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1. Introduction and preliminaries

Bessel and modified Bessel functions of the first kind play an important role in the theory
of special functions because they are useful in many problems of applied mathematics.
These functions have been studied by many researchers, and their study goes back to
famous scientists like Bessel, Euler, Fourier, and others. Motivated by their appearance as
eigenvalues in the clamped plate problem for the ball, Ashbaugh and Benguria [3] have
conjectured that the positive zeros of the cross-product of Bessel and modified Bessel
functions of the first kind, defined by

Wν(z) = Jν(z)I
′
ν(z) − J ′

ν(z)Iν(z) = Jν+1(z)Iν(z) + Jν(z)Iν+1(z),

http://crossmark.crossref.org/dialog/?doi=10.1007/s12044-018-0398-z&domain=pdf
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where Jν and Iν stand for the Bessel and modified Bessel functions of the first kind,
increase with ν on

[− 1
2 ,∞)

. Lorch [17] verified this conjecture and presented some other
properties of the zeros of the above cross-product of Bessel and modified Bessel functions.
See also the paper by Ashbaugh and Benguria [3] for more details. Recently, Alkharsani
et al. [1] pointed out that the above monotonicity property is valid on (−1,∞) and proved
that for ν > −1 and z ∈ C, the power series representation

Wν(z) = 2
∑

n≥0

(−1)n( z2 )2ν+4n+1

n!�(ν + n + 1)�(ν + 2n + 2)
(1.1)

and the infinite product representation

Wν(z) = 22νz−2ν−1�(ν + 1)�(ν + 2)Wν(z) =
∏

n≥1

(

1 − z4

γ 4
ν,n

)

(1.2)

are valid, see [1] for more details. In this paper, we would like to continue the study of the
properties of the cross-product of Bessel and modified Bessel functions of the first kind by
showing a series of new results. We also consider another special combination of Bessel
functions, namely, the so called Dini functions dν : C → C, defined by

dν(z) = (1 − ν)Jν(z) + z J ′
ν(z) = Jν(z) − z Jν+1(z),

and the modified Dini function ξν : C → C, defined by

ξν(z) = i−νdν(iz) = (1 − ν)Iν(z) + z I ′
ν(z) = Iν(z) + z Iν+1(z).

For ν > −1 and z ∈ C, the Weierstrassian factorization of Dini functions is [7]

Dν(z) = 2ν�(ν + 1)z−νdν(z) =
∏

n≥1

(

1 − z2

α2
ν,n

)

(1.3)

and the Weierstrassian factorization of modified Dini function is [8]

λν(x) = 2ν�(ν + 1)x−νξν(x) =
∏

n≥1

(

1 + x2

α2
ν,n

)

, (1.4)

where αν,n stands for the n-th positive zero of the Dini function dν .

The paper is organized as follows: section 2 contains the main results on the cross-
product of Bessel functions, Dini functions and their zeros. Section 3 is devoted to the
proofs of the main results. In our proofs, we use a series of methods: Mittag–Leffler expan-
sions, Laguerre separation theorem, Laguerre inequality for entire functions, differential
equation for the Dini function, monotone form of L’Hospital’s rule, and representations
of logarithmic derivatives of Dini functions and cross-product of Bessel functions via the
spectral zeta functions of the zeros of the above functions.
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2. Main results

2.1 Monotonicity properties

Our first set of results are some monotonicity and concavity properties of cross-product of
Bessel and modified Bessel functions of first kind.

Theorem 1. Let ν > −1 and define S = S1 ∪ S2, where S1 = ⋃
n≥1[−γν,2n,−γν,2n−1],

S2 = ⋃
n≥1[γν,2n−1, γν,2n] and γν,n denotes the n-th positive zero of the function Wν .

Then the following assertions hold true:

(a) The function x 	→ Wν(x) is negative on S and it is strictly positive on R \ S;
(b) The function x 	→ Wν(x) is strictly increasing on (−γν,1, 0] and strictly decreasing

on [0, γν,1);
(c) The function x 	→ Wν(x) is strictly log-concave on R \ S and strictly geometrically

concave on (0,∞) \ S2;
(d) The function x 	→ Wν(x) is strictly log-concave on (0,∞) \ S2 for all ν ≥ − 1

2 ;
(e) The function ν 	→ Wν(x) is increasing on (−1,∞) for all x ∈ (−γν,1, γν,1) and the

function ν 	→ xW ′
ν (x)/Wν(x) is increasing on (−1,∞) for all x ∈ R;

(f) The function x 	→ (− logWν(
4
√
x)

)′
and the function x 	→ 1/Wν(

4
√
x) are absolutely

monotonic on (0, γ 4
ν,1) for all ν > −1.

2.2 Interlacing of positive real zeros of Bessel and related functions

Let us recall Dixon’s theorem [20, p. 480] which states that, when ν > −1 and a, b, c, d
are constants such that ad �= bc, then the positive zeros of x 	→ aJν(x) + bx J ′

ν(x) are
interlaced with those of x 	→ cJν(x) + dx J ′

ν(x). Therefore if we choose a = 1 − ν,
b = c = 1 and d = 0, then for ν > −1, we have

jν,n−1 < αν,n < jν,n, where n ∈ N, (2.1)

with the convention that jν,0 = 0. Here jν,n stands for the n-th positive zero of the Bessel
function Jν . In [1], among other things, the following interlacing inequality has been
proved for ν > −1,

jν,n < γν,n < jν,n+1, where n ∈ N. (2.2)

Taking into account the above two interlacing inequalities, it is natural to ask whether the
zeros of Dini functions and of the cross-product of Bessel functions satisfy some interlacing
property. The next theorem will answer this question.

Theorem 2. For ν > −1, the zeros of Dini functions and of the cross-product of Bessel
functions are interlacing, that is, they satisfy the following interlacing inequality:

αν,n < γν,n < αν,n+1, where n ∈ N. (2.3)

Thus, combining the inequalities (2.1), (2.2) and (2.3), we have the following:

αν,n < jν,n < γν,n < αν,n+1 < jν,n+1, where n ∈ N.
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As an immediate consequence of the above interlacing properties, we have the following
upper and lower bounds for the cross-product of Bessel functions and consequently we
can get bounds for ratio of modified Bessel and Bessel functions of the first kind. The
normalized Bessel and modified Bessel functions of the first kind, defined by

Jν(x) = 2ν�(ν + 1)x−ν Jν(x) and Iν(x) = 2ν�(ν + 1)x−ν Iν(x),
play an important role in one of these results and also in the sequel.

COROLLARY 1

If ν > −1, then the following inequalities hold:

Dν(x)λν(x) < Wν(x) <
α4

ν,1

α4
ν,1 − x4

Dν(x)λν(x) for |x | < αν,1 (2.4)

Jν(x)Iν(x) < Wν(x) <
j4
ν,1

j4
ν,1 − x4

Jν(x)Iν(x) for |x | < jν,1 (2.5)

and

e
x2

2(ν+1) <
Iν(x)

Jν(x)
<

(
j2
ν,1 + x2

j2
ν,1 − x2

) j2
ν,1

4(ν+1)

for 0 < x < jν,1. (2.6)

The reverse inequalities in (2.6) holds for − jν,1 < x < 0.

In view of the inequality αν,n < jν,n where n ∈ N, we observe that the left-hand side
inequality of (2.5) is better than the left-hand side inequality of (2.4) while the right-hand
side inequality of (2.4) is better than the right-hand side inequality of (2.5).

Moreover, the next interlacing properties are also valid.

Theorem 3. If ν > −1, then the following interlacing properties are valid:

(a) The zeros of the function z 	→ D ′
ν(z) are interlaced with those of the function z 	→

Dν(z).
(b) The zeros the function z 	→ W ′

ν (
√
z) are interlaced with those of the function z 	→

Wν(
√
z).

(c) For ν > 0, the zeros of the function z 	→ d ′
ν(z) are interlaced with those of the function

z 	→ dν(z).

Now, we present an identity for zeros of Dini functions and zeros of cross-product of
Bessel functions which is analogous to the identity of Calogero for the zeros of Bessel
functions of the first kind, see [6] for more details.

Theorem 4. Let ν > −1, k ∈ N and γ ′
ν,k denote the k-th positive zero of the function W

′
ν .

