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Abstract. In the recent past, measurements of σ8 from large scale structure observations have shown some
discordance with its value obtained from Planck CMB within the �CDM frame. This discordance naturally
leads to a mismatch in the value of H0 also. Under the presumption that these discordances are not due to
systematics, several attempts have been made to ameliorate the tensions. In this article, we describe the methods
of determination of σ8 from large scale as well as CMB observations. We discuss that these discrepancies vanish
if we consider the energy momentum tensor for an imperfect fluid which could arise due to self-interaction of
dark matter or in an effective description of large scale structure. We demonstrate how the presence of viscosities
in cold dark fluid on large scales ameliorate the problem elegantly than other solutions. We also estimate the
neutrino mass in the viscous cosmological setup.
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1. Introduction

In the past few decades or so, it has been established that
our Universe, at today’s epoch, is dominated by the dark
components, i.e. dark matter and dark energy (Zwicky
1993; Rubin & Ford 1970; Perlmutter et al. 1997, 1999;
Riess et al. 1998; Hinshaw et al. 2013; Ade et al.
2016a, b; Troxel et al. 2017). Most plausible theoretical
construct, as of now, to understand the evolution of our
Universe is provided by the so-called �CDM model.
Most of the predictions of �CDM model are in agree-
ment with Cosmic Microwave Background (CMB) and
Large Scale Structure (LSS) observations. However
some conflicts between these two observations, within
the �CDM paradigm, have been consistently reported
in the literature. To be specific, the value of σ8, the
rms fluctuation of perturbation 8 h−1 Mpc scale, and
the value of Hubble constant today H0 inferred from
the CMB and LSS experiments are not in agreement
with each other (Troxel et al. 2017; Vikhlinin 2009;
Macaulay et al. 2013; Battye et al. 2015; MacCrann
et al. 2015; Aylor et al. 2017; Raveri 2016; Lin & Ishak
2017; Abbott et al. 2017).

Several attempts have been made to address these
discordances between CMB and LSS observations. A

list of attempts include the interaction between dark
matter and dark energy (Pourtsidou & Tram 2016;
Salvatelli et al. 2014; Yang & Xu 2014), interaction
between dark matter and dark radiation (Ko & Tang
2016, 2017; Ko et al. 2017), dynamical dark energy
model (Park & Ratra 2018; Lambiase et al. 2018) as
well as modification in the neutrino sector (Wyman
et al.2014; Battye & Moss 2014; Riemer-Sørensen et al.
2014). However, these attempts fail to resolve both the
conflicts simultaneously. In this work, we show that
if we incorporate the dissipative effects in the energy
momentum tensor describing the energy content of
the Universe, the two discordances can be ameliorated
simultaneously.

It has been discussed that the dissipative effect,
characterized by the coefficient of viscosity, in CDM has
the ability to reduce the power on small length scales
which leads to suppression in the matter power spec-
trum on those length scales (Blas et al. 2015; Velten
et al. 2014; Thomas et al. 2016). Attempts to quantify
the dissipative effects in dark matter have been done in
Kunz et al. (2016) from Baryon Acoustic Oscillation
(BAO) data. For a recent review on this topic, we refer
to Brevik et al. (2017) and references therein. There
are two different kinds of viscosities: bulk and shear
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viscosities. The bulk viscosity suppresses the growth of
structures by imparting a negative pressure against the
gravitational collapse while the shear viscosity reduces
the amount of velocity perturbations which in turn stops
the growth. Another distinction between bulk and shear
viscosity is that the former acts homogeneously and
isotropically while the latter breaks these symmetries.
Therefore, on small length scales, where the homogene-
ity and isotropy are broken due to velocity gradients,
effects of shear viscosity are expected to play a cru-
cial role. Although the physics of these viscosities are
different, we will show that their effect on large scale
structure is more or less similar.

Massive neutrinos also suppress the power on small
length scales, but they fail to resolve the two dis-
cordances simultaneously. But viscous paradigm does
explain them. Therefore, we consider the viscous cold
dark matter along massive neutrinos to constrain neu-
trino mass and comment on the neutrino mass hierarchy.

