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Abstract. The effect of depth and location of a triple-well potential on vibrational resonance is investigated in a
quintic oscillator driven by a low-frequency force and a high-frequency force. The values of low-frequency ω and
amplitude g of the high-frequency force at which vibrational resonance occurs are derived both numerically and
theoretically. It is found that: as ω varies, at most one resonance takes place and the response amplitude at resonance
depends on the depth and the location of the potential wells. When g is altered, the depth and location of wells
can control the number of resonances, resulting in two, three and four resonances. The system parameters can be
adjusted by controlling the depth and position of the wells to achieve optimum vibrational resonance. Furthermore,
the changes induced by these two quantities in the tristable system are found to be richer than those induced in
bistable systems.
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1. Introduction

The phenomenon of vibration resonance (VR) in non-
linear systems is of considerable interest in recent years.
VR, which was originally introduced by Landa and
McClintock [1], is commonly observed when a nonlin-
ear system is subjected to two different external periodic
signals and the response to a weak low-frequency sig-
nal can be maximised by modulating the high-frequency
signal. It should be mentioned that nonlinear systems
driven by biharmonic signals are ubiquitous in nature
and cut across different fields, including neuroscience
[2], laser physics [3], acoustics [4], brain dynamics [5]
etc. Due to its potential applications, a large amount of
research has been devoted to VR. Specifically, theoret-
ical research to validate VR was implemented by Git-
terman [6]. Experimental evidence of VR in a bistable
vertical cavity laser system [7] and in an optical system
[8] was provided by Chizhevsky et al. Through numer-
ical simulation and experiment, it has been shown that
VR is effective to enhance the detection and recovery
of weak aperiodic binary signals in stochastic bistable
systems [9]. Moreover, double VR was found in an
asymmetric system [10,11] and single VR has been out-
lined in coupled oscillators [12] and complex network

systems [13–15]. VR has also been reported in noise-
induced structure [16] and FitzHugh–Nagumo model
[17] . In addition to adjusting the amplitude of the high-
frequency components of the external signal [18], the
optimisation of resonance can also be achieved by con-
trolling the fractional order [19,20] and the time delay
[21,22].

Recently, interest in multiwell systems [23–27] is
overwhelmingly increased because of its extensive
applications, such as image sharpening [23], chemi-
cal kinetics [28], condensed matter physics [29], etc.
The presence of VR in a damped quintic oscillator with
triple-well potential was demonstrated by Jeyakumari
et al [30]. Meanwhile, Yang and Liu proposed that such
phenomenon also exists in a time-delayed multiwell sys-
tem [31]. In ref. [32], Rajasekar et al extended VR to a
system with periodic potential. Subsequently, VR was
experimentally verified in a multistable vertical cavity
surface-emitting laser system [33]. Besides, in engineer-
ing applications, as the complexity of the actual signal
gradually emerges, it can be reasonably concluded that
predicting and regulating the kinetic behaviour of non-
linear systems through the aid of system parameters has
become an exigent problem. To the best of our knowl-
edge, despite a number of papers devoted to theoretical
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and numerical discussions of VR, the influence of the
shape characteristics of the potential function had not
been considered except in ref. [34], which emphasised
some interesting features of VR in a symmetric double-
well system wherein the depths and locations of minima
of the wells were distinct. However, only a bistable sys-
tem is described in this reference, and there is little work
which studies this impact in other systems. Therefore,
close attention should be paid to investigate the VR
induced by the parameters of the potential function in a
multistable system.

The main motivation of the present work is to pre-
cisely explore the effect of depth and location of the
wells in a tristable system on the VR phenomenon,
which is expected to provide the basis for further
research of parameter-induced VR. In particular, given
the flexibility of parameter adjustment and the ubiquity
of multistable systems, this study may have practical
applications in providing suitable regulation mecha-
nisms of stationary states to achieve the desired VR
effect in systems. The rest of the paper is structured as
follows: §2 presents the model and provides a detailed
theoretical analysis of VR in the model. In §3, theo-
retical expressions for control parameters at which VR
takes place are obtained and the effect of the depth
of the potential wells on VR is evaluated. Similarly,
the influence of location of the potential wells on VR
is discussed in §4. Finally, a brief conclusion is given
in §5.