Then the following identities are valid:

∑

n≥1,n �=k

1

α2
ν,n − α2

ν,k

= 1

4α2
ν,k

[

2ν + 1 − α2
ν,k + 2ν − 1

α2
ν,k − 2ν + 1

]

, (2.7)
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∑

n≥1,n �=k

1

α4
ν,n − α4

ν,k

= 1

8α4
ν,k

[

2ν + 3 − α2
ν,k + 2ν − 1

α2
ν,k − 2ν + 1

]

− 1

2α2
ν,k

∑

n≥1

1

α2
ν,n + α2

ν,k

(2.8)

and

∑

n≥1,n �=k

1

γ 4
ν,n − γ 4

ν,k

= 1

8γ 4
ν,k

⎡

⎣2ν + 5 +
∑

n≥1

4γ 4
ν,k

γ ′4
ν,n − γ 4

ν,k

⎤

⎦ . (2.9)

2.3 Rayleigh functions

Before we state our next result, let us define the Rayleigh functions (or spectral zeta
functions) for the zeros of Dini function and for the zeros of cross-product of Bessel and
modified Bessel functions by

η2m(ν) =
∑

n≥1

1

α2m
ν,n

(2.10)

and

ζ4m(ν) =
∑

n≥1

1

γ 4m
ν,n

, (2.11)

respectively, where ν > −1 and m ∈ N. Note that for m = 1, we have [7]

η2(ν) =
∑

n≥1

1

α2
ν,n

= 3

4(ν + 1)
. (2.12)

By using the series (1.1), one gets

1

4

(
2ν + 1 − zW ′

ν(z)

Wν(z)

)
=

∑

n≥1

z4

γ 4
ν,n − z4 ,

and taking limit z → 0 followed by dividing with z4 on each side, we obtain

ζ4(ν) =
∑

n≥1

1

γ 4
ν,n

= 1

16(ν + 1)(ν + 2)(ν + 3)
= 1

24(ν + 1)3
. (2.13)

For the sake of brevity, we denote (ν + 1)(ν + 2)(ν + 3) by (ν + 1)3 using the well-known
Pochhammer (Appell) symbol defined by (α)0 = 0 for α �= 0 and

(α)n = α(α + 1)(α + 2) · · · (α + n − 1), for n ≥ 1.

In general, for any m ∈ N, the Rayleigh function ζ4m(ν) can be obtained by comparing
the coefficients of z4m on both sides of (2.19). For example, by comparing the coefficients
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of z4 on both sides of (2.19), one can get (2.13) and by comparing the coefficients of z8

on both sides of (2.19) yields

ζ8(ν) = 5ν + 17

256(ν + 1)2(ν + 2)2(ν + 3)2(ν + 4)(ν + 5)
= 5ν + 17

28(ν + 1)3(ν + 1)5
.

(2.14)

Alternatively, taking into account the power series (1.1) and infinite product representation
(1.2) one can extract the Rayleigh function ζ4m(ν) by using the Euler–Rayleigh method
(see [14, p. 3]). Namely, let f (z) be an entire function with power series representation

f (z) = 1 +
∑

n≥1

anz
n

and an infinite product representation

f (z) =
∏

n≥1

(
1 − z

zn

)
,

where it is assumed that
∑

n≥1 |zn|−1 < ∞. Then the Rayleigh function

Sm =
∑

k≥1

1

zmk

is given by the following formula

Sn = −nan −
n−1∑

i=1

ai Sn−i .

Therefore, by taking f (z) = Wν(
4
√
z), from (1.1) and (1.2), we have

an = (−1)n�(ν + 1)�(ν + 2)

24nn!�(ν + n + 1)�(ν + 2n + 2)

and hence S1 = ζ4(ν) = −a1, S2 = ζ8(ν) = −2a2 − a1S1 = −2a2 + a2
1 and so on.

Now, we present the Euler–Rayleigh inequalities for zeros of Dini functions and cross-
product of Bessel functions, which will be used in the sequel.

Lemma 1. Let ν > −1 and m ∈ N. Then

[η2m(ν)]−1/m < α2
ν,1 <

η2m(ν)

η2m+2(ν)
(2.15)

and

[ζ4m(ν)]−1/m < γ 4
ν,1 <

ζ4m(ν)

ζ4m+4(ν)
. (2.16)

The above inequalities can be verified easily by using the definition of η2m(ν), ζ4m(ν)

and the order relations 0 < αν,1 < αν,2 < · · · < αν,n < · · · and 0 < γν,1 < γν,2 < · · · <

γν,n < · · · .
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An immediate consequence of the above inequality will give the lower and upper bounds
for the smallest positive zero of the cross-product of Bessel functions.

Theorem 5. Let ν > −1 and γν,1 denote the smallest positive zero of the cross-product
of Bessel functions Wν(z). Then we have the following bounds:

24(ν + 1)3
√

(ν + 4)(ν + 5)√
5ν + 17

< γ 4
ν,1 <

24(ν + 1)5

5ν + 17
. (2.17)

Note that using (2.13) and (2.14), the left-hand side of the inequality (2.17) follows from
the left-hand side of (2.16) by taking m = 2, while the right-hand side of the inequality
(2.17) can be extracted from the right-hand side of (2.16) by taking m = 1. So we omit
the proof of Theorem 5.

Observe that for m = 1, the left-hand side of (2.16) gives the inequality

γ 4
ν,1 > 24(ν + 1)3,

which is weaker than the left-hand side of (2.17).
The power series representation [7]

zd ′
ν(z)

dν(z)
= ν − 2

∑

m≥1

η2m(ν)z2m

which is valid for ν > −1, z ∈ C such that |z| < αν,1, can be rewritten as

zD ′
ν(z)

Dν(z)
= −2

∑

m≥1

η2m(ν)z2m, (2.18)

where Dν(z) = 2ν�(ν + 1)z−νdν(z). Therefore, the function x 	→ − xD ′
ν (x)

Dν (x) is absolutely
monotonic on (0, αν,1) for all ν > −1. The next theorem is analogous to this result.

Theorem 6. Let ν > −1 and z ∈ C such that |z| < γν,1. Then

zW ′
ν (z)

Wν(z)
= −4

∑

m≥1

ζ4m(ν)z4m . (2.19)

Moreover, the function

x 	→ − xW ′
ν (x)

Wν(x)

is absolutely monotonic on (0, γν,1) for all ν > −1.

In addition, the next result is valid.

Theorem 7. Letμ ≥ ν > −1. Then the functions fμ,ν, gμ,ν, hν, qν : [0, γ 4
ν,1) → (0,∞),

defined by
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fμ,ν(x) =
[

log

(
x

ν−μ
2 e

x
16

(
1

(μ+1)3
− 1

(ν+1)3

)
Wμ( 4

√
x)

Wν(
4
√
x)

)]′
,

gμ,ν(x) = x
ν−μ

2 e
x
16

(
1

(μ+1)3
− 1

(ν+1)3

)
Wμ( 4

√
x)

Wν(
4
√
x)

,

hν(x) =
⎡

⎣log

⎛

⎝ x
ν
2 + 1

4 e
−x

16(ν+1)3

Wν(
4
√
x)

⎞

⎠

⎤

⎦

′

and

qν(x) = x
ν
2 + 1

4 e
−x

16(ν+1)3

Wν(
4
√
x)

are absolutely monotonic.

Observe that the above absolutely monotonicity ofqν can be used to find the upper bound for
the cross-product of Bessel and modified Bessel functions. Namely, we have the following
inequality.

COROLLARY 2

If ν > −1 and x ∈ [0, γν,1), then

Wν(x) ≤ x2ν+1e
− x4

16(ν+1)3

22ν�(ν + 1)�(ν + 2)
.

2.4 Redheffer-type inequalities

We continue with another set of results, namely Redheffer-type inequalities. In the litera-
ture, the inequality

sin x

x
≥ π2 − x2

π2 + x2 , where x ∈ R,

is known as Redheffer inequality, see [18]. In [4], the author extended the above Redheffer
type inequalities for the normalized Bessel functions of the first kind Jν(x) = 2ν�(ν +
1)x−ν Jν(x) and the normalized modified Bessel function Iν(x) = 2ν�(ν + 1)x−ν Iν(x).
For more details about Redheffer type inequalities, one can refer to [10,11,21] and ref-
erences therein. Recently in [8], Redheffer-type inequalities for modified Dini functions
were studied. In this subsection, we study Redheffer type inequalities for Dini functions
and cross-product of Bessel and modified Bessel functions. Motivated by the result from
[21, Theorem 1], we extend and sharpen the Redheffer-type inequalities for modified Dini
functions [8, Theorem 7].