This article is structured as follows: We start by
reviewing the concept of halo mass function and quan-
tity of central importance for our discussion, σ8, in
section 2. We then describe the tensions between the
Planck CMB and LSS observation as well as previ-
ous attempts made to ease the tensions in section 3.
Thereafter, we move on to discuss the viscous paradigm
in section 4 and discuss about the origin of cosmic
viscosities. We write down the cosmological perturba-
tion equation in viscous setup in section 5. Finally, we
present the results in section 6 and conclude in section 7.

2. Halo mass function and σ8

Linear perturbation theory works perfectly well during
the period of CMB. It is because the density pertur-
bations are of the order of 10−3 in CDM and 10−5

for the baryonic matter. All the perturbations remain
in the linear regime in this epoch. But around redshift
z = 50, CDM perturbations start growing above one
which makes the non-linear growth more important.
Finally the large scale structures that we see today, com-
pletely get generated in a non-linear process.

Although the collapse process is non-linear, at late
time, the number density of virialized objects can be
linked with the linear perturbation theory through the
halo mass function. The halo mass function is defined as

dN

dM
= n(M) . (1)

The first type of halo mass function was proposed by
Press and Schechter (1974) which assumes that the

initial distribution of over-densities is Gaussian in
nature. Moreover, those over-densities which can reach
a critical value δc, if linearly extrapolated, are expected
to form a virialized object. These two assumptions lead
to a halo mass function which can be written as

n(M)dM = −
√

2

π

dσM

dM

ρ̄

M

δc

σ 2
M

exp

(
−δ2

c

2σ 2
M

)
dM, (2)

where σM is the standard deviation of the distribution
calculated from linear matter power spectrum P(k) at
a length scale

R =
(

3M

4πρ̄

)1/3

. (3)

The quantity ρ̄ is the background density at any epoch
and the standard deviation σM is given as

σM = 1

2π2

∫ ∞

2π/R
dkk2P(k)|W (k, R)|2 (4)

with W (k, R) being the appropriate window function.
The halo mass function can be matched with N -body

simulation which allows cold dark matter to interact
gravitationally and simulates non-linear structure for-
mation. Although the Press–Schechter mass function
provided the basic shape of the halo mass function, it
fails to match with simulation in the low and high M
region. Therefore, more precise mass functions have
been proposed by different authors and parameters
of those mass functions are fitted from N -body sim-
ulations. Amongst these, the most common are the
Sheth-Tormen mass function (Sheth & Tormen 1999)
and the Tinker et al. mass function (Tinker et al. 2008).
The mass function proposed by Tinker et al. (2008) is
given by

dn(σ )

dσ
= A

[(σ

b

)−a + 1

]
e−c/σ 2

(5)

The parameters A, a, b and c are dependant on z and
their values are fitted from N -body simulation. There-
fore, the mass function itself is a redshift-dependant
quantity. The z dependence of σ8(R = 8 h−1 Mpc) can
be written as

σ8(z) = 1

2π2

∫ ∞

ki
dkk2P(k, z)|W (k, R)|2

= g(z)
1

2π2

∫ ∞

ki
dkk2P(k, 0)|W (k, R)|2, (6)

where ki = 2πh/8 Mpc and g(z) is the growth parame-
ter which has to be normalized to 1 at z = 0. Moreover,
the growth function can be parametrized in terms of
�m(z) as
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σ8(z) =
(

�m(z)

�0
m

)α

σ 0
8 . (7)

Now any large scale observation gives its result in
either of these two ways: number of halos at some par-
ticular z or the number of halos integrated over z (like
SZ or lensing). Whatever be the type of result, once the
other parameters of the mass function are determined
from simulation, the unknown quantity to be determined
is σ8(z). Therefore, there always exists a degeneracy
between the growth and the primordial amplitude of
P(k), or equivalently, between �0

m and σ 0
8 . In order to

estimate parameters from the observations, �0
m in the

denominator of equation (7) is generally taken as a ref-
erence value �ref and �m(z) = �0

m(1 + z)3. Therefore
equation (7) turns out to be

σ8(z) =
(

�0
m

�ref

)α

σ 0
8︸ ︷︷ ︸

S8

×(1 + z)3α . (8)

In case of z integrated observations, we get

S8 =
(

�0
m

�ref

)α

σ 0
8 = constant value. (9)

Therefore all the z integrated observations try to find
some combination like equation (9) which are indepen-
dent of �0

m. The value of α varies from observation to
observation and depends on the choice of mass function.