2. Model and theoretical predications

2.1 Model

The quintic oscillator model which has been introduced
in detail in ref. [30] can be described as follows:

ẍ + dẋ + dV (x)

dx
= f cos(ωt) + g cos(�t), (1)

where

V (x) = 1

2
Aω2

0x
2 + 1

4
Bβx4 + 1

6
Cγ x6. (2)

Here, d is the coefficient of linear damping; the terms
f cos(ωt) and g cos(�t) stand for low-frequency input
signal and a high-frequency signal with frequency � �
ω, respectively. This model is encountered in various
electrical and mechanical systems. In particular, the
single- mode kinetics of a beam resting on an elas-
tic substrate [35] can be described by eqs (1) and
(2). It can also depict the single-mode kinetics of a
beam under axial tension and resting on a nonlinear
foundation.

For ω2
0, γ, A, B, C > 0, β < 0 with β2 > 4ω2

0γ,

the potential is of a symmetric triple-well form, as shown
in figure 1. If the parameters ω2

0 = 3, β = −4, γ = 1
are fixed, system factors A, B, C are considered. When
A = B = C = α1 > 0, the potential has three minima
at

x∗
1 = 0, x∗

2,3 = ±

√
√
√
√−β +

√

β2 − 4γω2
0

2γ

and two maxima at

x∗
4,5 = ±

√
√
√
√−β −

√

β2 − 4γω2
0

2γ
.

The depth of the wells denoted by �Vl , �Vm and �Vr
from left to right, respectively, are the same and equal
to α1(6ω2

0 p + 3β p2 + 2γ p3)/12 where

p =
−β −

√

β2 − 4γω2
0

2γ
.

The variation in the depth of the wells can be achieved
by changing the parameter α1, where the values of x∗

1
and x∗

2,3 are kept constant, and this fact can be observed
in figure 1a. On the other hand, for A = 1/α2

2, B =
1/α4

2, C = 1/α6
2 with α2 �= 0, the minima of V (x)

are

x∗
1 = 0, x∗

2,3 = ±α2

√
√
√
√−β +

√

β2 − 4γω2
0

2γ

and the maxima are

x∗
4,5 = ±α2

√
√
√
√−β −

√

β2 − 4γω2
0

2γ
,

and in this case,

�Vl = �Vm = �Vr = 6ω2
0 p + 3β p2 + 2γ p3

12

is independent of α2. That is, the depth of the wells can
remain unaltered while the distance between x∗

1 and x∗
2

(or x∗
1 and x∗

3 ) can be varied when α2 is changed, as
displayed in figure 1b. In this work, attention has been
paid to the impact of α1 and α2 on vibrational resonance,
where α1 and α2 respectively indicate the properties of
the depth and location of the potential wells. For con-
venience, system (1) with A = B = C = α1 and
A = 1/α2

2, B = 1/α4
2, C = 1/α6

2 are represented
by US1 and US2, respectively, and it is demanded that
α2 be greater than zero.
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Figure 1. Triple-well potential of the quintic oscilla-
tor for (a) A = B = C = α1 and (b)
A = 1/α2

2, B = 1/α4
2,C = 1/α6

2 with parameters
ω2

0 = 3, β = −4 and γ = 1 fixed. In both the subplots,
the values of α1 (a) and α2 (b) for continuous line, red dashed
and pink dotted lines are 0.5, 1 and 1.5, respectively.

2.2 Theoretical analysis for the response amplitude

Under the assumption that � is much greater than ω, the
nonlinear system (1) can be processed via the method of
direct separation of motion. Following this method [6],
let

x(t) = X (t, ωt) + �(t, �t), (3)

where X (t, ωt) depicts the motion of the slow compo-
nent. �(t, �t) is a 2π -periodic function of fast time
τ = �t and therefore has zero mean value as

�̄(t, τ ) = 1

2π

∫ 2π

0
�(t, τ )dτ = 0. (4)

After substituting eq. (3) into eq. (1) and averaging over
the fast time scale, the following equations of motion
for X and � can be obtained:

Ẍ + d Ẋ + (Aω2
0 + 3Bβ�2 + 5Cγ�4)X

+10Cγ�3X2 + (Bβ + 10Cγ�2)X3

+Cγ X5 + Bβ�3 + Cγ�5

= f cos(ωt), (5)

�̈ + d�̇ + Aω0� + 3BβX2(� − �)

+3BβX (�2 − �2) + Bβ(�3 − �3)

+5Cγ X4(� − �) + 10Cγ X3(�2 − �2)

+10Cγ X2(�3 − �3) + 5Cγ X (�4 − �4)

+Cγ (�5 − �5)

= gcos(�t), (6)

where � j = (1/2π)
∫ 2π

0 � j dτ, j = 0, 1, 2, ..., 5. In
the above two equations, our interest lies in eq. (5) for the
slow variable, which can be adjusted properly through
altering the parameters of the fast signal to prove the
presence of VR. As � is a rapidly changing force, we
further assume �̈ � �̇, �, �2, �3, �4, �5. That is,
eq. (6) can be approximated as �̈ = g cos(�t) by utilis-
ing inertial approximation. � can be derived as follows:

� = − g

�2 cos(�t). (7)

So �2 = g2/2�4, �3 = 0, �4 = 3g4/8�8, �5 = 0.