Theorem 8. Let αν,n and γν,n denote the n-th positive zero of dν and Wν, respectively.
The following Redheffer-type inequalities are valid:
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(a) If ν > −1 and �ν(n) = α2
ν,n+1 − αν,1αν,n − αν,nαν,n+1 ≥ 0 for n ∈ N, then

Dν(x) ≥ α2
ν,1 − x2

α2
ν,1 + x2

f or all |x | ≤ δν = min
n≥1,ν>−1

{
αν,1,

√
�ν(n)

}
.

(2.20)

(b) If ν ∈ (−1, 8), then

Dν(x) ≤
(

α2
ν,1 − x2

α2
ν,1 + x2

)mν

f or all x ∈ (−αν,1, αν,1), (2.21)

where mν = 3α2
ν,1

8(ν+1)
is the best possible constant.

(c) If ν > −1 and 
ν(n) = γ 4
ν,n+1 − γ 2

ν,1γ
2
ν,n − γ 2

ν,nγ
2
ν,n+1 ≥ 0 for n ∈ N, then

Wν(x) ≥ γ 4
ν,1 − x4

γ 4
ν,1 + x4

f or all |x | ≤ εν = min
n≥1,ν>−1

{γν,1,
√


ν(n)}.
(2.22)

(d) If ν ∈ (−1, r), where r = 1+√
57

2 is the positive root of ν − ν2 + 14 = 0, then

Wν(x) ≤
(

γ 4
ν,1 − x4

γ 4
ν,1 + x4

)nν

f or all x ∈ (−γν,1, γν,1), (2.23)

where nν = γ 4
ν,1

32(ν+1)3
is the best possible constant.

The corresponding result for the modified Dini functions reads as follows.

Theorem 9. Let r ∈ (0,∞), |x | < r, ν > −1 and λν be the modified Dini function
defined by (1.4). Then the following Redheffer-type inequality

(
r2 + x2

r2 − x2

)α

≤ λν(x) ≤
(
r2 + x2

r2 − x2

)β

(2.24)

holds if and only if α ≤ 0 and β ≥ 3α2
ν,1

8(ν+1)
.

We would like to take the opportunity to correct a mistake in the paper [10]. In the final
expression for ϕ′

ν(x) [10, p. 263], 1
j2m−2
ν,1

should be replaced by 1
j2m−4
ν,1

, where jν,1 stands for

the first positive zero of the Bessel function Jν . With this change, the following inequalities
in [10, p. 259] may not hold true for all ν ≥ −7/8:

Jν(x) ≤
(
j2
ν,1 − x2

j2
ν,1 + x2

)βν

for all |x | < jν,1 (2.25)
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and

Jν+1(x)

Jν(x)
≥

(
j2
ν,1 + x2

j2
ν,1 − x2

)γν

for all |x | < jν,1, (2.26)

where βν = j2
ν,1

8(ν+1)
and γν = j2

ν,1
8(ν+1)(ν+2)

are the best possible constants. Nevertheless,
the above inequalities are valid for ν ∈ (−1, ν0] and |x | < jν,1, where ν0 ∈ (1, 2) is the
unique root of the equation j2

ν,1 = 8(ν + 1). Before we prove the above inequalities, let
us recall [10, Lemma 1], which will be useful in the sequel.

Lemma 2. Let ν > −1 and jν,1 be the first positive zero of the Bessel function Jν . Then
the equation j2

ν,1 = 8(ν + 1) has exactly one positive root ν0 ∈ (1, 2). Moreover,

{
j2ν,1 ≤ 8(ν + 1) f or ν ∈ (−1, ν0],
j2ν,1 ≥ 8(ν + 1) f or ν ≥ ν0.

Now, taking into account the above correction in the expression ϕ′
ν(x) [10], we have

ϕ′
ν(x) = 1

2(ν + 1)x

1

j2
ν,1 + x2

∑

m≥2

[

4(ν + 1) j2
ν,1σ

(2m)
ν

+ 4(ν + 1)σ (2m−2)
ν − 1

j2m−4
ν,1

]

x2m

≥ 1

2(ν + 1)x

1

j2
ν,1 + x2

∑

m≥2

[

8(ν + 1) j2
ν,1σ

(2m)
ν − 1

j2m−4
ν,1

]

x2m

= 1

2(ν + 1)x

1

j2
ν,1 + x2

∑

m≥2

[
8(ν + 1) j−2

ν,1 j
2m
ν,1σ

(2m)
ν − 1

j2m−4
ν,1

]

x2m

≥ 1

2(ν + 1)x

1

j2
ν,1 + x2

∑

m≥2

[
8(ν + 1) j−2

ν,1 − 1

j2m−4
ν,1

]

x2m,

which in view of Lemma 2 gives

ϕ′
ν(x) ≥ 0 for ν ∈ (−1, ν0].

Here we have used the Euler–Rayleigh inequalities [20, p. 502]

(σ (2m)
ν )−1/m < j2

ν,1 <
σ

(2m)
ν

σ
(2m+2)
ν

, (2.27)

which are valid for m ∈ N and ν > −1, where

σ (2m)
ν =

∑

n≥1

1

j2m
ν,n

is the Rayleigh function of order 2m. The rest of the proof is same as in [10, p. 263].
It is also interesting to note that for ν ≥ ν0, the following new Redheffer type inequalities

hold.



Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:36 Page 11 of 30 36

Theorem 10. Let ν ≥ ν0, where ν0 ∈ (1, 2) is the unique root of the equation j2
ν,1 =

8(ν + 1). Then the following new Redheffer type inequalities are valid:

Jν(x) ≤ j2
ν,1 − x2

j2
ν,1 + x2

f or all |x | < jν,1 (2.28)

and

Jν+1(x)

Jν(x)
≥

(
j2
ν,1 + x2

j2
ν,1 − x2

) 1
ν+2

f or all |x | < jν,1. (2.29)

2.5 Bounds for logarithmic derivative of Bessel related functions

In this section, we investigate the bounds for logarithmic derivative of Dini functions and
the logarithmic derivative of cross-product of Bessel and modified Bessel functions. The
idea of these results come from [22].

Theorem 11. Let ν > −1, An = α2
ν,1η2n+2(ν) − η2n(ν), n ∈ N. Then for n ∈ N, the

following inequality holds true for all 0 < |x | < αν,1:

R2n(x) + 4
3 (ν + 1)ax2n+2

α2
ν,1 − x2

< −2(ν + 1)

3x
· D

′
ν(x)

Dν(x)

<
R2n(x) + 4

3 (ν + 1)bx2n+2

α2
ν,1 − x2

,

where

a = 1

α2n+2
ν,1

(

1 − 3α2
ν,1

4(ν + 1)
−

n∑

m=1

Amα2m
ν,1

)

, b = An+1 and

R2n(x) = α2
ν,1 + 4(ν + 1)

3

n∑

m=1

Amx
2m .

Moreover, a and b are sharp.

Theorem 12. Let ν > −1, Bn = γ 4
ν,1ζ4n+4(ν) − ζ4n(ν), n ∈ N. Then for n ∈ N, the

following inequality holds true for all 0 < |x | < γν,1,

S4n(x) + 16(ν + 1)3r x4n+4

γ 4
ν,1 − x4

< −4(ν + 1)3

x3 · W
′

ν (x)

Wν(x)

<
S4n(x) + 16(ν + 1)3sx4n+4

γ 4
ν,1 − x4

,
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where

r = 1

γ 4n+4
ν,1

(

1 − γ 4
ν,1

16(ν + 1)3
−

n∑

m=1

Bmγ 4m
ν,1

)

, s = Bn+1 and

S4n(x) = γ 4
ν,1 + 16(ν + 1)3

n∑

m=1

Bmx
4m .

Moreover, r and s are sharp.

3. Proofs of main results

In this section, we prove our main results.

Proof of Theorem 1.