3. Discrepancies and earlier attempts to remove
them

In the previous section, we have described how a
relation between σ8 and �0

m is established by large scale
observations. On the contrary, CMB observations deter-
mine the basic six cosmological parameters. Using these
six cosmological parameters with linear perturbation
theory, the value of σ 0

8 can be calculated. Recently, it
has been reported that there is a discordance between
the values of σ8, inferred from Planck-CMB data and
that from LSS observations. In this section, we briefly
discuss the tensions between CMB and LSS observa-
tions.

3.1 Tension in σ8 − �0
m plane

The impact of lensing on the temperature power
spectrum is quantified using the power spectrum of
the lensing potential which is estimated from the lens-
ing observations. The lensing potential depends on the
amplitude of primordial perturbations As and the scale

Figure 1. KiDS lensing result is shown in the green patch
which follows the form of equation (9). The red area is the
Planck CMB result. This plot is taken from Joudaki et al.
(2017).

corresponding to the matter radiation equality, keq (Pan
et al. 2014; Ade et al. 2016a, b). The amplitude of the
matter power spectrum changes with change in As while
the turning point shifts when keq changes. Thus, As and
�m determines the features of matter power spectrum.
This effect get manifested in the lensing power spec-
trum as well. Moreover, σ8 is propositional to As and
depends on �m through the growth factor.

In SZ surveys, what is measured is the number of
clusters with the given mass in a given volume along
the line-of-sight (Ade et al. 2014a). It is described as z
integrated observation in the previous section.

The best-fit value of �0
m and As obtained from the

CMB experiments gives a value of σ8 from the theoret-
ically predicted matter power spectrum using �CDM
cosmology. This value does not match with the σ8 −�0

m
degeneracy direction at 2-σ level. This degeneracy has
been mentioned in many experiments. As an example
from the recent observations we show the KiDS result
in Fig. 1 taken from (Joudaki et al. 2017). The joint
analyses by combining different LSS experiments (as
described in the Introduction) is shown in Fig. 2 taken
from Anand et al. (2017).

3.2 Tension in H0 − �0
m plane

The value of the Hubble parameter is determined in
two ways: (a) directly, using supernova observations,
and (b) indirectly using CMB and LSS observations.
We highlight that we are addressing the discrepancy in
the indirect observations only.
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Figure 2. Tension in allowed values of σ8 and H0 inferred from Planck CMB and LSS (Planck SZ survey, Ade et al. 2014a),
Planck lensing survey (Ade et al. 2014b), Baryon Acoustic Oscillation data from BOSS (Anderson et al. 2013; Font-Ribera
et al. 2014), South Pole Telescope (SPT) (Schaffer et al. 2011; Engelen 2012) and CFHTLens (Kilbinger et al. 2013; Heymans
et al. 2013) observations are shown. In the viscous framework, this mismatch in the allowed values of σ8 and H0 are resolved
simultaneously.

Indirect measurement of Hubble parameter is done
through the scale of baryon acoustic oscillation (BAO)
at the last scattering surface, θMC , which is actually
inferred from CMB. Similarly, acoustic oscillation in
the matter power spectrum is also observed by LSS
surveys like SDSS. The comoving acoustic oscillation
scale is considered as the standard ruler in cosmology
and hence, we can determine the comoving distance
from BAO (Bassett and Hlozek 2009). The comoving
distance at a particular z is

χ(z) =
∫ z

0

dz′

H(z′)
, (10)

where

H(z)2 = H2
0 (�0

m(1 + z)3 + ��) . (11)

Thus, one can estimate the value of H0 from BAO
observations provided the value of �0

m is given. A joint
analyses of LSS experiments give some best-fit value of
�0

m rather than a large range. This �0
m is little less than

the �0
m obtained from Planck CMB observations, which

makes the value of H0 derived from LSS joint analysis
little higher than that derived from Planck CMB obser-
vation as seen in Fig. 2.

