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1. Introduction and preliminaries

Bessel and modified Bessel functions of the first kind play an important role in the theory
of special functions because they are useful in many problems of applied mathematics.
These functions have been studied by many researchers, and their study goes back to
famous scientists like Bessel, Euler, Fourier, and others. Motivated by their appearance as
eigenvalues in the clamped plate problem for the ball, Ashbaugh and Benguria [3] have
conjectured that the positive zeros of the cross-product of Bessel and modified Bessel
functions of the first kind, defined by

Wy(z) = JU(Z)IL(Z) - J&(Z)IV(Z) = L1 (@ L(2) + L) 111(2),
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where J, and I, stand for the Bessel and modified Bessel functions of the first kind,
increase with v on [— %, oo) . Lorch [17] verified this conjecture and presented some other
properties of the zeros of the above cross-product of Bessel and modified Bessel functions.
See also the paper by Ashbaugh and Benguria [3] for more details. Recently, Alkharsani
et al. [1] pointed out that the above monotonicity property is valid on (—1, co) and proved
that for v > —1 and z € C, the power series representation

(_ 1)" (%)2v+4n+l

Wy(z) =2 1.1
v gn!F(U+n+l)F(v+2n+2) b
and the infinite product representation
2v_—2v-1 z!
(@) =222+ DI+ W) = [[(1- 5 (1.2)
l’lZl v,n

are valid, see [1] for more details. In this paper, we would like to continue the study of the
properties of the cross-product of Bessel and modified Bessel functions of the first kind by
showing a series of new results. We also consider another special combination of Bessel
functions, namely, the so called Dini functions d, : C — C, defined by

dy(z) = (1 —v)Jy(2) + 2J,(2) = Ju(2) — 2Jv+1(2),
and the modified Dini function &, : C — C, defined by
£,(x) =17"d,(i2) = (1 = )1, (2) + 21} (2) = [,(z) + 2L, 41(2).

For v > —1 and z € C, the Weierstrassian factorization of Dini functions is [7]

2
@y(Z) = ZVF(V + l)zf‘)dv(z) = 1_[ (1 — aZZ ) (13)

nZl v,n

and the Weierstrassian factorization of modified Dini function is [8]

2
)"V(X)ZZVF(V+1)X_U§'V(X)=I_[ (l-i—ax2 ), (1.4)

n>1 v,n

where o, ,, stands for the n-th positive zero of the Dini function d,,.

The paper is organized as follows: section 2 contains the main results on the cross-
product of Bessel functions, Dini functions and their zeros. Section 3 is devoted to the
proofs of the main results. In our proofs, we use a series of methods: Mittag—Leffler expan-
sions, Laguerre separation theorem, Laguerre inequality for entire functions, differential
equation for the Dini function, monotone form of L’Hospital’s rule, and representations
of logarithmic derivatives of Dini functions and cross-product of Bessel functions via the
spectral zeta functions of the zeros of the above functions.
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2. Main results
2.1 Monotonicity properties

Our first set of results are some monotonicity and concavity properties of cross-product of
Bessel and modified Bessel functions of first kind.

Theorem 1. Let v > —1 and define S = S1 U S», where S| = Unzl[_)’lﬂns —Vv.2n—-11s
S, = Unz] [Vv.2n—1, Yv.2n] and y, , denotes the n-th positive zero of the function W,,.
Then the following assertions hold true:

(a) The function x — W, (x) is negative on S and it is strictly positive on R \ S,

(b) The function x — W,(x) is strictly increasing on (—yy.1, 0] and strictly decreasing
on [0, yv,1);

(¢) The function x — W, (x) is strictly log-concave on R \ S and strictly geometrically
concave on (0, 00) \ S2;

(d) The function x — W, (x) is strictly log-concave on (0, 00) \ > forall v > —l;

(e) The function v +— W, (x) is increasing on (—1, 00) for all x € (—yy.1, Yv.1) and the
Sunction v — x W] (x)/#,(x) is increasing on (—1, 00) for all x € R;

(f) The function x — (—log %((‘/f))/ and the function x — 1/%,,(¥/x) are absolutely
monotonic on (0, ylil)for allv > —1.

2.2 Interlacing of positive real zeros of Bessel and related functions

Let us recall Dixon’s theorem [20, p. 480] which states that, when v > —1 and a, b, ¢, d
are constants such that ad # bc, then the positive zeros of x — aJ, (x) + bxJ)(x) are
interlaced with those of x +— c¢J,(x) + dxJ)(x). Therefore if we choose a = 1 — v,
b=c=1andd = 0, then for v > —1, we have

Jvon—1 < 0yn < jun, Where n €N, 2.1
with the convention that j, o = 0. Here j, , stands for the n-th positive zero of the Bessel
function J,. In [1], among other things, the following interlacing inequality has been
proved for v > —1,

Jvon < Yvn < jun+1, where n e N. 2.2)
Taking into account the above two interlacing inequalities, it is natural to ask whether the
zeros of Dini functions and of the cross-product of Bessel functions satisfy some interlacing

property. The next theorem will answer this question.

Theorem 2. For v > —1, the zeros of Dini functions and of the cross-product of Bessel
functions are interlacing, that is, they satisfy the following interlacing inequality:

Uyn < Yo < yntl, Where neN. 2.3)

Thus, combining the inequalities (2.1), (2.2) and (2.3), we have the following:

Uyn < jon < Von < ynt+l < juntl, Wwhere n e N.
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As an immediate consequence of the above interlacing properties, we have the following
upper and lower bounds for the cross-product of Bessel functions and consequently we
can get bounds for ratio of modified Bessel and Bessel functions of the first kind. The
normalized Bessel and modified Bessel functions of the first kind, defined by

Jy(x) =2"T(w+ Dx"Jy(x) and #,(x) =2"T(v+ Dx""1,(x),
play an important role in one of these results and also in the sequel.

COROLLARY 1

Ifv > —1, then the following inequalities hold:

4
o
Dy(X)hy(x) < #y(x) < %%(X)M(X) Jor |x| <ay 2.4)
o, =X
Ji
()2 (x) < Wy (x) < j4v—’x4/u(x)fv(x) Jor x| < jvi (2.5)
v,
and
2 2\ T
N O AR .
e20+h < < : or 0 <x < jy1. 2.6
7,(x) (jf’l — 32 4 sl @0

The reverse inequalities in (2.6) holds for —j, 1 < x < 0.