(a) By using the infinite product representation (1.2) and the order relation

0 < γν,1 < γν,2 < · · · < γν,n < · · · ,

we note that if x ∈ [γν,2n−1, γν,2n] or x ∈ [−γν,2n,−γν,2n−1] then the first (2n− 1) terms
of the product (1.2) are negative and the remaining terms are strictly positive. Therefore
Wν(x) becomes negative on S. Now if x ∈ (−γν,1, γν,1), then each terms of the product
(1.2) are strictly positive and if x ∈ (γν,2n, γν,2n+1) or x ∈ (−γν,2n+1,−γν,2n), then the
first 2n terms are strictly negative while the remaining terms are strictly positive. Therefore,
Wν(x) > 0 on R \ S.
(b) From part (a), we have Wν(x) > 0 for x ∈ (−γν,1, γν,1). Therefore the infinite product
representation (1.2) gives

(logWν(x))
′ = W ′

ν (x)

Wν(x)
= −

∑

n≥1

4x3

γ 4
ν,n − x4

and hence the function x 	→ Wν(x) is strictly increasing on (−γν,1, 0] and strictly decreas-
ing on [0, γν,1).
(c) By using the above equation and part (a) of this theorem, we have

(logWν(x))
′′ =

(
W ′

ν (x)

Wν(x)

)′
= −

∑

n≥1

4x2(3γ 4
ν,n + x4)

(γ 4
ν,n − x4)2

and

(
xW ′

ν (x)

Wν(x)

)′
= −

∑

n≥1

16x3γ 4
ν,n

(γ 4
ν,n − x4)2 .

From this, we conclude that the function x 	→ Wν(x) is strictly log-concave on R \ S and
strictly geometrically concave on (0,∞) \ S2.
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(d) Since the function x 	→ x2ν+1 is log-concave on (0,∞) for all ν ≥ − 1
2 and from

part (c) the function x 	→ Wν(x) is strictly log-concave on R \ S, we conclude that the
functions

x 	→ Wν(x) = x2ν+1Wν(x)

22ν�(ν + 1)�(ν + 2)

is strictly log-concave on (0,∞) \ S2 for all ν ≥ − 1
2 . Here we used the fact that product

of a log-concave function and a strictly log-concave function is strictly log-concave.
(e) By using again the infinite product representation (1.2), we get

∂

∂ν
(logWν(x)) =

∑

n≥1

4x4 ∂
∂ν

(γν,n)

γν,n(γ 4
ν,n − x4)

and

∂

∂ν

(
xW ′

ν (x)

Wν(x)

)
=

∑

n≥1

16x4γ 3
ν,n

∂γν,n
∂ν

(γ 4
ν,n − x4)2 .

From these expressions and the result [1, Lemma 4], ν 	→ γν,n is increasing on (−1,∞),
and the desired conclusion follows.
(f) From the infinite product representation (1.2), we have

(− logWν(
4
√
x)

)′ =
∑

n≥1

1

γ 4
ν,n − x

,

which is absolutely monotonic on (0, γ 4
ν,1) for all ν > −1. Since the exponential of a

function having an absolutely monotonic derivative is absolutely monotonic, we conclude
that the function x 	→ 1/Wν(

4
√
x) is absolutely monotonic on (0, γ 4

ν,1) for all ν > −1. �

Proof of Theorem 2. By using the inequalities (2.1) and (2.2), we have

jν,n−1 < αν,n < jν,n < γν,n < jν,n+1,

where n ∈ N and hence the left-hand side of the inequality (2.3) follows. To prove the
right-hand side of the inequality (2.3), observe that the zeros of the cross-product of Bessel
functions (1.1) are the roots of the equation

z J ′
ν(z)

Jν(z)
= z I ′

ν(z)

Iν(z)
(3.1)

and the zeros of Dini function z 	→ (1 − ν)Jν(z) + z J ′
ν(z) are roots of the equation

z J ′
ν(z)

Jν(z)
= ν − 1. (3.2)
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Now in view of the infinite product representations of Bessel and modified Bessel functions
of the first kind, namely,

2ν�(ν + 1)x−ν Jν(x) =
∏

n≥1

(

1 − x2

j2
ν,n

)

and

2ν�(ν + 1)x−ν Iν(x) =
∏

n≥1

(

1 + x2

j2
ν,n

)

,

we obtain

(
x J ′

ν(x)

Jν(x)

)′
= −

∑

n≥1

4x j2
ν,n

( j2
ν,n − x2)2 and

(
x I ′

ν(x)

Iν(x)

)′
=

∑

n≥1

4x j2
ν,n

( j2
ν,n + x2)2 ,

respectively. Therefore, for ν > −1, the function x 	→ x J ′
ν (x)

Jν (x) is strictly decreasing on

each interval ( jν,n, jν,n+1), n ∈ N and the function x 	→ x I ′
ν (x)

Iν (x) is strictly increasing on
(0,∞). This implies that there exists a unique root γν,n of the equation (3.1) and a unique
root αν,n+1 of the equation (3.2) in each interval ( jν,n, jν,n+1) for all n ∈ N. Since the

function x 	→ x J ′
ν (x)

Jν (x) is strictly decreasing on each interval ( jν,n, jν,n+1), n ∈ N and we
have the limit

lim
x→0

x I ′
ν(x)

Iν(x)
= ν > ν − 1,

we conclude that γν,n < αν,n+1 for all n ∈ N (this interlacing property is illustrated in
figure 1 for ν = 2 and x ∈ (0, j2,4)). This completes the proof. �

Proof of Corollary 1. Using (2.3), we have for all x ∈ (−γν,1, γν,1)

∏

n≥1

(

1 − x4

α4
ν,n

)

<
∏

n≥1

(

1 − x4

γ 4
ν,n

)

<
∏

n≥1

(

1 − x4

α4
ν,n+1

)

,

which on using (1.2), (1.3) and (1.4) gives the inequality (2.4). Similarly, by using the
interlacing inequality (2.2) one can extract the inequality (2.5). To prove the inequality
(2.6), observe that the inequality (2.5) can be rewritten as

1 <
(ν + 1)

x

(
Iν+1(x)

Iν(x)
+ Jν+1(x)

Jν(x)

)
<

j4
ν,1

j4
ν,1 − x4

for |x | < jν,1,

which in view of the formulas

I ′
ν(x) = 2ν�(ν + 1)(x−ν Iν(x))

′ = 2ν�(ν + 1)x−ν Iν+1(x)
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Figure 1. Interlacing of zeros of Dini functions and cross-product of Bessel functions:

the graph of the functions x 	→ f2(x) = x J ′
2(x)

J2(x)
and x 	→g2(x) = x I ′

2(x)
I2(x)

on [0, 14.5].

and

J ′
ν(x) = 2ν�(ν + 1)(x−ν Jν(x))

′ = −2ν�(ν + 1)x−ν Jν+1(x),

is equivalent to

1 <
(ν + 1)

x

(
I ′

ν(x)

Iν(x)
− J ′

ν(x)

Jν(x)

)
<

j4
ν,1

j4
ν,1 − x4

for |x | < jν,1, (3.3)

Now for x ∈ (0, jν,1), integrating (3.3) we obtain

∫ x

0

t

(ν + 1)
dt <

∫ x

0

(
I ′

ν(t)

Iν(t)
− J ′

ν(t)

Jν(t)

)
dt <

j4
ν,1

(ν + 1)

∫ x

0

t

j4
ν,1 − t4

dt,

which implies that

e
x2

2(ν+1) <
Iν(x)

Jν(x)
<

(
j2
ν,1 + x2

j2
ν,1 − x2

) j2
ν,1

4(ν+1)

.

This proves the inequality (2.6). �
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Proof of Theorem 3.

(a), (b). The normalized Dini function z 	→ Dν(z) and the cross-product of Bessel and mod-
ified Bessel functions z 	→ Wν(

√
z) are entire functions of order 1/2 and 1/4, respectively

(see [7], [1]). Therefore the genus of the entire functions z 	→ Dν(z) and z 	→ Wν(
√
z)

is 0, as the genus of the entire function of order ρ is [ρ] when ρ is not an integer [12,
p. 34]. We also note that the zeros of z 	→ Dν(z) and z 	→ Wν(

√
z) are all real when

ν > −1. Now recall Laguerre’s theorem on separation of zeros [12, p. 23] which states
that, if z 	→ f (z) is a non-constant entire function, which is real for real z and has only
real zeros, and is of genus 0 or 1, then the zeros of f ′ are also real and separated by the
zeros of f . Therefore in view of Laguerre’s theorem the conclusions follow.
(c) Since for ν > −1 the function Dν belongs to Laguerre–Pólya class of entire functions,
it satisfies the Laguerre inequality [19]

[D (m)
ν (x)]2 − D (m−1)

ν (x)D (m+1)
ν (x) ≥ 0.

