
  

Proceedings 2018, 2, 1075; doi:10.3390/proceedings2131075 www.mdpi.com/journal/proceedings 

Proceedings 

MEMS Variable Area Capacitor for Room 
Temperature Electrometry † 
George Underwood * and Tod Laurvick 

Air Force Institute of Technology, Wright-Patterson AFB, OH 45433, USA; tod.laurvick@afit.edu 
* Correspondence: george.underwood@afit.edu; Tel.: +1-618-541-4233 
† Presented at the Eurosensors 2018 Conference, Graz, Austria, 9–12 September 2018. 

Published: 30 November 2018 

Abstract: This paper introduces a new way to detect charge using MEMS variable capacitors for 
extremely sensitive, room temperature electrometry. It is largely based on the electrometers 
introduced by Riehl et al. [1] except variable capacitance is created by a changing area, not a 
changing gap. The new scheme will improve MEMS electrometers by eliminating the effects of 
squeeze-film damping and by theoretically increasing the maximum charge resolution by 70%. The 
charge conversion gain (the increase in output voltage per input unit charge) for this system is 
derived. The result show good agreement with MATLAB calculations.  
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1. Introduction 

Microelectromechanical systems (MEMS) show potential for creating extremely sensitive charge 
sensors. These sensors, or electrometers, are used in mass spectrometry, detection of bio-analyte and 
aerosol particles, measurement of ionization radiation, space exploration, quantum computing and 
scanning tunneling microscopy [1–3]. Commercially, electrometers can sense a minimum equivalent 
charge of 5000 electrons [4]. MEMS electrometers have demonstrated detection of 6 electrons at room 
temperature and atmospheric pressure [2]. Other technologies have been used to detect charges 
smaller than one electron such as the single electron tunneling transistor. One such transistor detected 
an equivalent charge of 1.9 × 10−6 electrons [3]. However, the sensing temperature was 4.2 Kelvin, 
which is too low for practical applications. 

There exists a demand for more sensitive, more accurate charge detection at room temperature. 
For example, charge-detection electrometers are used to measure the charge on large particles such 
as viruses. With the capability of detecting 15 electrons, these charge-detection electrometers could 
be used for DNA analysis [1]. Moreover, gas-detector electrometers could be used for car exhaust 
monitoring with a 500-electron resolution [4]. These applications cannot be realized with present 
commercial electrometers. Previously reported MEMS electrometers are vibrating reed, variable gap 
capacitors [1–3,5]. These devices suffer from high damping (due to squeeze-film damping) and 
limited charge conversion gain (which directly relates to charge resolution). This research proposes 
a different sensing scheme that eliminates the effects of squeeze-film damping and increases the 
maximum possible conversion gain by more than 70%. 
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2. Results 

In order to obtain high resolution, the noise produced by a sensor must be minimized. The 
electrometers in this research utilize harmonic sensing to reduce the noise of the feed-through signal 
created by the ac drive voltage (the feed-through signal couples to the output node through parasitic 
capacitance). The electrometer does this by modulating the charge voltage between the grounded 
resonator and the sense electrodes to even harmonics of the drive signal. A lock in amplifier is used 
to measure the rms voltage of the second harmonic of the output. This section derives the equation 
of the second harmonic voltage of the resonator. 

The electrometer is differentially actuated in the x direction by a comb drive. The resonating part 
is made up of several grounded parallel electrodes. Each one of the electrodes is surrounded by a 
bottom electrode as seen in Figure 1c,d. We will examine the voltage response of one of these 
electrodes to derive the charge conversion gain. 

 

Figure 1. This figure shows conceptual pictures of the variable capacitor. (a) shows a simplified circuit 
where ݌ܥ is the lumped up parasitic capacitances, ݒܥ is the variable capacitor, and ܳ is the charge that 
induces the sense voltage ܸ݅; (b) is a block diagram of the same circuit; (c) is a 2D model of the simple 
variable capacitor; (d) is a 3D model of (c). 

Figure 1a shows a simplified circuit representation of the electrometer, where Cp is the parasitic 
capacitance and Cv is the variable capacitor. The charge, Q, is applied to the input node of the device 
resulting in an AC voltage, Vi, due to the variable capacitance. A block diagram representation of this 
circuit is shown in Figure 1b with transfer function 

 
 is the permittivity of free space and g is the gap between the two electrodes. The area between the ݋߳ (1)

two electrodes is equal to the length ܮ times the displacement (ݐ)ݔ plus a constant area (represented 
by the dark color red in Figure 1d). The constant area induces a static capacitance denoted by ݋ܥ. The 
displacement is sinusoidal with an amplitude x . Since both positive and negative displacement 
increases the area, the variable capacitance is related to the absolute value of the displacement. 
Plugging in (ݐ)ݔ and rearranging results in (ݐ)ܥ = ఢ೚௅௫ො|ୱ୧୬	(ఠ௧)|௚ + ௣௢ܥ = ఢ೚௅௫ො௚ ቀ|sin(߱ݐ)| + ஼೛೚௚ఢ೚௅௫ොቁ. (2) 

If we assign the variables ݔܽ݉ܥ and ߙ as 
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(3) 

the transfer function, with respect to time, will be equal to 

 
(4) 

Equation (1) shows that the output voltage divided by the input charge is equal to the transfer 
function. It is also true that the derivative of the voltage taken with respect to ܳ  is equal to the transfer 
function. This derivative is equal to the charge conversion gain (denoted as ݀̅ݒ ݀ܳ⁄ ). To find the 
change in the second harmonic of the output voltage, we perform a Fourier series expansion on 
Equation (4). 

 
(5) 

Here, when ݊ is equal to two, ܽ݊ is equal to the change in amplitude per charge at the second 
harmonic. Since (ݐ)ܪ is an even function, the ݊݅ݏ product in the summation can be ignored. Solving 
for ܽ݊ gives 

 

(6) 

The integral was solved empirically and the numerical results agree with MATLAB calculations. 
The actual measurement to be taken will be equal to the rms value of the second harmonic, which is 

 
(7) 

3. Discussion 

Previous MEMS electrometers created a variable capacitance by varying the gap between 
electrodes. The charge conversion gain for these devices is [1] 

 
(8) 

The maximum conversion gains for both Equations (7) and (8) are plotted in Figure 2 with 
respect to ݔܽ݉ܥ and ݋ܥ respectively. Both equations are plotted assuming the same parasitic 
capacitance. The peak of Equation (7) is nearly 70% larger than the peak in Equation (8), and peaks 
when ݔܽ݉ܥ is approximately 2.6݋݌ܥ. Equation (8) peaks when ݋ܥ is equal to ݌ܥ. 

 
Figure 2. Peak comparison between the maximum charge conversion gains of the variable area and 
gap capacitor electrometers. The plots were created from Equations (7) and (8). 
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It is necessary to note that obtaining a sense capacitance equal to the parasitic is a difficult task. 
Still, the new scheme compares well to previous devices when the sense capacitance to parasitic 
capacitance ratio is small. 

Initial simulations show that fringing capacitance can be significant. If the fringing capacitance 
is high, it can add to the static capacitance and decrease the overall charge resolution. Furthermore, 
the resolution will be decreased if the derivative of fringing capacitance with respect to displacement 
is negative. 

Physical devices will be created using the PolyMUMPs foundry process. Good agreement 
between the theoretical and physical results will prove this method of detection to be a viable, cost-
effective way to create high-resolution electrometers. 
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