In view of the inequality o, , < j,, where n € N, we observe that the left-hand side
inequality of (2.5) is better than the left-hand side inequality of (2.4) while the right-hand
side inequality of (2.4) is better than the right-hand side inequality of (2.5).

Moreover, the next interlacing properties are also valid.

Theorem 3. Ifv > —1, then the following interlacing properties are valid:

(a) The zeros of the function z — 9,(z) are interlaced with those of the function z +—
Dy (2).

(b) The zeros the function z — W,)(\/z) are interlaced with those of the function z —
7 (V).

(c) Forv > 0, the zeros of the function z — d,,(z) are interlaced with those of the function
7+ d,(2).

Now, we present an identity for zeros of Dini functions and zeros of cross-product of
Bessel functions which is analogous to the identity of Calogero for the zeros of Bessel
functions of the first kind, see [6] for more details.

Theorem 4. Letv > —1,k € Nand y), denote the k-th positive zero of the function W;,.
Then the following identities are valid.:

1 1 a2 +2v—1
Y = |l | @7
n= Tk Qo = Lok Ay aj, —2v+1
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1 1 a2 +2v—1
Z 1 T = |Vt
- 8o o, —2v+1

n>1,n#k Xy.n O{V,k O[V,
1 1
- (2.8)
2a] ,;_1 al, +ay,
and
1 1 4yt
Y —— == 2v+5+Z = 2.9)
o Tk Yo ~ Yok 8%k S - v

2.3 Rayleigh functions

Before we state our next result, let us define the Rayleigh functions (or spectral zeta
functions) for the zeros of Dini function and for the zeros of cross-product of Bessel and
modified Bessel functions by

mm(v) = Zm (2.10)
n>1
and
Cam(v) = 4m (2.11)
n>1
respectively, where v > —1 and m € N. Note that for m = 1, we have [7]
no) =Y - =TT 2.12)
e 4(1) +1
By using the series (1.1), one gets
1 W/ 4
_<2v+1_ﬂ>22%7
4 WV(Z) n>1 Vu,n -z
and taking limit z — 0 followed by dividing with z* on each side, we obtain
L) =Y — : S— (2.13)
* yjn 160+ D +2)(v+3) 22w+ 13 '

n>1

For the sake of brevity, we denote (v + 1)(v +2)(v 4 3) by (v + 1)3 using the well-known
Pochhammer (Appell) symbol defined by («)g = 0 for o # 0 and

@p=a(@+D(a+2)---(a+n—-1), forn>1.

In general, for any m € N, the Rayleigh function &4, (v) can be obtained by comparing
the coefficients of z*” on both sides of (2.19). For example, by comparing the coefficients
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of z* on both sides of (2.19), one can get (2.13) and by comparing the coefficients of z®
on both sides of (2.19) yields

Sv+17 Sv+17

256(v + D2(v +2)2(v +3)2(v + (v + 5) - 28w+ 1D3(v+Ds
(2.14)

Lg(v) =

Alternatively, taking into account the power series (1.1) and infinite product representation
(1.2) one can extract the Rayleigh function ¢4, (v) by using the Euler—Rayleigh method
(see [14, p. 3]). Namely, let f(z) be an entire function with power series representation

fR=1+) ap"
n>1
and an infinite product representation
Z
f<z>=1"[<1——>,
n
n>1

where it is assumed that ), _; |z, |=! < co. Then the Rayleigh function

is given by the following formula
n—1
S, = —na, — Zai Sy_i.
i=1

Therefore, by taking f(z) = #,(¥z), from (1.1) and (1.2), we have

B —D"T(w+ DI (v +2)
T2 T(w+n+ DI +2n+2)

an
and hence S = &4(v) = —ay, S = {3(v) = —2a — a1 S1 = —2as + a? and so on.

Now, we present the Euler—Rayleigh inequalities for zeros of Dini functions and cross-
product of Bessel functions, which will be used in the sequel.

Lemma 1. Letv > —1 and m € N. Then

2 N2m (V)

o W] <o) < —"—— (2.15)
n2m+2(v)
and
“1/m _ 4 Sam (V)
[Sam (V)] <Y1 < —§4m+4(\)). (2.16)

The above inequalities can be verified easily by using the definition of 172, (v), {am (V)
and the order relations 0 <y <ap2 < - <oy, <---and0 <y 1 <po2 <--- <

)/v’n<..._
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An immediate consequence of the above inequality will give the lower and upper bounds
for the smallest positive zero of the cross-product of Bessel functions.

Theorem S. Let v > —1 and y, 1 denote the smallest positive zero of the cross-product
of Bessel functions W, (z). Then we have the following bounds:

220+ D3O+ H +3) oyt < 24w+ 1)s
V5 +17 vl 50+ 17

Note that using (2.13) and (2.14), the left-hand side of the inequality (2.17) follows from
the left-hand side of (2.16) by taking m = 2, while the right-hand side of the inequality
(2.17) can be extracted from the right-hand side of (2.16) by taking m = 1. So we omit
the proof of Theorem 5.

Observe that for m = 1, the left-hand side of (2.16) gives the inequality

2.17)

iy > 24 + D3,

which is weaker than the left-hand side of (2.17).
The power series representation [7]

Zd;(Z) 2
=v-2 Mam(v)z "
dy(z) mz>:1

which is valid for v > —1, z € C such that |z] < «,,1, can be rewritten as

2 23 ), @18)

m>1

where 2,,(z) = 2'T (v 4+ 1)z7Vd, (z). Therefore, the function x +— _x%@ ((x)) is absolutely

monotonic on (0, v, 1) for all v > —1. The next theorem is analogous to this result.

Theorem 6. Let v > —1 and z € C such that |z| < yy,1. Then

Z%’(z) _ 4m
o = —4 " a2 (2.19)

m>1
Moreover, the function

W] (x)
()

is absolutely monotonic on (0, y,.1) forallv > —1.