Using the derivative formulas

D ′
ν(x) = 2ν�(ν + 1)x−ν−1[xd ′

ν(x) − νdν(x)] (3.4)

and

D ′′
ν (x) = 2ν�(ν + 1)x−ν−2[x2d ′′

ν (x) − 2νxd ′
ν(x) + ν(ν + 1)dν(x), (3.5)

the above inequality for m = 1 is equivalent to

22ν�2(ν + 1)x−2ν−2[x2(d ′
ν(x))

2 − νd2
ν (x) − x2dν(x)d

′′
ν (x)] ≥ 0

which implies that

(d ′
ν(x))

2 − dν(x)d
′′
ν (x) ≥ ν

x2 d
2
ν (x) > 0

for ν > 0 and x ∈ R, x �= 0. Therefore the function x 	→ d ′
ν (x)

dν (x) is strictly decreasing
on (0,∞) \ {αν,n | n ∈ N}. In view of [9, Lemma 2.2], all zeros of dν(x) are real and
simple and hence d ′

ν(x) �= 0 at x = αν,n , n ∈ N. Thus, for a fixed n ∈ N, we have the

limit limx↘αν,n−1
d ′
ν (x)

dν (x) = ∞ and limx↗αν,n
d ′
ν (x)

dν (x) = −∞. Since the function x 	→ d ′
ν (x)

dν (x) is
strictly decreasing on (0,∞)\{αν,n | n ∈ N}, it follows that in each interval (αν,n−1, αν,n)

there exists a unique zero α′
ν,n of d ′

ν(x). Here we used the convention that αν,0 = 0. �

Proof of Theorem 4. From the infinite product representations (1.2), (1.3) and (1.4), it is
easy to verify that for all ν > −1, the functions Wν , Dν and λν satisfy the following
identities (in other words, Mittag–Leffler expansions):

W ′
ν (x)

Wν(x)
=

∑

n≥1

−4x3

γ 4
ν,n − x4 , (3.6)

D ′
ν(x)

Dν(x)
=

∑

n≥1

−2x

α2
ν,n − x2 , (3.7)
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and

λ′
ν(x)

λν(x)
=

∑

n≥1

2x

α2
ν,n + x2 . (3.8)

In view of the above logarithmic derivative (3.7) of Dini functions Dν , we obtain

�1 =
∑

n≥1,n �=k

1

α2
ν,n − α2

ν,k

= lim
x→αν,k

[

− 1

2x
· D

′
ν(x)

Dν(x)
− 1

α2
ν,k − x2

]

= − 1

2αν,k
lim

x→αν,k

[
D ′

ν(x)(α
2
ν,k − x2) + 2xDν(x)

Dν(x)(α2
ν,k − x2)

]

.

Now, by applying the Bernoulli–L’Hospital rule twice and using the derivative formulas
(3.4) and (3.5), we have

�1 = − 1

4αν,k
lim

x→αν,k

[
d ′′
ν (x)

d ′
ν(x)

− (2ν + 1)

x

]
.

Using the differential equation [13, p. 13]

x2(x2 − 2ν + 1)d ′′
ν (x) − x(x2 + 2ν − 1)d ′

ν(x)

−[(x2 − ν2)(x2 − 2ν + 1) + 2(1 − ν)x2]dν(x) = 0,

satisfied by the Dini function dν , we obtain

lim
x→αν,k

d ′′
ν (x)

d ′
ν(x)

= α2
ν,k + 2ν − 1

αν,k(α
2
ν,k − 2ν + 1)

, (3.9)

and hence

�1 = − 1

4αν,k

[
α2

ν,k + 2ν − 1

αν,k(α
2
ν,k − 2ν + 1)

− 2ν + 1

αν,k

]

.

Therefore the relation (2.7) is indeed true.
To prove the identity (2.8), we appeal to the formulas (3.7) and (3.8) to obtain

�2 =
∑

n≥1,n �=k

1

α4
ν,n − α4

ν,k

= lim
x→αν,k

[

− 1

4x3 ·
(
D ′

ν(x)

Dν(x)
+ λ′

ν(x

λν(x)

)
− 1

α4
ν,k − x4

]

= − 1

4α3
ν,k

λ′
ν(αν,k)

λν(αν,k)
− lim

x→αν,k

1

4x3 ·
(
D ′

ν(x)

Dν(x)
+ 4x3

α4
ν,k − x4

)
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= − 1

4α3
ν,k

∑

n≥1

2αν,k

α2
ν,n + α2

ν,k

− 1

4α3
ν,k

lim
x→αν,k

(
D ′

ν(x)(α
4
ν,k − x4) + 4x3Dν(x)

Dν(x)(α4
ν,k − x4)

)

.

Now, by applying again the Bernoulli–L’Hospital rule twice and using the derivative for-
mulas (3.4) and (3.5), we obtain

�2 = − 1

2α2
ν,k

∑

n≥1

1

α2
ν,n + α2

ν,k

− 1

4α3
ν,k

lim
x→αν,k

[
1

2
· d

′′
ν (x)

d ′
ν(x)

− (2ν + 3)

2x

]
,

which on using the limit (3.9) gives (2.8).
To prove the identity (2.9), first we will show that for ν > −1 and z ∈ C, we have

22ν�(ν + 1)�(ν + 2)

(2ν + 1)
z−2νW ′

ν(z) =
∏

n≥1

(

1 − z4

γ ′4
ν,n

)

. (3.10)

To deduce the above Hadamard factorization of W ′
ν , it is enough to show that

22ν�(ν + 1)�(ν + 2)

(2ν + 1)
z−νW ′

ν(
√
z) =

∏

n≥1

(

1 − z2

γ ′4
ν,n

)

. (3.11)

Now, by using the power series representation (1.1), we have

22ν�(ν + 1)�(ν + 2)

(2ν + 1)
z−νW ′

ν(
√
z)

= 1 +
∑

n≥1

(−1)n(2ν + 4n + 1)�(ν + 1)�(ν + 2)z2n

n!�(ν + n + 1)�(ν + 2n + 2)24n(2ν + 1)
.

This is an entire function of growth order 1
4 , since

lim
n→∞

n log n

log �(n + 1) + log �(ν + n + 1) + log �(ν + 2n + 1) + log 24n(2ν+1)
�(ν+1)�(ν+2)

− log(2ν + 4n + 1)

= 1

4
,

where this limit follows easily on considering the limit

lim
n→∞

log �(an + b)

n log n
= a, where a, b > 0.

By applying Hadamard’s theorem [16, p. 26], it follows that (3.11) is indeed valid and
consequently we get (3.10).
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Now, we use the formula (3.6) and we get

�3 =
∑

n≥1,n �=k

1

γ 4
ν,n − γ 4

ν,k

= lim
x→γν,k

[

− 1

4x3 · W
′

ν (x)

Wν(x)
− 1

γ 4
ν,k − x4

]

= − 1

4γ 3
ν,k

lim
x→γν,k

(
W ′

ν (x)(γ 4
ν,k − x4) + 4x3Wν(x)

Wν(x)(γ 4
ν,k − x4)

)

,

which on applying the Bernoulli–L’Hospital rule twice gives

�3 = 1

8γ 3
ν,k

lim
x→γν,k

[
3

x
− W ′′

ν (x)

W ′
ν (x)

]
.

The logarithmic differentiation of (3.10) gives

W ′′
ν (x)

W ′
ν(x)

= 2ν

x
−

∑

n≥1

4x3

γ ′4
ν,n − x4 .

Now, using the following derivative formulas which follow easily from (1.2), we obtain

W ′
ν (x) = 2ν�(ν + 1)�(ν + 2)x−2ν−2 [

xW ′
ν(x) − (2ν + 1)Wν(x)

]

and

W ′′
ν (x) = 2ν�(ν + 1)�(ν + 2)x−2ν−3

[
x2W ′′

ν (x) − (4ν + 2)xW ′
ν(x)

+ (2ν + 1)(2ν + 2)Wν(x)] ,

from which we get

�3 = 1

8γ 4
ν,k

⎡

⎣2ν + 5 +
∑

n≥1

4γ 4
ν,k

γ ′4
ν,n − γ 4

ν,k

⎤

⎦ .

