low Ca®* affinity
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fashion depending on the electrochemical gradient of the sub-
strate ion. Na*/Ca®* exchange pump resides at the sarcolemma
of the muscle cell.

In skeletal muscles, there is only small influx of extracellular
Ca®* during activity (Bianchi and Shanes 1959). Few of Ca**
also influx through Cavl.1 but it is also reported that the pri-
mary function of Cavl.l is the voltage sensor for excitation-
contraction (EC) coupling, but not calcium channeling (Melzer
et al. 1995). Although, reports also depicted that calcium influx
through Cavl1.1 is dispensable for EC coupling in skeletal mus-
cles of most vertebrates (Armstrong et al. 1972). Now the ques-
tion could arise if calcium influx through Cav1.1 is dispensable,
then why the channel is required? Recent studies provided the
answer that indicates voltage-dependent calcium influx is im-
portant for skeletal muscle differentiation, function, and health
(Flucher and Tuluc 2017).

But in cardiac muscles, the event of contraction is accom-
panied by the large influx of Ca>* from the extracellular me-
dium through the voltage-sensitive Ca** channels of the plas-
ma membrane (Cannell et al. 1995). In the case of cardiac
muscle, Na*/Ca®* exchange pump performed an important
role as Ca”* influx occurs via this channel it further induced
cardiac excitation-contraction coupling (Bers 2002;
Martonosi and Pikula 2003). However, the role of NCX is still
controversial in skeletal muscles.

Calcium homeostasis and muscle atrophy

Intracellular calcium concentration controls numerous signal-
ing mechanisms and biological processes. Calcium signaling
regulates crucial processes such as gene transcription, signal
transduction, contraction, and secretion, to the long-term reg-
ulation of fertilization, proliferation, migration, differentia-
tion, apoptosis, and necrosis (Berridge et al. 2000).
Specifically, a prolonged global concentration controls pro-
cesses like fertilization and apoptosis, whereas a localized
transient change in calcium concentration regulates cell mi-
gration and muscle contraction (Clapham 2007).

Calcium signal is required for cell survival, but it could be
highly toxic if it exceeds the normal concentration. Continuous
increase in calcium concentration augments production of re-
active oxygen species and activates proteases (Batchelor and
Winder 2006). Basically, calcium concentration is increased
due to a rapid release from intracellular stores and slow entry
from the extracellular pool to cells via membrane channels
(Parekh 2003). Usually, the release of calcium is controlled
by inositol-1,4,5-trisphosphate receptor (InsP;R) and ryanodine
receptor] (RyR1) in muscle cells, while its return regulated by
Sarco-endoplasmic reticulum ATPase (SERCA) pumps. RyR-
mediated calcium signaling is rapid (takes less than one second)
where as [P;R- mediated calcium signaling is a delayed type
(takes seconds to minutes) (Eltit et al. 2004).

Calcium homeostasis is an important phenomenon for main-
taining an intracellular environment in cells and recent studies
depicted its imbalance responsible for muscle atrophy. Few mus-
cle disuse conditions such as spaceflight, hind limb unloading,
bed rest, etc. contributed to intracellular Ca>* overload and mus-
cle atrophy. For eg. elevation of 246 and 215% in rats’ Soleus
(SOL) muscle and gastrocnemius (GAS) muscle, respectively,
was observed in intracellular resting Ca®* concentration during
4 weeks of hindlimb immobilization (Booth and Giannetta
1973). Similarly, other studies also reported a 330% increase in
intracellular resting Ca®* concentration in the SOL muscle of rats
after 14 days of hindlimb suspension (Wu et al. 2012).

Intracellular Ca®* overload performs an interesting func-
tion in the mechanisms of muscle atrophy. Calpain, calcium-
activated proteases activated by elevated intracellular Ca”*
concentration that plays a prime role in the degradation of
filaments and initiation of most proteolytic pathways (e.g.
the ubiquitin-proteasome pathway). Enhanced protein degra-
dation due to calpain is believed as one of the crucial pathways
of muscle atrophy (Ferreira et al. 2008). Our recent studies
also made an agreement that activation of calpain leads to
skeletal muscle atrophy (Agrawal et al. 2017; Chaudhury et
al. 2012). Beside calpains, overloaded cytosolic Ca** also
allied with mitochondrial apoptosis process (Fontana et al.
2015). Increase cytosolic Ca®* leads to accumulation of the
same to the mitochondria, which trigger mitochondrial depo-
larization once it reached the threshold level. Afterward, pro-
apoptotic protein Bax was activated which leads to the forma-
tion and opening of the mitochondrial permeability transition
pore (mPTP) via that cytochrome C, a mitochondria-resided
apoptogenic factor released to cortisol which resultant into cell
apoptosis (Adhihetty and Hood 2003) (Fig. 4).

The opening of RyR channels is responsible for Ca**
sparks. A single Ca** spark could produce a high level of local
Ca** (10100 pM or (0.1% of the cell volume), whereas glob-
al intracellular Ca** concentration was increased by 2 nM
(Jaggar et al. 1998). In simple words, the term “Ca** sparks”
refers to Ca®* release through RyR channels (Jaggar et al.
2000). Ca* sparks or global Ca** depends on the following
factors: (1) voltage-dependent Ca”?* channels (DHPR); (2)
Communication between voltage-dependent Ca®* channels
and RyR channels; (3) positive- and negative-feedback regu-
lation of global Ca®*; (4) frequency and amplitude modulation
(FM and AM) of Ca>* sparks (Fig. 5).