In addition, the next result is valid.

Theorem 7. Let u > v > —1. Then the functions f, v, &u,v, hv, qv : [0, V\j‘,l) — (0, 00),
defined by
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X 4 !
fuwx) = [log <xv2”el6((“+l‘>3_<”+l”3) %)] ;

X 4
g () = 37 o To (15 ~ g ) W (V).
’ W ()

S /
xi“rze T6(v+1)3

hv(x) = IOg W

and
x§+}e16(;j1>3
X)= ——
WO = T T

are absolutely monotonic.

Observe that the above absolutely monotonicity of ¢, can be used to find the upper bound for
the cross-product of Bessel and modified Bessel functions. Namely, we have the following
inequality.

COROLLARY 2

Ifv>—landx €0, yy.1), then

4
x2v+le T 60T

W) = o T D +2)°

2.4 Redheffer-type inequalities

We continue with another set of results, namely Redheffer-type inequalities. In the litera-
ture, the inequality

sin x - 2 — x?

x T or?4x?

where x € R,

is known as Redheffer inequality, see [18]. In [4], the author extended the above Redheffer
type inequalities for the normalized Bessel functions of the first kind _¢#, (x) = 2"T"(v +
1x~"J,(x) and the normalized modified Bessel function .#,(x) = 2"T'(v + 1)x ™V, (x).
For more details about Redheffer type inequalities, one can refer to [10,11,21] and ref-
erences therein. Recently in [8], Redheffer-type inequalities for modified Dini functions
were studied. In this subsection, we study Redheffer type inequalities for Dini functions
and cross-product of Bessel and modified Bessel functions. Motivated by the result from
[21, Theorem 1], we extend and sharpen the Redheffer-type inequalities for modified Dini
functions [8, Theorem 7].

Theorem 8. Let «, , and y, , denote the n-th positive zero of d, and W, respectively.
The following Redheffer-type inequalities are valid:
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(@) Ifv> —1and ¥, (n) = Olv nl = O 10y — Qy pOy pyl > 0forn € N, then

2 2
ol —x
Dy(x) = ;1— forall |x| <8, = min {av’l, \/\Ilv(n)}.
aj + x2 n=1,v>—1
(2.20)
®) Ifv e (—1,8), then
a2 —X2 nmy
Dy(x) < <;‘—2> forall x € (—ay1, 1), 2.21)
o, tx

302 . .
where m, = 8(\)—111) is the best possible constant.

(¢) Ifv>—1and Q,(n) = yf’n_H - 71;2,17’1;2,:1 — yliny‘inH > 0 forn € N, then

4 4

— X
i = T
yvl+x

forall |x| <€, = min {y1,v/Q ()}
n>1,v>—1
(2.22)

@ Ifve(—1,r), wherer = %577 is the positive root of v — v2 4+ 14 =0, then

A
W(x) < (h) forall x € (=yv.1, ¥.1), (2.23)
v, 1

4
Y i
where n, = BT S the best possible constant.

The corresponding result for the modified Dini functions reads as follows.

Theorem 9. Let r € (0,00), |x| < r, v > —1 and A, be the modified Dini function
defined by (1.4). Then the following Redheffer-type inequality

2 2\ % 2 2\ B
r-+x r-+x
<A < 2.24
<I"2—X2) — U(x)_ <r2_x2> ( )
2

holds if and only if @« < 0 and B > %

We would like to take the opportunity to correct a mistake in the paper [10]. In the final
expression for ¢/, (x) [10, p. 263], ]Zm 5 should be replaced by 2,,, 7, where j, 1 stands for

the first positive zero of the Bessel function J,,. With this change the following inequalities
in [10, p. 259] may not hold true for all v > —7/8:

2

Bv

< (Fam for all j 2.25

Hv(x) < FER orall |x| < ju1 (2.25)
v, 1
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and

.2 2\ W
+x
{;*E())C) > (J,”z" 2) forall [x| < ju1, (2.26)
vx Jvi— %X

2 2
where f, = S(U +1) and y, = m are the best possible constants. Nevertheless,
the above inequalities are valid for v € (=1, vo] and |x| < j, 1, where vy € (1, 2) is the
unique root of the equation jf’l = 8(v + 1). Before we prove the above inequalities, let
us recall [10, Lemma 1], which will be useful in the sequel.

Lemma 2. Let v > —1 and j, 1 be the first positive zero of the Bessel function J,,. Then
the equation j3,1 = 8(v + 1) has exactly one positive root vy € (1, 2). Moreover,

jr <84+ 1) forve (—1,w],
j2u,1 > 8w+ 1) forv>y.

Now, taking into account the above correction in the expression ¢/, (x) [10], we have

ol (x) = ! ! Z[4(u+1)1v o m

20+ Dx j7 +x2 £

1
+4w 4 Do P2 — - j| x2m

Ju,1
S m T B LRy p— }cz’“
20+ Dx j7 | 4 x2 b 3"11 4
__ ! L [ Dy - 1]
200+ Dx jZ, +x2 =l 13”7 -4
o 1 5 s<v+1>jvf—1}x2m
R N et B ’

which in view of Lemma 2 gives
@, (x) >0 for v e (=1, vp].
Here we have used the Euler—Rayleigh inequalities [20, p. 502]

o 2m)

2 -1
CO I o (2.27)
oy

.2
< -]l),l <

which are valid form € N and v > —1, where
1
@2m) _
% - Z j2m
n>1v.n
is the Rayleigh function of order 2m. The rest of the proof is same as in [10, p. 263].

Itis also interesting to note that for v > vy, the following new Redheffer type inequalities
hold.
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Theorem 10. Let v > vy, where vy € (1, 2) is the unique root of the equation j&,l =
8(v 4 1). Then the following new Redheffer type inequalities are valid:

22
Ju(x) < juzlﬁ forall |x| < ju (2.28)
v, 1
and
1
-2 2\ v2
/v+l(x) Joat X .
> = orall x| < jy1. (2.29)
Fv(x) 13,1 —x2 f Jv,1

2.5 Bounds for logarithmic derivative of Bessel related functions

In this section, we investigate the bounds for logarithmic derivative of Dini functions and
the logarithmic derivative of cross-product of Bessel and modified Bessel functions. The
idea of these results come from [22].