This completes the proof of equation (2.9). �

Proof of Theorem 6. Again using (1.2), we have

zW ′
ν (z)

Wν(z)
= −

∑

n≥1

4z4

γ 4
ν,n − z4 = −4

∑

n≥1

z4/γ 4
ν,n

1 − z4/γ 4
ν,n

= −4
∑

n≥1

∑

m≥1

z4m

γ 4m
ν,n

= −4
∑

m≥1

⎛

⎝
∑

n≥1

1

γ 4m
ν,n

⎞

⎠ z4m,

which is valid for |z| < γν,1 and ν > −1. Hence the conclusion follows. �
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Proof of Theorem 7. The infinite product representation (1.2) yields

[log(x
−2ν−1

4 Wν(
4
√
x))]′ =

∑

n≥1

1

x − γ 4
ν,n

.

This gives

fμ,ν(x) =
∑

n≥1

(
1

γ 4
ν,n − x

− 1

γ 4
μ,n − x

)

+ 1

16

(
1

(μ + 1)3
− 1

(ν + 1)3

)

and hence on differentiating m times, we get

f (m)
μ,ν (x) =

∑

n≥1

(
m!

(γ 4
ν,n − x)m+1 − m!

(γ 4
μ,n − x)m+1

)

≥ 0,

for all m ∈ N, μ ≥ ν > −1 and x ∈ [0, γ 4
ν,1). Here we used the monotonicity of zeros

of cross-product of Bessel functions [1], namely ν 	→ γν,n is increasing on (−1,∞) for
n ∈ N fixed. Therefore, for all n,m ∈ N, μ ≥ ν > −1 and x ∈ [0, γ 4

ν,1), we have
(x − γ 4

ν,n)
m+1 ≤ (x − γ 4

μ,n)
m+1 and consequently the above inequality follows. Since

fμ,ν is increasing on [0, γ 4
ν,1) for all μ ≥ ν > −1 and in view of (2.13), fμ,ν(0) = 0 we

obtain that fμ,ν(x) ≥ fμ,ν(0) = 0. Therefore x 	→ fμ,ν(x) is absolutely monotonic on
[0, γ 4

ν,1) for all μ ≥ ν > −1.
Now, consider

hν(x) =
⎡

⎣log

⎛

⎝ x
ν
2 + 1

4 e
−x

16(ν+1)3

Wν(
4
√
x)

⎞

⎠

⎤

⎦

′
= − 1

16(ν + 1)3
+

∑

n≥1

1

γ 4
ν,n − x

.

Therefore by differentiating m times, we have

h(m)
ν (x) =

∑

n≥1

m!
(γ 4

ν,n − x)m
≥ 0

for all m ∈ N, ν > −1 and x ∈ [0, γ 4
ν,1). Hence hν is increasing on [0, γ 4

ν,1) for all ν > −1
and in view of (2.13), hν(0) = 0, we obtain that hν(x) ≥ hν(0) = 0. This proves the
absolute monotonicity of x 	→ hν(x) on [0, γ 4

ν,1) for all ν > −1.
Finally, by using the fact that the exponential of a function having an absolutely mono-

tonic derivative is absolutely monotonic, we conclude that x 	→ gμ,ν(x) and x 	→ qν(x)
are absolutely monotonic on [0, γ 4

ν,1). �

Proof of Corollary 2. Since x 	→ qν(x) is absolutely monotonic on [0, γ 4
ν,1), it is increas-

ing. Therefore from (1.2), we get

qν(x) ≥ qν(0) = 22ν�(ν + 1)�(ν + 2),
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which implies that

W ( 4
√
x) ≤ x

2ν+1
4 e

− x
16(ν+1)3

22ν�(ν + 1)�(ν + 2)
.

Hence by changing x to x4 we get the required inequality. �

Proof of Theorem 8.

(a), (c). To prove the inequality (2.21), it is enough to establish the following inequality:

Dν(x) ≥ 1 − x2

1 + x2 for all |x | ≤ δν

αν,1
.

Taking into account the infinite product representation (1.3), we have that

Dν(xαν,1) = 1 − x2

1 + x2 [(1 + x2) lim
n→∞ Fν,n(x)], (3.12)

where

Fν,n(x) =
n∏

k=2

(

1 − x2α2
ν,1

α2
ν,k

)

.

Making use of the principle of mathematical induction, we show that the following inequal-
ity

(1 + x2)Fν,n(x) ≥ 1 + x2αν,1

αν,n
(3.13)

is valid for all ν > −1, n ≥ 2 and |x | ≤ δν

αν,1
. For n = 2, the inequality (3.13) follows

from the assumption in the statement of the theorem. Namely, we have

(1 + x2)Fν,2(x) −
(

1 + x2αν,1

αν,2

)
= x2

α2
ν,2

(
�ν(1) − α2

ν,1x
2
)

≥ 0.

Now, let us assume that the inequality (3.13) holds for some m ≥ 2. Therefore

(1 + x2)Fν,m+1(x) −
(

1 + x2αν,1

αν,m+1

)

= (1 + x2)Fν,m(x)

(

1 − x2α2
ν,1

α2
ν,m+1

)

−
(

1 + x2αν,1

αν,m+1

)

≥
(

1 + x2αν,1

αν,m

)(

1 − x2α2
ν,1

α2
ν,m+1

)

−
(

1 + x2αν,1

αν,m+1

)

= x2αν,1

αν,mα2
ν,m+1

(
�ν(m) − α2

ν,1x
2
)

≥ 0.
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Hence, by the principle of mathematical induction, inequality (3.13) holds for all n ≥ 2.
Now taking limit n → ∞ in (3.13), we get

lim
n→∞(1 + x2)Fν,n(x) ≥ lim

n→∞

(
1 + x2αν,1

αν,n

)
= 1,

which in view of (3.12) gives the inequality (2.20).
To prove the inequality (2.22), similar to part (a), it is enough to prove the inequality

Wν(x) ≥ 1 − x4

1 + x4 for all |x | ≤ εν

γν,1
.

Now using (1.2), we have

Wν(xγν,1) = 1 − x4

1 + x4 [(1 + x4) lim
n→∞Gν,n(x)], (3.14)

where

Gν,n(x) =
n∏

k=2

(

1 − x4γ 4
ν,1

γ 4
ν,k

)

.

Using the principle of mathematical induction, we show that the inequality

(1 + x4)Gν,n(x) ≥ 1 + x4γ 2
ν,1

γ 2
ν,n

(3.15)

holds for all ν > −1, n ≥ 2 and |x | ≤ εν

γν,1
. For n = 2, (3.15) follows from the assumption

of the theorem. Hence we have

(1 + x4)Gν,2(x) −
(

1 + x4γ 2
ν,1

γ 2
ν,2

)

= x4

γ 4
ν,2

(
ν(1) − γ 4
ν,1x

4) ≥ 0.

Now, let us assume that the inequality (3.15) holds for some m ≥ 2. Therefore,

(1 + x4)Gν,m+1(x) −
(

1 + x4γ 2
ν,1

γ 2
ν,m+1

)

= (1 + x4)Gν,m(x)

(

1 − x4γ 4
ν,1

γ 4
ν,m+1

)

−
(

1 + x4γ 2
ν,1

γ 2
ν,m+1

)

≥
(

1 + x4γ 2
ν,1

γ 2
ν,m

)(

1 − x4γ 4
ν,1

γ 4
ν,m+1

)

−
(

1 + x4γ 2
ν,1

γ 2
ν,m+1

)

= x4γ 2
ν,1

γ 2
ν,mγ 4

ν,m+1

(
ν(m) − γ 4
ν,1x

4) ≥ 0.
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Consequently, by the principle of mathematical induction, inequality (3.15) holds for all
n ≥ 2. Now taking the limit n → ∞ in (3.15), we get

lim
n→∞(1 + x4)Gν,n(x) ≥ lim

n→∞

(

1 + x4γ 2
ν,1

γ 2
ν,n

)

= 1,

which in view of (3.14) gives the inequality (2.22).
(b) Since the functions appear in the inequality (2.21) are even in x , it is enough to prove
the inequality (2.21) for x ∈ [0, αν,1). Let us define a function φν : [0, αν,1) → R by

φν(x) = 3α2
ν,1

8(ν + 1)
log

(
α2

ν,1 − x2

α2
ν,1 + x2

)