3.3 Attempts to ease the tensions

Considerable efforts have been put to ease the
discordance between CMB and LSS observations. It has
been argued that the interaction between dark matter
and dark energy (Pourtsidou & Tram 2016; Salvatelli
et al. 2014; Yang & Xu 2014) as well as dark matter

and dark radiation (Ko & Tang 2016, 2017; Ko et al.
2017) have the potential to resolve this tension to some
extent. In most of the cases, such models resolve one
of the above mentioned tensions but fail to solve the
other one. More importantly, interaction between the
dark sectors can also modify the scale corresponding
to matter radiation equality (Yang & Xu 2014) which
might introduce greater problem than the σ8 mismatch.
Another approach adopted to address these issues is to
modify the neutrino sector (Wyman et al. 2014; Bat-
tye & Moss 2014; Riemer-Sørensen et al. 2014). For
instance, addition of massive sterile neutrino in the sys-
tem has been reported to reduce tension in H0 − �0

m
plane to some extent but not in σ8 −�0

m plane (Wyman
et al. 2014; Battye & Moss 2014).

We discuss the reason behind not solving the tension
in detail. Whatever be the model of interest, the main
purpose was to suppress the linear matter power spec-
trum so that the value of σ8 goes down. But this should
happen without affecting other parameters. Let us take
the example of massive neutrinos.

Massive neutrinos have an important property that
they are relativistic in the early Universe and contribute
to the radiation density while in the late time, when they
turn non-relativistic, they contribute to the total matter
density. The collision-less nature of the neutrinos, after
they become non-relativistic, allow them to free-stream
on scales k > kfs, where kfs is the wave number corre-
sponding to the scale of neutrino free streaming. Hence,
this will wash out the perturbations on length scales
smaller than the characteristic scale kfs. Thus massive
neutrinos be it sterile or active suppresses matter power
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Figure 3. The red part shows σ8 from CMB, the blue region
is the LSS result without modifying the mass function, and
the green region is the LSS result after modifying the mass
function. This plot is taken from Costanzi et al. (2013).

spectrum, but with a cost of increasing �0
m. Therefore

massive neutrinos can resolve the H0 tension, but fails to
resolve the σ8 problem. Since the inclusion of massive
neutrinos resolve some tension in the parameter space, it
leads to some improvement in χ2. However it has been
argued that this improvement is most possibly an over-
estimation of the effect of massive neutrinos (Costanzi
et al. 2013). It is because, as we have described in the
previous section, determination of S8 requires the halo
mass function. Halo mass function is expected to change
for inclusion of massive neutrinos. Therefore the value
of S8 will also change. This will even worsen the sit-
uation and increase the tension in the σ8 − �0

m plane.
This has been shown in detail in Costanzi et al. (2013).
Figure 3 shows the effect of massive neutrinos on the
σ8 − �0

m plane.
In the next section, we will show cosmic viscosities

as the solution of the tension. We need to point out
that similar problems like these are faced in the case of
neutrinos and are expected to arise in the case of vis-
cosity too. If the viscosities in CDM are of fundamental
nature then we should perform N body simulation with
viscous dark matter, derive the halo mass function and
generate S8 from the observations. But viscosity is of
effective nature and then we can get rid of that. The rea-
son behind it will be evident in the next section when
we describe different sort of viscosities. Moreover,

viscosity has one more benefit. Unlike massive
neutrinos it does not change �0

m.

4. Cosmic viscosity

Before we use the cosmic viscosity as a remedy for
the above mentioned discrepancies, a small description
about the origin of cosmic viscosity at this stage would
be appropriate.