Accordingly, eq. (5) turns to

Ẍ + d Ẋ + c1X + c2X
3 + Cγ X5 = f cos(ωt), (8)

where

c1 = Aω2
0 + 3Bβg2

2�4 + 15Cγ g4

8�8 ,

c2 = Bβ + 5Cγ g2

�4 . (9)

The effective potential function of eq. (8) is

Veff(X) = 1

2
c1X

2 + 1

4
c2X

4 + 1

6
Cγ X6. (10)

When there is no input signal, the equilibrium points of
eq. (8) are given by

X∗
1 = 0, X∗

2,3 = ±

√
√
√
√−c2 +

√

c2
2 − 4Cc1γ

2Cγ
,

X∗
4,5 = ±

√
√
√
√−c2 −

√

c2
2 − 4Cc1γ

2Cγ
. (11)

Slow oscillations may occur around these equilibrium
states. Thus, the deviationY (t) of the slow motions X (t)
from the stable equilibrium point X∗ is introduced so
that slow oscillations occur at about Y ∗ = 0. One has

Ÿ+dẎ+η1Y+η2Y
2+η3Y

3+η4Y
4+CγY 5= f cos(ωt),

(12)
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where

η1 = c1 + 3c2X
∗2 + 5Cγ X∗4,

η2 = 3c2X
∗ + 10Cγ X∗3,

η3 = c2 + 10Cγ X∗2,

η4 = 5Cγ X∗. (13)

Herein, as the low-frequency input signal satisfies the
condition f � 1, we further consider that |Y | � 1 and
neglect the nonlinear terms in eq. (12). Then, one can
get Y (t) = AL cos(ωt − φ), in which

AL = f
√

(ω2
r − ω2)2 + d2ω2

,

φ = arctan

(
ω2 − η1

dω

)

(14)

and the resonant frequency ωr = √
η1. We can define

the response amplitude of the system as

Q = AL

f
= 1√

S
, (15)

where
S = (

ω2
r − ω2)2 + d2ω2. (16)

Apparently, Q is a quantitative indicator that signifies
the extent of amplification of the weak input signal
through the nonlinear system. On this basis, the reso-
nance behaviour can be analysed. VR occurs when Q
reaches the local maximum, i.e., S arrives at its local
minimum.

3. Impact of depth of the potential wells on
vibrational resonance

In this section, the role of depth of the potential wells on
VR in system US1 is considered. According to the theo-
retical expression of Q, a local minimum of S standing
for a resonance is noted. By finding the minima of S,

the value of ωVR or gVR at which resonance occurs can
be deduced.

First of all, we analyse the occurrence of reso-
nance as ω is altered. Under the condition Sω =
dS/dω = (−4(ω2

r −ω2)+2d2)ω = 0 and Sωω|ω=ωVR=
d2S/dω2|ω=ωVR> 0, it is easily deduced that

ωVR =
√

ω2
r − d2

2
, ω2

r >
d2

2
. (17)

Once the values of other parameters are fixed and ω is
increased from zero, the response amplitude Q achieves
its maximum at ω = ωVR. Resonance does not appear
for ω2

r < d2/2. What is more interesting is that regard-
less of the extent to which ω changes, ωr remains
constant. So, a maximum of only one resonance can
be observed.
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Figure 2. (a) Variation of ωVR vs. g for different values of
α1. (b) Response amplitude Q as a function of ω for g = 125.
Continuous lines are theoretical Q while the coloured dots are
numerically computed Q. The values of the other parameters
are ω2

0 = 3, β = −4, γ = 1, d = 0.5, f = 0.05 and � = 10.