− logDν(x),

which in view of (2.12), (2.15) and (2.18) yields

φ′
ν(x) = − 3α2

ν,1

8(ν + 1)
· 4xα2

ν,1

α4
ν,1 − x4

− D ′
ν(x)

Dν(x)

= −2xη2(ν) · α4
ν,1

α4
ν,1 − x4

+ 2

x

∑

m≥1

η2m(ν)x2m

= 2η2(ν)

x(α2
ν,1 + x2)

⎡

⎣
(α2

ν,1 + x2)

η2(ν)

∑

m≥1

η2m(ν)x2m − α4
ν,1x

2

α2
ν,1 − x2

⎤

⎦

= 2η2(ν)

x(α2
ν,1 + x2)

⎡

⎣α2
ν,1x

2 + α2
ν,1

η2(ν)

∑

m≥2

η2m(ν)x2m

+ 1

η2(ν)

∑

m≥1

η2m(ν)x2m+2 −
∑

m≥0

x2m+2

α2m−2
ν,1

⎤

⎦

= 2η2(ν)

x(α2
ν,1 + x2)

⎡

⎣
α2

ν,1

η2(ν)

∑

m≥2

η2m(ν)x2m

+ 1

η2(ν)

∑

m≥2

η2m−2(ν)x2m −
∑

m≥2

x2m

α2m−4
ν,1

⎤

⎦

= 2η2(ν)

x(α2
ν,1 + x2)

⎡

⎣
∑

m≥2

(
α2

ν,1η2m(ν)

η2(ν)
+ η2m−2(ν)

η2(ν)
− 1

α2m−4
ν,1

)

x2m

⎤

⎦

≥ 2η2(ν)

x(α2
ν,1 + x2)

⎡

⎣
∑

m≥2

(
2α2

ν,1η2m(ν)

η2(ν)
− 1

α2m−4
ν,1

)

x2m

⎤

⎦

= 2η2(ν)

x(α2
ν,1 + x2)

⎡

⎣
∑

m≥2

(
2α−2

ν,1α
2m
ν,1η2m(ν) − η2(ν)

η2(ν)α2m−4
ν,1

)

x2m

⎤

⎦
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≥ 2η2(ν)

x(α2
ν,1 + x2)

⎡

⎣
∑

m≥2

(
2α−2

ν,1 − η2(ν)

η2(ν)α2m−4
ν,1

)

x2m

⎤

⎦

= 2η2(ν)

x(α2
ν,1 + x2)

⎡

⎣
∑

m≥2

( 8(ν+1)
3 α−2

ν,1 − 1

α2m−4
ν,1

)

x2m

⎤

⎦

>
2η2(ν)

x(α2
ν,1 + x2)

⎡

⎣
∑

m≥2

(
8 − ν

9(ν + 2)α2m−4
ν,1

)

x2m

⎤

⎦ > 0.

Here in last inequality we have used the upper bound for the smallest positive zero of the
Dini function (see [14, p. 11] with α + ν = 1)

α2
ν,1 = x2

1 <
4(α + ν + 2)(ν + α)(ν + 1)(ν + 2)

(α + ν)2 + 4α + 8ν + 8
= 12(ν + 1)(ν + 2)

13 + 4ν
.

Therefore for ν ∈ (−1, 8), the function φν is increasing on [0, αν,1) and hence φν(x) ≥
φν(0) = 0 and consequently the inequality (2.21) holds.

Now, by using the L’Hospital rule (2.12) and (3.7), we have the limit

lim
x→0

logDν(x)

log

(
α2

ν,1−x2

α2
ν,1+x2

) = lim
x→0

D ′
ν(x)

Dν(x)
· x

4 − α4
ν,1

4xα2
ν,1

= 3α2
ν,1

8(ν + 1)
= mν .

This implies that indeed the constant mν is best possible.
(d) Similar to the proof of part (b) of this theorem, it is enough to prove the inequality
(2.23) for x ∈ [0, γν,1). Let us define a function �ν : [0, γν,1) → R by

�ν(x) = γ 4
ν,1

32(ν + 1)3
log

(
γ 4
ν,1 − x4

γ 4
ν,1 + x4

)

− logWν(x),

which on using (2.13), (2.16) and (2.19) gives

�′
ν(x) = − γ 4

ν,1

32(ν + 1)3
· 8x3γ 4

ν,1

γ 8
ν,1 − x8

− W ′
ν (x)

Wν(x)

= −4x3ζ4(ν) · γ 8
ν,1

γ 8
ν,1 − x8

+ 4

x

∑

m≥1

ζ4m(ν)x4m

= 4ζ4(ν)

x(γ 4
ν,1 + x4)

⎡

⎣
(γ 4

ν,1 + x4)

ζ4(ν)

∑

m≥1

ζ4m(ν)x4m − γ 8
ν,1x

4

γ 4
ν,1 − x4

⎤

⎦

= 4ζ4(ν)

x(γ 4
ν,1 + x4)

⎡

⎣γ 4
ν,1x

4 + γ 4
ν,1

ζ4(ν)

∑

m≥2

ζ4m(ν)x4m

+ 1

ζ4(ν)

∑

m≥1

ζ4m(ν)x4m+4 −
∑

m≥0

x4m+4

γ 4m−4
ν,1

⎤

⎦
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= 4ζ4(ν)

x(γ 4
ν,1 + x4)

⎡

⎣
γ 4
ν,1

ζ4(ν)

∑

m≥2

ζ4m(ν)x4m

+ 1

ζ4(ν)

∑

m≥2

ζ4m−4(ν)x4m −
∑

m≥2

x4m

γ 4m−8
ν,1

⎤

⎦

= 4ζ2(ν)

x(γ 4
ν,1 + x4)

⎡

⎣
∑

m≥2

(
γ 4
ν,1ζ4m(ν)

ζ4(ν)
+ ζ4m−4(ν)

ζ4(ν)
− 1

γ 4m−8
ν,1

)

x4m

⎤

⎦

≥ 4ζ4(ν)

x(γ 4
ν,1 + x4)

⎡

⎣
∑

m≥2

(
2γ 4

ν,1ζ4m(ν)

ζ4(ν)
− 1

γ 4m−8
ν,1

)

x4m

⎤

⎦

= 4ζ4(ν)

x(γ 4
ν,1 + x4)

⎡

⎣
∑

m≥2

(
2γ −4

ν,1 γ 4m
ν,1 ζ4m(ν) − ζ4(ν)

ζ4(ν)γ 4m−8
ν,1

)

x4m

⎤

⎦

≥ 4ζ4(ν)

x(γ 4
ν,1 + x4)

⎡

⎣
∑

m≥2

(
2γ −4

ν,1 − ζ4(ν)

ζ4(ν)γ 4m−8
ν,1

)

x4m

⎤

⎦

= 4ζ4(ν)

x(γ 4
ν,1 + x4)

⎡

⎣
∑

m≥2

(
32(ν + 1)3γ

−4
ν,1 − 1

γ 4m−8
ν,1

)

x4m

⎤

⎦

>
4ζ4(ν)

x(γ 4
ν,1 + x4)

⎡

⎣
∑

m≥2

(
ν − ν2 + 14

(ν + 4)(ν + 5)γ 4m−8
ν,1

)

x4m

⎤

⎦ > 0,

where the last inequality follows by using the upper bound given in (2.17). Therefore for
ν ∈ (−1, r), the function �ν is increasing on [0, γν,1). This implies that �ν(x) ≥ �ν(0) =
0 and hence the inequality (2.23) holds.

Now using the L’Hospital rule (2.13) and (3.6), we have the limit

lim
x→0

logWν(x)

log

(
γ 4
ν,1−x4

γ 4
ν,1+x4

) = lim
x→0

W ′
ν (x)

Wν(x)
· x

8 − γ 8
ν,1

8x3γ 4
ν,1

= γ 4
ν,1

32(ν + 1)3
= nν .

This implies that indeed the constant nν is best possible. �

Proof of Theorem 9. Since all the functions appearing in inequality (2.24) are even in x ,
it is enough to prove the inequality (2.24) for x ∈ (0, r) for any given r ∈ (0,∞). Let us
define a function Qν : (0, r) → R by

Qν(x) = log λν(x)

log
(
r2+x2

r2−x2

) = f (x)

g(x)
.