Theorem 11. Letv > —1, A, = a‘%ylnznﬂ(v) — N2, (v), n € N. Then for n € N, the
following inequality holds true for all 0 < |x| < ay.1:

Ry() + 30+ Dax® 2 2041 Z(x)
0‘3,1 —x2 3x Dy (x)

Ron () + 3(v + Dbx®" 2
<

2 .2 ’
v, 1 X

o

where

1 3053’1 n -
4= "5 1- 4v +1) _mZ_IAmav,] , b=Au41 and

av,l
4v+1) <
Rop(x) = 013,1 + —3 Z Amxzm.
m=1
Moreover, a and b are sharp.

Theorem 12. Letv > —1, B, = V‘i1§4n+4(1}) — Can(v), n € N. Then for n € N, the
Sollowing inequality holds true for all 0 < |x| < .1,

San(x) +16(v + Darax®™t* 40 +1)3 #,(x)
< —_— .
Vil — x4 x3 Wy (x)
San(x) + 16(v + 1)zsx¥ts
< 7 7
Vo1 — X

)
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where

n

4
1 Vo1 4
= 1— ) _ B m ’ . y
' er;+4 ( 16(v + 1)3 n; m¥v,1 s 1 an

s

n
San(x) = i1 + 16(v + D)3 Z B x™™,

m=1

Moreover, r and s are sharp.

3. Proofs of main results

In this section, we prove our main results.

Proof of Theorem 1.
(a) By using the infinite product representation (1.2) and the order relation
0<)/v,1 <W2 < - <VYon<-",

we note thatif x € [y 2,1, Yv.2n] OT X € [—Vv.2n, —Vv.2n—1] then the first (2n — 1) terms
of the product (1.2) are negative and the remaining terms are strictly positive. Therefore
#;,(x) becomes negative on S. Now if x € (—yy.1, ¥v.1), then each terms of the product
(1.2) are strictly positive and if x € (yy.21, Yv.2n+1) OF X € (—Vp.2n+1, —Vv.2n), then the
first 2n terms are strictly negative while the remaining terms are strictly positive. Therefore,
#y(x) >0onR\ S.

(b) From part (a), we have %, (x) > O forx € (=1, yv.1). Therefore the infinite product
representation (1.2) gives

, W) (x) B 453
log ) = 3y =~ 2y

and hence the function x > %, (x) is strictly increasing on (—yy, 1, 0] and strictly decreas-
ing on [0, y,.1).
(c) By using the above equation and part (a) of this theorem, we have

%’(x)>/ __y 42 GBry, + 3%

log # ()" = <%(x> T

n>1

and

W)Y 16x7y,),
7 ) T = —xhY

From this, we conclude that the function x — #,(x) is strictly log-concave on R \ S and
strictly geometrically concave on (0, 00) \ S».
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(d) Since the function x +— x2vtl g log-concave on (0, co) for all v > —% and from

part (c) the function x — %, (x) is strictly log-concave on R \ S, we conclude that the
functions

x2”+17%,(x)
222w+ DI'(v + 2)

x = W,(x) =

is strictly log-concave on (0, 00) \ S for all v > —%. Here we used the fact that product
of a log-concave function and a strictly log-concave function is strictly log-concave.
(e) By using again the infinite product representation (1.2), we get

4x* 2 (yy0)

Yv.n ()/f,n - x4)

a
o Gog #4(0) = 3

n>1

and

3 v, n
K (qu’(x)) = 165ty T
o\ 7)) iy -t
From these expressions and the result [1, Lemma 4], v — y,, , is increasing on (—1, 00),
and the desired conclusion follows.
(f) From the infinite product representation (1.2), we have

1

Vitn —

)

(—log #(¥0) =)

n>1
which is absolutely monotonic on (0, yf ) for all v > —1. Since the exponential of a

function having an absolutely monotonic derivative is absolutely monotonic, we conclude
that the function x — 1/%;,({/x) is absolutely monotonic on (0, y:‘ p forallv > —1. 0J

Proof of Theorem 2. By using the inequalities (2.1) and (2.2), we have

Jon—1 < Wy < jun < Voon < Juntls
where n € N and hence the left-hand side of the inequality (2.3) follows. To prove the

right-hand side of the inequality (2.3), observe that the zeros of the cross-product of Bessel
functions (1.1) are the roots of the equation

() 2l(2)

= 3.1
Jy(2) 1,(2)
and the zeros of Dini function z — (1 — v)J,,(z) + zJ(2) are roots of the equation
J/
@y, (3.2)

L@
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Now in view of the infinite product representations of Bessel and modified Bessel functions
of the first kind, namely,

2
2T+ Dx " Jy(x) = ]’[(1- x2 ) and

n>1 v,n

2
2T+ D1, =[] (1 + ]XT> ,

n>1

N/

we obtain

@\ 4xji AN 4xj2,
<Jv<X>> __Z<13,n—x2)2 and (mx)) _Z(ﬁ,nﬂz)z’

n>1 n>1
respectively. Therefore, for v > —1, the function x — XJJ"((X) is strictly decreasing on
v(x)
xI)(x)

each interval (j, », ju.n+1), # € N and the function x +— T is strictly increasing on
(0, 0o). This implies that there exists a unique root y,, , of the equation (3.1) and a unique
root a,, ,41 of the equation (3.2) in each interval (j, ,, jvn+1) for all n € N. Since the

function x — xJJv”(ECX)) is strictly decreasing on each interval (j, , ju.n+1), B € N and we
have the limit
xI'(x
v(0) =v>v—1,
x—=0 I,(x)

we conclude that y, , < @, 41 for all n € N (this interlacing property is illustrated in
figure 1 for v =2 and x € (0, j» 4)). This completes the proof. ]

Proof of Corollary 1. Using (2.3), we have for all x € (—yy.1, Y.1)

4 4 4

X X X
||1— <||1—— <||<1— )

4 4 4 ’
n>1 < a”v") n>1 ( yV»”) n>1 Xyt

which on using (1.2), (1.3) and (1.4) gives the inequality (2.4). Similarly, by using the
interlacing inequality (2.2) one can extract the inequality (2.5). To prove the inequality
(2.6), observe that the inequality (2.5) can be rewritten as