In figure 2a, the influence of the depth of the potential
wells on ωVR is discussed, where slow motions around
X∗

2,3 are considered for the triple-well form of Veff . It
is clear that ωVR becomes greater with the increase of
α1 for a fixed value of g. Additionally, it can be seen
that for α1 = 0.25, 1.0 and 2.0, the VR will not appear
if g ∈ [158.42, 164.56], g ∈ [160.09, 161.61] and g ∈
[160.36, 161.16], respectively (because ω2

r −d2/2 < 0
in the above regions of g). That is, the greater the depth
is, the smaller the non-resonance interval of g becomes,
until it tends to zero.

Figure 2b demonstrates both theoretical and numeri-
cal response amplitude Q as a function of ω for different
values of α1. It presents only one peak on each curve,
which means that only one resonance occurs. Fur-
thermore, as the parameter α1 increases, the response
amplitude Q displays lower peaks and becomes more
flat. This indicates that the depth of the well is too great,
resulting in a less favourable output of the VR system.
In order to verify the validity of theoretical predictions
in figure 2b, numerical simulation results are calculated
using the equation

Q =
√

Q2
s + Q2

c

f
, (18)
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with

Qs = 2

nT

∫ nT

0
x(t) sin(ωt)dt,

Qc = 2

nT

∫ nT

0
x(t) cos(ωt)dt, (19)

where T = 2π/ω and n is a positive integer. It can be
plainly seen from figure 2b that the numerical results
are in good agreement with the analytical ones. Next,
the variable g is treated as a controllable parameter. For
US1 with A = B = C = α1, the bifurcation point that
induces the changes in the number of stable steady states
can be expressed as

g(1,2)
0 = �2

√
√
√
√−β ∓

√

β2 − (10γω2
0/3)

5γ /2
. (20)

The values g = g(1)
0 and g = g(2)

0 are independent of
α1 and are critical points which make system (8) tran-
sit from tristability to bistability, and from bistability
to monostability respectively. Then, we note that gVR
are the roots of the equation Sg = dS/dg = 4(ω2

r −
ω2)ωrωrg = 0 with Sgg |g=gVR= d2S/dg2 |g=gVR> 0,

where ωrg = dωr/dg. For g > g(2)
0 , Veff remains a

single-well potential, and slow oscillation occurs around
X∗

1 = 0. Under the circumstances, one obtains g(1)
VR from

ω2
r − ω2 = 0

g(1)
VR = �2

√
√
√
√−α1β+

√

α2
1β2−10α1γ (α1ω

2
0−ω2)/3

5α1γ /2
,

α1 > 0. (21)

For g(1)
0 ≤ g ≤ g(2)

0 , Veff turns to a double-well poten-
tial and slow oscillations appear around X∗

2,3, and for

g < g(1)
0 , Veff is a triple-well potential and slow motions

take place around X∗
1,2,3. In the above two cases, VR can

be observed when either ω2
r − ω2 = 0 or ωrg = 0 with

Sgg > 0. As ωr is a complicated function of g, it is dif-
ficult to derive the theoretical expression of g at which
VR takes place. Consequently, g(2)

VR and g(3)
VR, which cor-

respond to double-well and triple-well cases of the Veff
respectively, can be ascertained numerically from eq.
(16).

In addition, it is worth pointing out that resonance in
the double-well Duffing oscillator (i.e., γ = 0 in eq.
(1)) can only occur when ω2

r − ω2 = 0 with Sgg > 0,

which is shown in ref. [34]. However, for the triple-
well systems considered in this work, resonance can be
observed not only when ω2

r − ω2 = 0 but also when
ωrg = 0 with Sgg > 0. Thus, the related issues will be
discussed here.

1
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e
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Figure 3. gVR as a function of α1 in US1. Continuous lines
are theoretical gVR while the red dots are numerically com-
puted gVR from eq. (18).

In figure 3a, the impact of the depth of the wells on
gVR is investigated. Curves a–e are obtained from the
following cases:

(1) Curve a: g > g(2)
0 and ω2

r − ω2 = 0,

(2) Curve b: g(1)
0 ≤ g ≤ g(2)

0 and ωrg = 0,

(3) Curve c: g(1)
0 ≤ g ≤ g(2)

0 and ω2
r − ω2 = 0,

(4) Curve d: 0 < g < g(1)
0 and ω2

r − ω2 = 0,

(5) Curve e: 0 < g < g(1)
0 and ωrg = 0,

where g(1)
VR, g(2)

VR and g(3)
VR are represented by curve a,

both curves b and c, and curves d and e, respectively. In
this figure, it is of interest that the number of resonance
and values of gVR is dominated by the parameter α1.
More specifically, two resonance curves g(1)