Making use of the infinite product representation (1.4), we obtain

f ′(x)
g′(x)

= 1

2r2

∑

n≥1

r4 − x4

α2
ν,n + x2 .
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Now, it is not difficult to verify that each term of the above series is decreasing on (0, r)

as a function of x . Thus, x 	→ f ′(x)
g′(x) is decreasing on (0, r) and consequently with the help

of monotone form of L’Hospital’s rule [2, Lemma 2.2], we conclude that x 	→ Qν(x) is
decreasing on (0, r). Moreover,

α = lim
x→r

Qν(x) < Qν(x) < lim
x→0

Qν(x) = β.

This completes the proof of (2.24). �

Proof of Theorem 10. In order to prove the inequalities (2.28) and (2.29), it is enough to
consider the case x ∈ (0, jν,1) as all the functions appear in (2.28) and (2.29) are even in
x . Define a function kν : [0, jν,1) → R by

kν(x) = logJν(x) − log

(
j2
ν,1 − x2

j2
ν,1 + x2

)

.

Now we recall Kishore’s formula [15]

x

2

Jν+1(x)

Jν(x)
=

∑

m≥1

σ (2m)
ν x2m

which in view of the identity J ′
ν (x)

Jν (x) = − Jν+1(x)
Jν (x) can be re-written as

x

2

J ′
ν(x)

Jν(x)
= −

∑

m≥1

σ (2m)
ν x2m .

Therefore on using the above equation for kν(x), we have

k′
ν(x) = J ′

ν(x)

Jν(x)
+ 4x j2

ν,1

( j2
ν,1 + x2)( j2

ν,1 − x2)

= − 2

x

∑

m≥1

σ (2m)
ν x2m + 4x

j2
ν,1 + x2

∑

m≥0

x2m

j2m
ν,1

= 2

x( j2
ν,1 + x2)

⎡

⎣−( j2
ν,1 + x2)

∑

m≥1

σ (2m)
ν x2m + 2

∑

m≥0

x2m+2

j2m
ν,1

⎤

⎦

= 2

x( j2
ν,1 + x2)

⎡

⎣x2
(

2 − j2
ν,1σ

(2)
ν

)

−
∑

m≥2

j2
ν,1σ

(2m)
ν x2m −

∑

m≥1

σ (2m)
ν x2m+2 + 2

∑

m≥1

x2m+2

j2m
ν,1

⎤

⎦

= 2

x( j2
ν,1 + x2)

⎡

⎣x2

(

2 − j2
ν,1

4(ν + 1)

)
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+
∑

m≥2

(
2

j2m−2
ν,1

− j2
ν,1σ

(2m) − σ (2m−2)

)

x2m

⎤

⎦

= 2

x( j2
ν,1 + x2)

⎡

⎣x2

(
8(ν + 1) − j2

ν,1

4(ν + 1)

)

+
∑

m≥2

(
(1 − j2m

ν,1σ (2m)) + (1 − j2m−2
ν,1 σ (2m−2))

j2m−2
ν,1

)

x2m

⎤

⎦

≥ 0,

where ν ≥ ν0. Here we have used Lemma 2 and the left-hand side of Rayleigh inequality
(2.27). Therefore the function kν is decreasing on [0, jν,1) for all ν ≥ ν0. Consequently,
kν(x) ≤ kν(0) = 0 and hence the inequality (2.28) follows.

Now, taking into account the inequality (2.28), the following inequality [5, Theorem 3]

[
Jν+1(x)

]ν+2 ≥ [
Jν(x)

]ν+1
,

which is valid for all ν > −1 and x ∈ (− jν,1, jν,1) gives

Jν+1(x)

Jν(x)
≥ [

Jν(x)
] ν+1

ν+2 −1 = 1
[
Jν(x)

]1/(ν+2)
≥

(
j2
ν,1 + x2

j2
ν,1 − x2

) 1
ν+2

.

Hence the inequality (2.29) is indeed true. �

Proof of Theorem 11. Let ν > −1 and 0 < |x | < αν,1. Then we first prove the following
identity:

Aν(x) = −2(ν + 1)

3
· α2

ν,1 − x2

x
· D

′
ν(x)

Dν(x)
= α2

ν,1 + 4(ν + 1)

3

∑

m≥1

Amx
2m,

(3.16)

where Am = α2
ν,1η2m+2(ν) − η2m(ν).

To prove (3.16), we appeal to equations (2.12) and (2.18) to obtain

Aν(x) = 4(ν + 1)

3

α2
ν,1 − x2

x2

(
− xD ′

ν(x)

2Dν(x)

)

= 1

η2(ν)

α2
ν,1 − x2

x2

∑

m≥1

η2m(ν)x2m

= α2
ν,1

η2(ν)

⎛

⎝η2(ν) +
∑

m≥2

η2m(ν)x2m−2

⎞

⎠ − 1

η2(ν)

∑

m≥1

η2m(ν)x2m
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= α2
ν,1 + 1

η2(ν)

∑

m≥1

(α2
ν,1η2m+2(ν) − η2m(ν))x2m

= α2
ν,1 + 4(ν + 1)

3

∑

m≥1

Amx
2m .

Now, for a given n ∈ N, let us consider

A (x) = 1

x2n+2

(
Aν(x) − α2

ν,1
4(ν+1)

3

−
n∑

m=1

Amx
2m

)

,

which in view of (3.16) can be rewritten as

A (x) =
∑

m≥n+1

Amx
2m−2n−2 =

∑

m≥0

An+1+mx
2m .

Taking into account the right-hand side of (2.15), An < 0 for all n ∈ N and consequently
from the above expression, x 	→ A (x) is strictly decreasing on (0, αν,1), which implies
that

a = lim
x→α−

ν,1

A (x) < A (x) < lim
x→0+

ν,1

A (x) = b,

where b = An+1 and in view of the limit limx→α−
ν,1

Aν(x) = 4(ν+1)
3 , we have

a = 1

α2n+2
ν,1

(

1 − 3α2
ν,1

4(ν + 1)
−

n∑

m=1

Amα2m
ν,1

)

.

This completes the proof. �

Proof of Theorem 12. Let ν > −1 and 0 < |x | < γν,1. Then we need to prove the identity

Bν(x) = −4(ν + 1)3 · γ 4
ν,1 − x4

x3 · W
′

ν (x)

Wν(x)

= γ 4
ν,1 + 16(ν + 1)3

∑

m≥1

Bmx
4m, (3.17)

where Bm = γ 4
ν,1ζ4m+4(ν) − ζ4m(ν). In order to prove (3.17), we use the equations (2.13)

and (2.19) and obtain

Bν(x) = 16(ν + 1)3 · γ 4
ν,1 − x4

x4

(
− xW ′

ν (x)

4Wν(x)

)

= 1

ζ4(ν)

γ 4
ν,1 − x4

x4

∑

m≥1

ζ4m(ν)x4m
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= γ 4
ν,1

ζ4(ν)

⎛

⎝ζ4(ν) +
∑

m≥2

ζ4m(ν)x4m−4

⎞

⎠ − 1

ζ4(ν)

∑

m≥1

ζ4m(ν)x4m

= γ 4
ν,1 + 1

ζ4(ν)

∑

m≥1

(
γ 4
ν,1ζ4m+4(ν) − ζ4m(ν)

)
x4m

= γ 4
ν,1 + 16(ν + 1)3

∑

m≥1

Bmx
4m .

Now, for a given n ∈ N, consider

B(x) = 1

x4n+4

(
Bν(x) − γ 4

ν,1

16(ν + 1)3
−

n∑

m=1

Bmx
4m

)

,

which in view of (3.17) can be rewritten as

B(x) =
∑

m≥n+1

Amx
4m−4n−4 =

∑

m≥0

An+1+mx
4m .

Using the right-hand side of (2.16), Bn < 0 for all n ∈ N and hence from the above
expression, x 	→ B(x) is strictly decreasing on (0, γν,1). From this, we obtain

r = lim
x→γ −

ν,1

B(x) < B(x) < lim
x→0+

ν,1

B(x) = s,

where s = Bn+1 and by taking into account the limit limx→γ −
ν,1

Bν(x) = 16(ν + 1)3, one

has

r = 1

γ 4n+4
ν,1

(

1 − γ 4
ν,1

16(ν + 1)3
−

n∑

m=1

Bmγ 4m
ν,1

)

.

This completes the proof. �
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