4.1 Origin of viscosity

Depending on the origin of viscosities, they are
classified into two classes:

• Fundamental viscosity. The diffusive transport of
momentum by the constituents of the fluid can lead to
viscosity. Such a viscosity is ultimately related to the
fundamental interactions between the constituents of
the fluid under consideration.

• Effective viscosity. The Universe is characterized
by two well separated scales namely, the Hubble
scale, over which perturbations are linear and the
scale of non-linearity which is the scale over which
gravitational collapse overtakes the expansion. These
well separated scales make the study of large scale
structure amenable to an effective field theory treat-
ment. In this effective theory, the quasi linear modes
of the perturbations evolve in the presence of an
effective fluid whose properties are determined by
non-linear short wavelength modes. To describe the
coupling of UV-IR modes of cosmological fluctua-
tions, we first decompose the Einstein tensor into (i)
homogeneous background, (ii) terms that are linear
and (iii) terms that are non-linear in metric perturba-
tions, i.e.,

Ḡμν(ḡμν) + (Gμν(δgμν))
L

+(Gμν(δg
2
μν))

NL = κTμν.

After re-organizing the Einstein equation by
considering the background equation Ḡμν = κ T̄μν ,
the linearized equations (Gμν)

L = κ(Tμν)
L are

defined in the standard way. Thus, the non-linear Ein-
stein equation can be written in the following form:

(Gμν)
L = κ(πμν − T̄μν), (12)

where the effective stress energy pseudo-tensor is
defined as

πμν = Tμν − (Gμν)
NL

κ
. (13)

This pseudo-tensor captures the dissipative effects.
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5. Cosmological perturbation theory in viscous
cosmology

In this section, we will discuss the perturbation
theory for the CDM with viscosity and massive neutri-
nos. Since neutrinos do not interact among themselves
in the standard picture, their mean-free path is infinite
and we can not treat them as a fluid. Therefore, we
will solve the Boltzmann equation to get the evolution
equation for neutrino and derive perturbation equation
for CDM using the conservation equation.

5.1 Cold dark matter

The energy momentum tensor for CDM with viscosity
is given as (Weinberg 1972)

Tμν
cdm = ρcdm uμ uν + (p + pb) 
μν + πμν , (14)

where ρcdm and p is the energy density and pressure
of the CDM respectively. uμ and pb = −ζ ∇μ uμ are
respectively the fluid flow vector and the bulk pres-
sure with the coefficient of bulk viscosity ζ . 
μν =
uμuν + gμν is the projection operator which projects
the quantity on the three dimensional space like hyper-
surface and πμν is the anisotropic stress tensor and is
given by

πμν = −2η σμν

= −2η

[
1

2

(

μα∇αu

ν + 
να∇αu
μ
)

−1

3

μν

(∇αu
α
)]

, (15)

where η is the coefficient of shear viscosity and ∇
denotes the covariant derivative compatible with the
given metric which we will define later in this sec-
tion.We treat baryonic matter as an ideal fluid.

Assuming the homogeneity and isotropy of the
background, the perturbations can be decomposed into
the background and the perturbed part. Since Einstein
equation relates the perturbations in matter field to that
in metric and vice-versa, we introduce the perturbations
in FRW metric as

ds2 = a2(τ )[−(1+2 ψ) dτ 2 +(1−2φ) dxi dxi ] , (16)

where ψ ≡ ψ(τ, �x) and φ ≡ φ(τ, �x) are space–time
dependent perturbations. We also introduce the pertur-
bations in the fluid flow uμ as

uμ = (1 − ψ, vi ) , (17)

which satisfies uμuμ = −1 in the first order limit
of perturbations. The evolution equations for the

background fields are given by the Friedmann equation
and continuity equation, which are given as

H2 =
(
ȧ

a

)2

= 8π G

3
(ρm + �) a2 , (18)

ρ̇i + 3H (ρi + pi ) = 0 , (19)

where ρm = ρb + ρcdm + ρν is the total matter
density and ρi stands for each species. Here dot denotes
the derivative with respect to the conformal time τ and
H is the Hubble parameter. We get the evolution equa-
tion for the density and velocity perturbations from the
perturbed part of the continuity equation (Anand et al.
2017, 2018)