VR and g(2)
VR

can be observed when 0 < α1 < α1a = 0.132. g(3)
VR

begins to appear as α1 increases from α1a to α1b. For
α1b = 0.39 < α1 < α1c = 1.21, the resonance curves
change from three to four; this is mainly because g(2)

VR

or g(3)
VR may have two values. When α1 exceeds a certain

threshold value (α1c), the curve again becomes three.
In order to reach a better understanding of the various

curves in figure 3, ωr and ωrg as functions of g are
presented in figure 4. Concrete analysis is as follows:
First, for each fixed value of α1, the plot of ωr in fig-
ure 4a has a local minimum at g = g1 = 70.4 and a
local maximum at g = g2 = 122.4. Meanwhile, ωrg is
equal to zero at these two extrema, as stated in figure 4b.
Secondly, when α1 = 0.12 < α1a , an interesting find-
ing in figure 4a is that the horizontally dashed ω = 1.25
intersects the resonance curve ωr only at g = 210.2.
Q arrives at a local maximum at this value of g with
ω2
r −ω2 = 0 and Qmax = 1/(dω) = 1.6. Also note that

ωr reaches a local minimum at g = g1 < g(1)
0 , where

resonance occurs owing to ωrg = 0. The value of Q
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Figure 4. Plot of (a) ωr and (b) ωrg as a function of the
control parameter g. The horizontal dashed line stands for
ωr = ω = 1.25 in (a).

at this resonance is lower than its value at g = 210.2.
The trend of Q is shown in figure 5. Double resonance
at g = g1 and 210.2 for α1 = 0.12 was displayed in
figure 5a. Thirdly, When α1a < α1 = 0.25 < α1b,
triple resonance occurs. In conjunction with figure 3, it
can be discovered that there is a resonance at g = g2
even though ωr �= ω. Beyond that, two more resonances
appear, one at g = 40.2 and the other at g = 191.8,
due to the fact that resonant frequency ωr matches with
frequency ω of the input signal. An instance of triple
resonance is shown in figure 5a for α1 = 0.25. And
for α1 = 2.0, a similar discussion can be made. Finally,
when α1b < α1 = 1.0 < α1c, the curve ωr intersects the
dashed line ω = 1.25 at four values of g. In other words,
if the condition ω2

r −ω2 = 0 is satisfied, quadruple res-
onance is noticed. In addition, when Qmax = 1/(dω) =
1.6, four resonances, all with the same Q for α1 = 1.0,

are shown in figure 5b.

4. Impact of location of the potential wells on
vibrational resonance

Analogously, the effect of location of the wells on VR in
system US2 can be explored. For US2 with A = 1/α2

2,

g

Q

0

1

2(a)

1=0.25

1=0.12

g

0 50 100 150 200 250

0 50 100 150 200 250

Q

0

1

2(b)

1=1.0

1=2.0

Figure 5. (a) and (b) Plot of Q vs. g for four values of α1
with d = 0.5. Continuous lines represent theoretical results
obtained from eq. (15). Coloured dots illustrate the numeri-
cally calculated Q from eq. (18).

B = 1/α4
2 and C = 1/α6

2, with the increase of α2, the
position of the two maxima of V (x) gradually shift away
from the origin in the reverse direction and the distance
between the neighbouring potential wells also increases.
In view of such a situation, one can obtain

g(1,2)
0 = α2�

2

√
√
√
√−β ∓

√

β2 − (10γω2
0/3)

5γ /2
, (22)

g(1)
VR = �2

(

α2

√

−2β

5γ

+

√
√
√
√
√

√

α−2
2 β2 − 10γ (α−2

2 ω2
0 − ω2)/3

5α−3
2 γ /2

)

,

α2 �= 0. (23)

g(2)
VR and g(3)

VR are given by the numerical calculation of
eq. (16). Obviously, based on eq. (22), the bifurcation
points g(1,2)

0 depend on α2. Also, ωVR can be obtained
from eq. (17).
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Figure 6. (a) Variation of ωVR vs. g for different values of
α2. (b) Plot of Q vs. ω for a fixed value of g. The values of g for
α2 = 0.75, 1.0 and 2.0 are 91.76, 122.08 and 244.71 respec-
tively. Continuous lines are theoretical Q and the coloured
dots are numerically computed Q. The simulation parame-
ters are ω2

0 = 3, β = −4, γ = 1, d = 0.5 and � = 10.
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Figure 7. gVR as a function of α2 in US2. Continuous lines
are theoretical gVR and the coloured dots are numerical gVR.
Curve a, curves b and c, and curves d and e denote g(1)

VR, g(2)
VR
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VR, respectively.