1

w+1) (ml(x) Ju+1(x>) o
< + <

; for |x| < ju1,
x I,(x) Jy(x) g —x* '

which in view of the formulas

() =2"Tw + D™ L(x) =2"T v + Dx™"Lyy1(x)
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Figure 1. Interlacing of zeros of Dini functions and cross-product of Bessel functions:

x5 @) L) 10, 14.5]

the graph of the functions x > f(x) = Y69 =Tm

and x g7 (x)

and
Fox)=2"Tw+ D7) = =2"T(w+ Dx™"J41(x),

is equivalent to

2 for |x| < ju.1, 3.3)

RNURS) (ﬂv’(x) - /;<x)> _
X Fy(x) /U(x)

2
Jvi—X

Now for x € (0, j, 1), integrating (3.3) we obtain

g x fu'(t)_fv’m) Yt
/o (v+1>dt</o (fv(t) FZG) AURTETY T

which implies that

2
Ju,l

2 AW (1'3,1 +x2>‘“”+”

eZ(U-H) < <
/v(x) ]il - x2

This proves the inequality (2.6). (|
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Proof of Theorem 3.

(a), (b). The normalized Dini function z — %, (z) and the cross-product of Bessel and mod-
ified Bessel functions z — %, (/z) are entire functions of order 1/2 and 1/4, respectively
(see [7], [1]). Therefore the genus of the entire functions z — 2,(z) and z — #;,(/2)
is 0, as the genus of the entire function of order p is [p] when p is not an integer [12,
p. 34]. We also note that the zeros of z — 2,(z) and z +— #;(/z) are all real when
v > —1. Now recall Laguerre’s theorem on separation of zeros [12, p. 23] which states
that, if z — f(z) is a non-constant entire function, which is real for real z and has only
real zeros, and is of genus O or 1, then the zeros of f’ are also real and separated by the
zeros of f. Therefore in view of Laguerre’s theorem the conclusions follow.

(c) Since for v > —1 the function 2, belongs to Laguerre—Pdlya class of entire functions,
it satisfies the Laguerre inequality [19]

(2 ()P = 20" D () 2" D (x) = 0.
Using the derivative formulas

P (x) =2"T (v + Dx""xd (x) — vd, (x)] (3.4)
and

P!'(x) =2"T'(v 4+ Dx "V 2[x2d! (x) — 2vxd., (x) + v(v + Dd, (x),  (3.5)
the above inequality for m = 1 is equivalent to

2212 (v 4 Dx ™22k (d) (x))? — vd? (x) — x2d, (x)d! (x)] = 0
which implies that

(@) () = dy (] (x) = 5d2(x) > 0

forv > 0and x € R, x # 0. Therefore the function x — Z”(i) is strictly decreasing

on (0, 00) \ {@y,» | n € N}. In view of [9, Lemma 2.2], all zeros of dy(x) are real and
simple and hence d/,(x) # 0 at x = ay », n € N. Thus, for a fixed n € N, we have the
S d(x) . dy(x) _ : : ()

11n}1t hmx\ﬂmi1 a0 = ocandlimy g, , M =~ Slpce the functlon X > s
strictly decreasing on (0, 00) \ {ary,, | n € N}, it follows that in each interval (e, ,—1, @y n)
there exists a unique zero a;’n of d] (x). Here we used the convention that @, 0 = 0. O

Proof of Theorem 4. From the infinite product representations (1.2), (1.3) and (1.4), it is
easy to verify that for all v > —1, the functions %}, 2, and X, satisfy the following
identities (in other words, Mittag—Leffler expansions):

W (x) —4x3
Wo(x) 2

_, 3.6)
T _ 4
n>1 Yoo =X

Dy(x) —2x
T = ; o 3.7
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and
A (x) 2x
TGO A (3.8)
Ay (x) r; al, +x?

In view of the above logarithmic derivative (3.7) of Dini functions &, we obtain

3 1 lim 1 7,x) 1
_ = 1 _ —
2 _ O{2 X X—>0y k 2x -@v (X) 0{2 — x2

n>1,n#k a”’” v, v,k
Lo |2 () (@p = x2) +2x Dy (x)
Py () (@2 — x?) '

O

1m
200y 4 Xk

Now, by applying the Bernoulli-L"Hospital rule twice and using the derivative formulas
(3.4) and (3.5), we have

O =—

. [dg(x) (2v+1)]
dx x|

Aoy j x>0tk
Using the differential equation [13, p. 13]

x2(xr =20+ Dd)(x) — x(x* 4 2v — Dd (x)
[ =) =2v+ D) +2(1 — v)x2dy(x) =0,

satisfied by the Dini function d,,, we obtain

d)(x) o +2v—1
e dj() eyl — 20+ 1)

(3.9)

and hence

o 1 al +2v—1 2w+ 1
1= - .
4oy i av,k(“%yk —2v+1) oy k

Therefore the relation (2.7) is indeed true.
To prove the identity (2.8), we appeal to the formulas (3.7) and (3.8) to obtain

O, = E !
) = -
ot —at
n>1,n#k V1 vk

i [ (2 ey
- X—=>y k 4)63 9\,()6) )‘U(x) aik - x4

1 )L:;(av,k) _

. P,,(x) N 453
— ] —
40{;?]( Moy g) x> dxd \ 2,(x) af)k — x4
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1 200 k
:_40(3 Z 2

2
vk o1 Y T

1 , Z,(x) (e, — x4+ 4x° Z, (x)
lim : .
4oy Xtk Do)y — x4

Now, by applying again the Bernoulli—-L’Hospital rule twice and using the derivative for-
mulas (3.4) and (3.5), we obtain

1 1 1 1 dl 2 3
O === Z 2 7~ 3 Am [" ‘;(X)_(U—F)}’
2Olv,k n>1 Ayon + Oy k 4av,k Foank | 2 dV ) 2x

which on using the limit (3.9) gives (2.8).
To prove the identity (2.9), first we will show that for v > —1 and z € C, we have