δ̇ = −
(

1 − ζ̃ a

�cdm H̃

)
(θ − 3φ̇) +

(
ζ̃ a

�cdm H̃

)
θ

−
(

3 H ζ̃ a

�cdm

)
δ (20)

and

θ̇ = −H θ + k2ψ − k2 a θ

3H (�cdm H̃ − ζ̃ a)

(
ζ̃ + 4η̃

3

)

− 6H θ

(
1 − �cdm

4

)(
ζ̃ a

�cdm H̃

)
,

(21)

where η̃ = 8πGη
H0

and ζ̃ = 8πGζ
H0

are the dimensionless
parameters.

5.2 Massive neutrino

As discussed earlier, we will solve Boltzmann equation
for massive neutrino to get the evolution equation for
density and velocity perturbations. The energy momen-
tum tensor for massive neutrinos is given in terms of
distribution function. To write the perturbation equa-
tions for neutrino, we expand the distribution function
f (xi , Pj , τ ) around zeroth-order distribution function
f0. The zeroth-order terms of Tμν gives the unperturbed
energy density and pressure of massive neutrinos which
reads as

ρ̄ = 4π a−4
∫

q2dqε f0(q),

P̄ = 4πa−4

3

∫
q2dq

q2

ε
f0(q), (22)

where ε = ε(q, τ ) = √
q2 + m2

νa
2. Since ε is depen-

dant on both momentum and time, we can not directly
integrate out the momentum dependence. Therefore we
expand the perturbation in the distribution function in
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the Legendre series and use the series expansion to
get the the perturbed energy density, pressure, energy
flux and shear stress for the massive neutrinos (Ma
& Bertschinger 1995). Boltzmann equations for differ-
ent moments of distribution function take the following
forms in conformal Newtonian gauge:

�̇0 = −qk

ε
�1 − φ̇

d ln f0
d ln q

,

�̇1 = qk

3ε
(�0 − 2�2) − εk

3q
ψ

d ln f0
d ln q

,

�̇l = qk

(2l + 1)ε
[l�l−1 − (l + 1)�l+1] ∀ l ≥ 2. (23)

5.3 Effects on matter power spectrum

The perturbation equations obtained in the previous
section is passed to the CLASS code (Blas et al. 2011;
Lesgourgues & Tram 2011) to obtain the matter power
spectrum P(k) which is shown in Fig. 4 which is taken
from Anand et al. (2018). It is clear from Fig. 4 that
both viscosity and massive neutrinos have a similar
effect on the matter power spectrum. The effective
viscosity reduces the growth of density perturbations
δ which in turn effects the matter power spectrum. It is
important to note that the perturbation equations con-
tain terms in which viscosity coefficient always comes
with k which, therefore implies that the viscous effects
are more prominent on large k or small length scales.
Hence, the effective viscosity suppresses the power on
large k scales (see Fig. 4). Also the effect of both shear

Figure 4. Both viscosity and neutrino suppress the matter
power spectrum. Viscosity suppresses P(k) strongly on small
length scales, whereas the effect of neutrinos is visible on
scales greater than knr.

and bulk viscosities are similar in nature, therefore we
use only shear viscosity for further analysis.

It has already been pointed out that neutrinos also
affect P(k) in a similar manner as viscosity does. The
massive neutrinos have this important property that they
stream freely on scales grater than the scale correspond-
ing to the free streaming length of neutrinos, i.e, k > kfs.
In general kfs depends on z and attain the minimum
value knr. The knr is a mass dependant quantity and is
defined as the scale which re-enter the horizon at the
time when neutrino turns non-relativistic. It is given as

knr = 0.018 (�0
m)1/2

( mi

1 eV

)1/2
h Mpc−1 . (24)

Hence, perturbations on the scales k > knr stream out
of the high density regions and do not form a structure.
On the other hand, perturbations on the scales k < knr
behave as CDM and are washed out on these scales.
Therefore, massive neutrino suppresses the power on
the small length scales. This effect can be seen clearly
in the matter power spectrum (see Fig. 4).