In figure 6a, ωVR is plotted as a function of g for
different values of α2. It is revealed that VR is not
observed within a certain range of g. Moreover, it
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Figure 8. Variation of the number of resonance peaks Rnum
vs. α1 and α2 for various values of g.
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Figure 9. Plot of (a) ωr and (b) ωrg as a function of g for
different values of α2. The horizontal dashed line stands for
ωr = ω = 1.25 in (a).

can be seen from figure 6a that the increase of α2
can lead to greater non-resonance intervals of g and a
change in the positions of these intervals. By making
a comparison between US1 and US2, we can con-
clude that the location parameter α2 affects not only
the length of the non-resonance interval but also the
position of the interval, and the depth parameter α1
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Figure 10. (a) and (b) Plot of Q vs. g for four values of α2
with d = 0.5. Continuous lines represent theoretical results.
Coloured dots represent numerically calculated Q.

only impacts the former. Figure 6b presents the evo-
lution of response amplitude Q vs. low-frequency ω,
which manifests in the response Q peak becoming
higher and the position of the peak gradually mov-
ing to the origin as α2 increases from 0.75 to 2.0.
This shows that when the distance between the neigh-
bouring wells is larger, the particles can complete the
jump better and initiate a satisfactory output response
in the VR system. Conversely, with the increase of
the depth parameter, the peak of Q in US1 decreases
and the position of the peak becomes farther from the
origin.

Figure 7 provides analytical and numerical results of
gVR for a range of α2. For 0 < α2 < α2a , triple res-
onance occurs, while for α2a < α2 < α2b, there is a
quadruple resonance, and it again becomes triple res-
onance for α2b < α2 < α2c. For the three kinds of
cases, g(1)

VR, g(2)
VR and g(3)

VR always exist, although the

number of values of g(2)
VR and g(3)

VR are altered. As α2

further increases, one has both g(1)
VR and g(2)

VR at the
same time, which means that double resonance appears.
In addition, comparing figure 3 with figure 7, we find
that the number of resonances varies in the opposite

way. As α1 and α2 increase, in US1, three resonances
appear initially, followed by four and three resonances,
then finally two resonances. On the other hand, in US2,
the resonance changes from triple to quadruple, then
again to triple, then finally becomes double. These
results can also be observed in figure 8, where we
plot the variation of the number of resonance peaks
with the depth parameter α1 and the location parameter
α2.

The variation of ωr and ωrg with g for four val-
ues of α2 are demonstrated in figure 9. In figure 9,
one can easily see that the critical points g(1,2)

0 always
change with α2, which is different from the bifurca-
tion points in US1 that are independent of the depth
parameter α1. The response of Q to four fixed values
of α2 is displayed in figure 10 corresponding to other
given parameters, which depicts the number of reso-
nances with the increase in g. It is evident that there
are three resonances for α2 = 0.75 and α2 = 2.0,
two resonances for α2 = 3.0, and four resonances for
α2 = 1.0.

5. Conclusion

To conclude, the effect of depth of the wells and the
distance between the neighbouring wells is systemati-
cally studied in a quintic oscillator which has triple-well
potential. Unlike a bistable system [34], resonance is
also discovered at ωrg = 0 in a tristable system. This
means that depth and position of the wells have a richer
impact on the systems studied in this paper. From the
theoretical expression of Q, we are able to determine
the values of ω and g at which VR occurs. If ω is a
controllable parameter, we found either no resonance or
one resonance according to the values of other param-
eters of US1 and US2, and that the response amplitude
Q = Qmax at resonance is dependent on the quantities
of α1 and α2. Nevertheless, if g is treated as a vari-
able, multiple resonance is noticed in systems US1 and
US2. Both α1 and α2 can induce these changes in the
value of gVR and in the number of resonances. Thus,
we can observe that changing the depth and location
of wells can affect the characteristics of VR. In other
words, the system parameters can be adjusted by con-
trolling the above two quantities to achieve an optimum
VR state.

The response amplitude of the output is closely related
to the potential well in which the motion takes place.
Therefore, it is meaningful to analyse the different
effects of the depth and position of the wells on the VR.
Based on the above analysis, we trust that the proposed
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regulation strategies can possibly be preferred in some
domains such as nonlinear optics.
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