2T+ DIw+2) 5, 0, 2t
D W@ =] 1—%?" : (3.10)

n>1

To deduce the above Hadamard factorization of W/, it is enough to show that

22Tw+Drw+2) _, 22
B 1D WV =]]1- . (3.11)

14
n>1 Yon

Now, by using the power series representation (1.1), we have

22T(v+ DI(v +2)
Qv +1)
o Z (=D"Qv+4n+ DI'(v + DL (v 4+ 2)z>"
nT(v+n+ DLW +2n+2)24 Qv+ 1)

n>1

"Wy (V)

This is an entire function of growth order ‘l‘, since

nlogn

lim
=% Joo ' (n 4+ 1) +logT(v+n + 1) +logT'(v +2n + 1) + log % —log(2v +4n + 1)

where this limit follows easily on considering the limit

. logI'(an + b)
lim ———— =

a, where a, b > 0.
n—00 nlogn

By applying Hadamard’s theorem [16, p. 26], it follows that (3.11) is indeed valid and
consequently we get (3.10).



Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:36 Page 19 of 30 36

Now, we use the formula (3.6) and we get

1 ) 1 #)(x) 1
> o = Jim | T ——
n> gk Yo =™ Yog o T A’ M)y - x

1 W) (v —xb) +43W,(x)
- lim : 7 7 s
4y Xk W), — xP)

O3

which on applying the Bernoulli—-L’Hospital rule twice gives

®3 = —— lim
Sy‘ik X= Yok

Lo [3 W
)

The logarithmic differentiation of (3.10) gives

W/ (x)  2v 4x3

W) x e ph —x®

n>1
Now, using the following derivative formulas which follow easily from (1.2), we obtain
W) (x) =2"T(v+ DI +2)x 7272 [x W) (x) — Qv + DW, (x)]
and

W (x) = 2'T(v + DT (v + 2)x 273 [xQWg’(x) — @y +2)x W (x)
+ Qv+ D2y +2)W,(x)],

from which we get

1 Vv k
O3=—F|2v+5+ —
Sy\ik ,; )/1;411 - yv k
This completes the proof of equation (2.9). (]

Proof of Theorem 6. Again using (1.2), we have

ZW/(Z) _Z 42 Z4/V1j‘,n
— 4,4
n>1 V” nzll Z/yv'”

1 4m

. Ly (2 )
n>1m>1 m=>1 \n>1 V.1

which is valid for |z| < y,,1 and v > —1. Hence the conclusion follows. O
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Proof of Theorem 7. The infinite product representation (1.2) yields

1
loglx 5 Wy(WaNT = ——.

n>1 v,n

This gives

B 1 1 1 1 1
fun() =2 i —x vi.-x) 16 <(u+1)3 - (V+1)3>

n>1

and hence on differentiating m times, we get

- m! m!
f( )( )_Z<(yjn_x)m+l_ 4 _x)m+1>20’

ey WViin

forallm e N,y > v > —land x € [0, yli 1)- Here we used the monotonicity of zeros
of cross-product of Bessel functions [1], namely v — y, , is increasing on (—1, co) for
n € N fixed. Therefore, for all n,m € N, u > v > —1 and x € [0, y‘j‘,l), we have
(x =y )"t < (x - Vﬁ,n)mﬂ and consequently the above inequality follows. Since
fu,v 1s increasing on [0, y;fl) forall w > v > —1 and in view of (2.13), f;,,(0) = 0 we
obtain that f, ,(x) = fj ,(0) = 0. Therefore x > f}, ,(x) is absolutely monotonic on
[0, y,})) forall u > v > —1.
Now, consider

/

v, 1 =X
x§+zel6(u+])3 1 1
hy(x) = |log| ——r— | | = - +
v ST wm 16(v + 1)3 ;yﬁ,n—x

Therefore by differentiating m times, we have

m.
D) =Y ———— — =0

n>1 (yv*”

forallm e N,v > —landx € [0, y, l) Hence A, is increasing on [0, y, 1)forallv > —1
and in view of (2.13), 4,(0) = 0, we obtain that &, (x) > h,(0) = 0. This proves the
absolute monotonicity of x + h,(x) on [0, yv’l) forall v > —1.

Finally, by using the fact that the exponential of a function having an absolutely mono-
tonic derivative is absolutely monotonic, we conclude that x — g, ,(x) and x — g, (x)
are absolutely monotonic on [0, y‘i - O

Proof of Corollary 2. Since x +— g, (x) is absolutely monotonic on [0, yfy 1), itis increas-
ing. Therefore from (1.2), we get

gv(x) > g,(0) = 22T (v + DT (v +2),
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which implies that

2 —_—x
2 ~ 603

W) < 22VF(v + DL +2)

Hence by changing x to x* we get the required inequality.

Proof of Theorem 8.
(a), (c). To prove the inequality (2.21), it is enough to establish the following inequality

2
5 for all |x| <
X a1

Do) = i

Taking into account the infinite product representation (1.3), we have that

1 —x? .
Doran,) = 751 +x7) lim F ()], (3.12)

where

n x2a2 .
Fon(x) = ]_[ (1 -—).
k=2 %k
Making use of the principle of mathematical induction, we show that the following inequal-
ity
2
2 oy, 1
(IT+x)Fypx) =1+ (3.13)
Uyn

from the assumption in the statement of the theorem Namely, we have

—xz W, (1) — a? (x2) > 0.
- ( 212%)

2
X
(1+xH)Fya(x) — (1 + U’l)
oy2 V.2

Now, let us assume that the inequality (3.13) holds for some m > 2. Therefore

2
X
(1 4+ x2) Fy i1 (x) — (1 4 =t )
oy m+1

2.2 2
xXTa
:(1+x2)Fy’m()C) (1— - U,l) <1+x05u1)
Ay m+1

av,m+l
2 242 2
X Olvl X0 X avl
v,m v,ma1 v,m+1
2
x“ay, 1
—_— W, (m) —af’lxz) > 0.