6. Results

We have done MCMC analysis using MontePython
(Audren et al. 2013) of Planck and LSS data. Here we
refer Planck-CMB observations (Ade et al. 2016a, b)
as Planck data, whereas LSS data includes data from
Planck SZ survey (Ade et al. 2014a), Planck lensing
survey (Ade et al. 2014b), Baryon Acoustic Oscillation
data from BOSS (Anderson et al. 2013; Font-Ribera
et al. 2014), South Pole Telescope (SPT) (Schaffer et al.
2011; Engelen 2012) and CFHTLens (Kilbinger et al.
2013; Heymans et al. 2013). First, we run MCMC anal-
ysis with Planck and LSS data separately with just
six standard cosmological parameters and two derived
parameters. We plot the two derived parameters σ8 and
H0 against �0

m (see Fig. 2). It is clear from Fig. 2
that there is discordance between values obtained from
Planck and LSS observations. Thereafter we run the
MCMC analysis with viscous effect taken into account
and found that the tension between the values of σ8
and H0 inferred from Planck and LSS observations has
resolved simultaneously in the viscous framework (see
Fig. 2).

6.1 Viscous cosmological parameters

We have already discussed that viscosity resolves the
tension between Planck and LSS observations. In this
subsection, we discuss the cosmological parameters
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obtained from the analysis with Planck and LSS
observations. We perform MCMC analysis of Planck
and LSS combined data sets to find the best fit value
of viscosity parameters. We have performed three
analyses. In the first run, we kept both the viscosity
parameters η̃ and ζ̃ varying and obtained their best-fit
values. In the next two runs, we kept either η̃ or ζ̃ to
be zero and obtained the best-fit values for the other
parameters. All the best-fit values are listed in Table 1.
From these analyses, we also found the best-fit values
of six cosmological parameters and two derived param-
eters. We found that the value of derived parameter σ8
is less than the Planck-fitted value. There is no signifi-
cant difference between the best-fit value of σ8 obtained
from the analysis done with either η̃ or ζ̃ to be zero
and that of the analysis done with both the viscosity

Table 1. Best-fit values of viscosity parameters, obtained
from the Plank–LSS joint analyses. The best-fit values of
two derived parameters σ8 and H0 are also listed

Parameters 1-σ value 2-σ value

η̃ 1.20+0.40
−1.00 × 10−6 1.20+1.00

−1.00 × 10−6

ζ̃ 1.32+0.50
−1.00 × 10−6 1.32+2.00

−1.00 × 10−6

ζ̃ = 0
η̃ 2.29+0.50

−0.60 × 10−6 2.29+1.00
−1.00 × 10−6

η̃ = 0
ζ̃ 2.46+0.50

−0.60 × 10−6 2.46+1.00
−1.00 × 10−6

H0 (km/s/Mpc) 68.39 ± 0.56 68.4+1.1
−1.1

σ8 0.754 ± 0.011 0.754+0.022
−0.021

parameters. We also list the values of two derived
parameters obtained from the joint analysis of Planck
and LSS data in Table 1.

6.2 Parameter space of neutrino mass: Viscous
cosmology and other experiments

Recently, it has been shown that effective viscosity
can resolve both σ8 and H0 tension simultaneously.
Also, the phenomenon of neutrino oscillation has been
observed by many experiments, which suggest that neu-
trinos are massive. We have already discussed how
viscosity and massive neutrino affect the matter power
spectrum P(k). They have similar effects as both sup-
presses the P(k) at small length scales. Therefore, it is
expected that constraints on the neutrino mass will be
more stringent in the viscous framework of cosmology.