Ca** sparks have been reported in cardiac (Cheng et al.
1993), skeletal (Klein et al. 1996) and smooth muscle cells
(Nelson et al. 1995). A number of reports also evidenced to
prove that Ca®* sparks are due to the opening of RyR channels
and increment in Ca®* concentration around RyR are known
as local Ca®* which used to increase by a factor of 10 (Hoang-
Trong et al. 2015). It is also assumed that RyR remodelling
could play an important role in Ca®* spark (Nelson et al. 1995;
Tsugorka et al. 1995).
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Calcium channels and related therapeutic
implications/strategies

Leaky RyR1 suggested a potential role in muscular dystrophy
(Andersson et al. 2012), muscular fatigue (Andersson et al.
2011) and ageing/sarcopenia (Bellinger et al. 2008) and this
could be associated with cysteine nitrosylation or oxidation
which further contributed to the weak binding of FKBP12
with RyR1 (Xia et al. 2000).

During stress conditions, ryanodine receptor (RyR1) could
be remodeled which resulted into a production of PKA-
hyperphosphorylation, S-nitrosylation, depletion of phospho-
diesterase PDE4D3 and the RyR1 stabilizing subunit FKBP12
(FKBP12). The remodelling of RyR1 converted to a leaky
RyR1 channel resultant into decrease exercise tolerance.
Skeletal muscle-specific knockout of FKBP12 or PDE43 ex-
hibited an impaired exercise capacity. Researchers tested the
effect of a drug which prevents depletion of FKBP12 from the
RyR1 complex on exercise capacity.

Derivatives of JTV519, a 1,4-benzodiazepine was screened
that enhance the binding affinity of FKBP12 to PKA phos-
phorylated and/or S-nitrosylated RyR1. JTV519 is specific for
RyR1 and have favorable drug-like properties (e.g., orally
available, well absorbed, and stable). A small molecule
(S107) met all the necessary criteria, was also used to enhance
the binding of FKBP12 to RyR1 complex that improved force
generation and exercise capacity and reduced SR Ca2+ leak,
Ca2+ dependent neutral protease calpain activity and plasma
creatine kinase levels (Bellinger et al. 2008). Also, treated
aged mice with S107 enhances muscle strength without in-
creasing the size of the muscle, at least during the 4 week
period of treatment, this has been examined in their study
(Andersson et al. 2011). Moreover, an improved cardiac func-
tion is seen through S107 treatment of heart failure (myocar-
dial function) and in mdx mice (Shan et al. 2010a; Fauconnier
et al. 2010). Sgcb—/— (Sarcoglycan deficient mice) mice treat-
ed with S107, displayed improved exercise capacity with im-
provement in RyR1-FKBP12 binding and the SR Ca®* release
during muscle contraction (Andersson et al. 2012).

Recent evidence also documented the therapeutics for few
other calcium-related receptors, which basically involve L-
type channels, SERCA—ATPase pump and the sodium-
calcium pump (Na*/Ca®* exchange pump). A clinical trial
has been undertaken for L-type calcium channel inhibitors
include diltiazem, verapamil, nifedipine and Flunarizine
(Burr and Molkentin 2015). These inhibitors proven to be
interesting targets for handling disrupted calcium ion homeo-
stasis and they are already being clinically approved for hu-
man use. One study found that after a week of treatment of
mdx mice with nifedipine, [Ca];** was decreased and grip
strength and swimming times were improved (Altamirano et
al. 2013). Increased SERCA expression/activity could control
the defects in SR calcium ion, a potent activator; BGP-15

increased SERCA activity and reduced muscle pathology in
mdx mice (Gehrig et al. 2012). Ranolazine is the reverse mode
NCX inhibitor reduces intracellular sodium ions (Burr et al.
2014). Many more inhibitors are yet to be tested for altered SR
calcium ion release. Therefore, these are some probable ther-
apeutics which could be used against muscular stress/atrophy;
hence muscular problems could be treated effectively.

Conclusions

Ca’* ions are the signaling molecules in muscles for
excitation-contraction coupling and in the plasticity of skeletal
muscles. Ca®* also regulates various processes like myosin-
actin cross bridging, protein synthesis, and protein degrada-
tion by calpain activation. Despite this, an introduction of
Ca®* leak channels during pathophysiological condition
causes an increased cytosolic Ca®* level and consequently
activates calcium-dependent protease i.e., calpain which de-
grades myofilaments.

The present review provided a new insight into different
pathophysiological conditions of muscular atrophy, which
could be due to abnormal Ca®* homeostasis and calcium re-
lated signaling pathways. Understanding these pathways, fur-
ther offered some pharmacological interventions which could
present beneficial effects under various muscular stress con-
ditions like muscular fatigue, sarcopenia and in heart failure as
mentioned above in therapeutic part of this review.
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