2
a”smav,m+1
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Hence, by the principle of mathematical induction, inequality (3.13) holds for all n > 2.
Now taking limit n — oo in (3.13), we get

2
. 2 . X701
lim (1 +x°)F, ,(x) > lim (1 + ) =1,
n—o00 n—oo Oy

which in view of (3.12) gives the inequality (2.20).
To prove the inequality (2.22), similar to part (a), it is enough to prove the inequality

1 —x* €
Woy(x) > T for all |x| < :1
Now using (1.2), we have
1 —x
W (xyv1) = T 4[(1 +x%) Jim Gy ()], (3.14)

where

n x47/4
Gv,n(x)zl_[<1— ).

k=2 Yok

Using the principle of mathematical induction, we show that the inequality

(1 +x9Gyn(0) = 1 + y“

(3.15)

U,)’l

holds forallv > —1,n > 2 and |x| < )fv”l .Forn = 2, (3.15) follows from the assumption
of the theorem. Hence we have '

Y, x*
a+xﬁawuo—(1 )/“) y4«2a> yoixh = 0.
v,2 v,2

Now, let us assume that the inequality (3.15) holds for some m > 2. Therefore,

4.2
X
(1+xﬁwaHu)—(1+ Z“J)

yu,m+l

4.4

X
:(1+x4)Gv,m(x)(1— 4;/”’1) <1+ V“)

yv,m+l yvarl

4.2 4.4
<1+xyv,l>(l_x‘yv‘l> (1+xyv])
2 4
Yom yv,m—H yv m+1
%
= —“(sz (m) — yjhxh) = 0.

2
yv myu ,m+1
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Consequently, by the principle of mathematical induction, inequality (3.15) holds for all
n > 2. Now taking the limit n — oo in (3.15), we get

lim (14 x*G,,(x) > lim (1+ y“) =1,
n—0oo n—0oo an

which in view of (3.14) gives the inequality (2.22).
(b) Since the functions appear in the inequality (2.21) are even in x, it is enough to prove
the inequality (2.21) for x € [0, o, 1). Let us define a function ¢, : [0, @, 1) — R by

) 30[5l | ozgl—x2 loz G
R e ’
PO= 5o a2 a2 ) e

which in view of (2.12), (2.15) and (2.18) yields

AR A B 10
Y Swv+1) oz4 e x4 2,(x)
4
= —2xm (V) - g + = Z M2m (0)x*"
v,l m>1
2m(v) (0‘12;,1 +x%) om otilxz
= > o) —
x (e + x2) n(v) = 1 _ 42
_ 2mO) o2
X(O‘E,l +x2) vt % ( ) =
Ymt2 x2m+2
N2m (V)x " -
m (v) Z " r; 2n=2
2m2(v) om
= n2m (V)x
(g +x?) nz(v) ,”2 "
2m
X
77 ( ) Zan 2(0)x™" Z B
m>2 m>2 "v,1
. 22 (v) a\%,anm(V) N2m—2 (V) 1 m
- 2 2 Z + T ma |
xlay +x%) | =5 n2(v) mv) |
o 2m©) 3 2o} ymm(v) 1 o
Txe ) |G\ me) e
2m(v) Z 20, 20X o (v) — (),
I N X
X(Olil +x?) m>2 772(U)a2m 4
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20,1 = n2(v) o
mWe ™
B 8(+1) -2
2n2(v) < (v3 )“u1_1> om
—_— | X
2

= 2 2m—4
x(ag ) + x2) av’”}

2m(v)
- x(ozil +x2)

M

%

m

2m(v)
x(ozil +x2)

8;])24 2| <.
9 +2)a"

Here in last inequality we have used the upper bound for the smallest positive zero of the
Dini function (see [14, p. 1] witha +v = 1)

M

W2 =2 < da+v+2)v+a)(v+ 1w +2) . 12(v+ (v + 2)
vl (@+v)2+40+8v+8 - 13 + 4v

Therefore for v € (—1, 8), the function ¢, is increasing on [0, «,, 1) and hence ¢, (x) >
¢, (0) = 0 and consequently the inequality (2.21) holds.
Now, by using the L’Hospital rule (2.12) and (3.7), we have the limit

) log 2, (x) . D,(x) xt— O‘ﬁ 1 30‘\% 1
lim ——————— = lim . = —— =m,.
x—0 o2 —x2 =0 Z,(x)  4xa’ 8wv+1)
log [ = v,1
o? | +x2

This implies that indeed the constant m,, is best possible.
(d) Similar to the proof of part (b) of this theorem, it is enough to prove the inequality
(2.23) for x € [0, yy,1). Let us define a function &, : [0, y,,1) — R by

4 4 4
Y1 Yo — X
d,(x) = . lo . —log #,(x),

which on using (2.13), (2.16) and (2.19) gives

@) (x) = — o 8y )
T TR0 D F =8 A
VS
= 4G ) - o+ = Z Cam (V) x™"
yv,l m>1
_ 4o )y + 254 () Vvl
Xy +x% §4(V) " i —xt

o 424(v) 4 4m
= x()/lil +x4) Vv,l C (v )mz>:2§4m(v)x

4dm+4

T ( ) Dm0 x4m74

m>1 m=>0 ‘v,1
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4 Vit 4m
S x| ) 2, Gan)x

m>2
4m
4m X
éw)Zammw D=
m=>2 m>2 ‘v,1

__ 4h) 3 Va6 ) Ganms) 1\
x(y;‘,1+x4) £a(v) Gv)  yis

m>2

4m—8

454(v) 2t =G\,
X+ 1) ; G )x
454(v)
x(ylil+x4)

4m—8
Yu,1

) 2y, 1 6am (V) L g

T ox(y m>2 Gy oy

_AnW) Z 21V ™) — G0,
(v +x4) s O

: s

I
v M

nw+my-4>m
X

4¢4(v) v—vi4+14 4
SN SR Z e R
R R AR R0

where the last inequality follows by using the upper bound given in (2.17). Therefore for
v € (=1, r), the function ®,, is increasing on [0, y,,1). This implies that &, (x) > &, (0) =
0 and hence the inequality (2.23) holds.