First, we did MCMC analysis of Planck and LSS
combined dataset with six standard cosmology param-
eter and lightest neutrino mass m0. We found that
constraint on lightest neutrino mass is 0.012 eV ≤ m0 ≤
0.126 eV for NH, whereas it is 0 ≤ m0 ≤ 0.119 eV in
the case of IH. This non-zero mass in the case of NH
has arisen because we have not taken the viscous effect
into account. We have also done the MCMC analysis
in the effective viscosity framework with massive neu-
trino and found that the upper bound on m0 is 0.084 eV
for NH and 0.03 eV for IH. Therefore, it is clear that
bound on m0 is more stringent in the effective viscous
framework as well as it rules out the notion of finding
the non-zero mass. We also calculated the constraints
on the sum of neutrino masses

∑
mν using the light-

est neutrino mass obtained from our analysis and other
parameters taken from Capozzi et al. (2016). We found

Figure 5. Constraint on the sum of neutrino masses
∑

mν , obtained from the analysis of combined Planck and LSS data
decreases significantly over the inclusion of viscosity in CDM.
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that the upper bound on
∑

mν changes from 0.396 eV
and 0.378 eV to 0.267 eV and 0.146 eV for NH and
IH respectively. This is shown in Fig. 5 which is taken
from Anand et al. (2018).

7. Conclusion and discussion

The discrepancies in the value of σ8 and H0 have been
reported extensively in the literature. At the same time,
many theoretical models have also been proposed to
explain these tensions. However, these proposals are
plagued with several issues. For instance, the interac-
tion between dark sectors, which have been proposed
as a solution, is completely ad-hoc. Moreover, most of
these proposals do not explain both the problems simul-
taneously.

On the other hand, we have considered the dissipa-
tive effects in the energy momentum tensor, which is
characterized by the bulk and shear viscosities, in this
analysis. These viscosities can be generated by the dif-
fusive transport of momentum and by the constituent
particles of the fluid. Alternatively, they can also be
generated in an effective field theory treatment of large
scale structure where small scale non-linearities are
integrated to give rise to the large scale phenomenon.
In this approach, UV and IR modes are coupled which
can be described by an effective energy momentum ten-
sor for imperfect fluid. We have found that either of the
two viscosities or their combination affect the growth
of linear overdensity which in turn changes the matter
power spectrum at small length scales.

To quantify the amount of viscosity supported by
the current observations, we have considered the vis-
cosity coefficients as model parameters and performed
MCMC analysis with Planck and LSS data. We found
that the value of bulk and shear viscosity parameters
are of the same order and have similar effects. The
best-fit values for these viscosity parameters (η and
ζ ) are of the order of 3 × 102 Pa s. It is interesting
to note that the best-fit value of viscosity coefficients
obtained resolve the conflict between Planck CMB and
LSS observations, both in the σ8 −�m0 plane as well as
the H0 − �m0 plane, simultaneously. We would like to
highlight that the value of H0 inferred from Planck does
not change significantly due to the viscosities, while the
same obtained from LSS changes appreciably. The rea-
son for this is the following: H0 is obtained from the
baryon acoustic oscillation scale and depends on the
value of �m0. The LSS experiments constrain σ8 and
�m0 jointly which gives a scope to accommodate lower
σ8 by increasing �m0. However, in the case of Planck

data, σ8 is a derived parameter which comes down to
a lower value, due to inclusion of viscosity, without
affecting �m0. Therefore, in the case of σ8, both Planck
and LSS fitted values change on inclusion of viscosities,
but for H0, only the LSS value gets affected. We did not
introduce any extra matter component to the �CDM
cosmology.

As discussed earlier, inclusion of massive neutrinos
does not solve both the problems simultaneously on its
own but viscosity does. On the other hand, neutrino
oscillation experiments have shown that the neutrinos
are not massless. Thus, we consider the massive neutri-
nos in the viscous paradigm. Recall that the massive
neutrinos have important property that they are rel-
ativistic in the early Universe and contribute to the
radiation density while in the late time, when they turn
non-relativistic, they contribute to the total matter den-
sity. The collisionless nature of the neutrinos, after they
become non-relativistic, allow them to free-stream on
scales k > kfs. Hence, this will wash out the perturba-
tions on length scales smaller than the characteristic
scale kfs leading to further suppression of power on
small scales. Hence, in this viscous setup, stringent con-
straint on the mass of neutrinos can be put.
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