Now using the L’Hospital rule (2.13) and (3.6), we have the limit

g Wﬁ)x—ml Yo
lim —————— = lim = = n,.
x—=0 vhet\ =0 #(x) 83yt 1 32w+ 1)
log | ~5—— v
yu11+x
This implies that indeed the constant n,, is best possible. O

Proof of Theorem 9. Since all the functions appearing in inequality (2.24) are even in x,
it is enough to prove the inequality (2.24) for x € (0, r) for any given r € (0, 00). Let us
define a function Q, : (0,r) — R by

loghv(x) _ f(¥)
log( 4l ) gx)’

Making use of the infinite product representation (1.4), we obtain

0y(x) =

f (x) 1 rt — x4
g (x) 2r2 2 +x
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Now, it is not difficult to verify that each term of the above series is decreasing on (0, r)

as a function of x. Thus, x — e ,( )) is decreasing on (0, r) and consequently with the help
of monotone form of L'Hospital’s rule [2, Lemma 2.2], we conclude that x — Q,(x) is
decreasing on (0, 7). Moreover,

a = lim 0,(x) < Qy(x) < lim Q,(x) = B.
x—r x—0
This completes the proof of (2.24). ]
Proof of Theorem 10. In order to prove the inequalities (2.28) and (2.29), it is enough to

consider the case x € (0, j, 1) as all the functions appear in (2.28) and (2.29) are even in
x. Define a function k, : [0, j, 1) — R by

2 2
Jup — X
k,(x) =log _Z,(x) —log| 5——
v1+x

Now we recall Kishore’s formula [15]

x Jyg1(x) o @m) .2m
2 T =2 o

m>1

B MEO N ST )

which in view of the identity T = " can be re-written as

ffv/(x) _ 2m) .2m
S M

Therefore on using the above equation for k, (x), we have

) Ay,
S (2 +x2>(j21 —x?)

2
=-= Zcr,fz'")xzm e Z -

ki (x) =

m>1 m=>0 ]vl
) ) oy 2 p2m+2
= ——— | -Uo +x) Yo" ’"+2§
%) v,
x (i +x2) m=1 m=0 it
2 2( 2 (2)
= —— | x°(2—j 0 )
x gy %) e

2m+2

_ Z Jv (2m) 2m Z O.(2m) 2m+2 +2 Z

m=>2 m>1 m>1 v 1

:2
_ oz 22— v
) 4v + 1)
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(2m) (2m—2) 2m

m>2

_ 2 2 8w +1)—j,
x(j2+x?) 4w+ 1)
22, 2 2m—2 __(2m—2

2m—2
>0,

]vl

where v > 1. Here we have used Lemma 2 and the left-hand side of Rayleigh inequality
(2.27). Therefore the function k, is decreasing on [0, j, 1) for all v > vy. Consequently,
ky(x) < k,(0) = 0 and hence the inequality (2.28) follows.

Now, taking into account the inequality (2.28), the following inequality [5, Theorem 3]

[ Lo 0] 7 = [Am]™,

which is valid for all v > —1 and x € (—.1, ju,1) gives

l
/V—H(x) Z[/v(x)]%—lz 11 : ]u1+x
Hv(x) [ 70(0)] o5 = Js | —x?
Hence the inequality (2.29) is indeed true. ([

Proof of Theorem 11. Letv > —1 and 0 < |x| < «,,1. Then we first prove the following
identity:

20+ 1) o2, —x2 G (x) 4(v+1)
Av<x>=—(3 L G Gt 2 A

m>1

(3.16)

where Ay, = o] | m2m42(V) — N2m (V).
To prove (3.16), we appeal to equations (2.12) and (2.18) to obtain

Ay = A D = (-22w)

3 by 29, (x)

2 2
1 (07 1 X
= o) Ux—z D nam()x™"
n2 o
S monnt] - Ly
v, m—
=——|nO+ N2m (V)x Nam (V) x "
n2(v) v m (v) =l



36 Page 28 of 30 Proc. Indian Acad. Sci. (Math. Sci.) (2018) 128:36

=t (U) Z( o 1m+2(0) — o (V)"

4(v + l)

m>1

Now, for a given n € N, let us consider

1 Ay(x) —
A (x) = 242 ( 4(v+1) Z A’ )

which in view of (3.16) can be rewritten as

Ax)= Y Apx® =N A ™

m>n+1 m=>0
Taking into account the right-hand side of (2.15), A, < 0 for all n € N and consequently

from the above expression, x > 7 (x) is strictly decreasing on (0, @, 1), which implies
that

a= lim o(x) <. (x)< hm d(x)—b

x—)avl x—>0

where b = A,4+1 and in view of the limit limx_w—1 Ay(x) = w, we have
v,

1
a = 2n+2 <1 4(1)+1)_Z ma )

vl

This completes the proof. O

Proof of Theorem 12. Letv > —1 and 0 < |x| < yy,1. Then we need to prove the identity

4 4
Yor1 = X" W) (x)
Bu(x) = —4(v D+ = S
=y 1+ 16w+ 1)3 Y Bux*, (3.17)

m>1

where B;,, = Vli1§4m+4(v) — Camm (v). In order to prove (3.17), we use the equations (2.13)
and (2.19) and obtain

B,(x) =16(v + 1)3 -

v =t <_x7/v’(x)>
x4 44, (x)

Y1 S

§4(v) x4 ot
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4

Yo 4m—4 dm
= + m — m

v a(v) mgza (v)x G (v);a (V)x
_ .4 1 4 B 4m
=t L 2 (1 amss) = Gan () x
=y +16(v+ 1)z Y Bux™"

m>1

Now, for a given n € N, consider
1 (B —n) &
% = 2 _ B 4m ,
)= o ( 16(v + D3 ,,; m
which in view of (3.17) can be rewritten as

<%(‘x) — Z A x4m —4n—4 __ ZAn+l+mx

m>n+1 m=>0

Using the right-hand side of (2.16), B, < O for all n € N and hence from the above
expression, x > Z(x) is strictly decreasing on (0, y,,1). From this, we obtain

r= lim Akx) < HAx) < lim %’(x) =y,

x— ylrl x—>0

where s = B, 4+ and by taking into account the limit limxéyf1 B,(x) = 16(v + 1)3, one
has ’

1 VV] 4m
r:W<l 1600+ 1)3 -2t

v, 1 m=1

This completes the proof. O
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