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A gain-scheduling control strategy and
short-term path optimization with
genetic algorithm for autonomous
navigation of a sailboat robot

Davi Henrique dos Santos1 and Luiz Marcos Garcia Goncalves1,2

Abstract
The development of a navigation system for autonomous robotic sailing is a particularly challenging task since the sailboat
robot uses unpredictable wind forces for its propulsion besides working in a highly nonlinear and harsh environment, the
water. Toward solving the problems that appear in this kind of environment, we propose a navigation system which allows
the sailboat to reach any desired target points in its working environment. This navigation system consists of a low-level
heading controller and a short-term path planner for situations against the wind. For the low-level heading controller, a
gain-scheduling proportional-integral (GS-PI) controller is shown to better describe the nonlinearities inherent to the
sailboat movement. The gain-scheduling-PI consists of a table that contains the best control parameters that are learned/
defined for a particular maneuver and perform the scheduling according to each situation. The idea is to design specialized
controllers which meet the specific control objectives of each application. For achieving short-term path-planned targets, a
new approach for optimization of the tacking maneuvering to reach targets against the wind is also proposed. This method
takes into account two tacking parameters: the side distance available for the maneuvering and the desired sailboat heading
when tacking. An optimization method based on genetic algorithm is used in order to find satisfactory upwind paths. Results
of various experiments verify the validity and robustness of the developed methods and navigation system.
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Introduction

The main advantage of using sailboat robots is their applic-

ability in long-term missions, operating autonomously on

water surfaces during weeks or months without a human

operator. Also, it can be added the simplicity of their hard-

ware solutions, which must be projected based on green

robotics paradigms, using low-cost and low-consuming

energy platforms. Conventional motorized unmanned sur-

face vehicles (USVs) are normally propelled by fuel or
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electricity powered propeller spending the most part of

their onboard energy with the propulsion system. Nonethe-

less, it is easy to notice that it is a challenging task, with

current technology, to develop a motorized USV for long

endurance missions (weeks or months) using only screw

propellers powered by electrical motors, for example.

There is no current technology based on naturally replen-

ished energy, as solar cells, that can allow for this, simply

because the consumption of such USV systems is bigger

than any onboard power plant can produce using renewable

energy. Thus, humans have to intervene or they have to be

stopped after a certain time of operation, normally for

refuelling or battery recharging. On the other hand, sail-

boats are wind-propelled, thus spending less energy than

required for operation on conventional USV. This feature

can be particularly interesting in long-term missions as the

recent traverse of the Atlantic Ocean by the Sailbuoy Met

(SB Met).1 Other missions in environment monitoring

operations, such as monitoring coral reefs, verifying quality

of water, and surveillance of borders can rely on such

approach, using sailboats.

There are several open problems yet to be solved

related to autonomous robotic sailing. As examples,

sealed cases should be used to embark electronic devices,

and the sailboat hardware system must have redundant

sensors in order to diminish non-systematic errors and

also to keep its robustness. Also, the software architecture

must be designed to have a controller that is effective,

efficient, and robust, in order to allow system operation

in variable situations, as the sailboat works in a highly

nonlinear, and dynamic ambient that has sudden and

undesirable changes, mainly in the wind parameters as its

speed and direction. A simple high-level navigation sys-

tem for autonomous sailboats consists basically of two

parts: the path planning (high-level control) and its exe-

cution (low-level control).

The development of a low-level controller to guide the

sailboat to a desired target is a relatively easy task, usually

solved by using simple, with static parameters, propor-

tional-integral-derivative (PID) heading controllers. Since

modeling the sailboat dynamics in its full extension is a

rather complex task, the use of PID-type controllers facil-

itates the tuning process, besides being of easy and fast

implementation. In general, this is enough to bring the sail-

boat to a target using a single set of (static) control para-

meters (Kp, Ki, and/or Kd) throughout the entire mission,

which are generally found by trial and error. In fact, such a

practical experiments are reported following this simple

approach in an RC Monsoon 900, with a simple propor-

tional controller, which has been shown to work experi-

mentally. However, further work has noticed that this

approach has some critical limitations specially when the

target is against the wind. Notwithstanding the fact that this

strategy is easy and simple to implement, the main draw-

back of a PID control for sailboats is its inability to

precisely approximate nonlinear behaviors, especially in

tasks with specific constraints such as time and energy.

In such cases, the use of a single linear control strategy is

ineffective and may result in undesired behaviors. This is

the main motivation for our research using GS-PI: It keeps

the control strategy and development simple while increas-

ing performance by using multiple linear controllers that

are dynamically chosen depending on certain conditions to

approximate nonlinear behaviors.

Another remaining challenge is to find an optimal path

when the target is directly against the wind, in the area

called dead zone. This angular region occurs as a fan of

directions, depending on the boat construction, which is

about 20� to 30� to one and to another side of the path

straight against the wind direction. If a desired point is

located in this region of about 40� to 60� around the direc-

tion of the wind, the sailboat cannot reach these points by

following a straight-line path. This happens because in

this situation, the angle of the wind on the sail does not

result in a forward force component for any sail position.

In conventional sailing, when the sailor (human) wants to

reach points that are against the wind, a maneuver con-

sisting of following a zigzag path is performed. This man-

euver is called tacking or beating. Optimization of the

tacking is an important feature for autonomous sailing

once this could drastically decrease the time of the man-

euvering. We noticed that the optimization of short-term

trajectories for autonomous sailing is not completely

solved in the literature, as it will be shown further in this

text, thus being also a research focus, and one of the

contributions in this article.

The contributions of our work are inside the realm of the

navigation systems for autonomous sailing, more specifi-

cally we propose strategies for low-level control and short-

term path planning. The first major contribution is the use

of a GS-like PID control strategy, besides the use of a

tuning strategy to find the parameters, which have not been

used previously in the literature for autonomous sailing.

PID control techniques for robotic sailboats commonly use

a single set of parameters (Kp, Ki, Kd) during the whole

maneuvering.2–7 Simulation tests have shown a gain in

performance mainly in narrow maneuvering conditions

(water corridors) when compared to control strategies

found in the literature. So we demonstrate that the perfor-

mance can be enhanced when varying these gains during

the maneuvering according to the wind and target direc-

tions, and we provide a way for determining the best values

for these gains.

The second contribution is the use of genetic algorithm

(GA) for finding the near optimal, best tacking points.

There are previous techniques in the literature for finding

reachable tacking points.8–10 However, we could not find

one that proposes optimization methods for autonomous

sailboats to find the best tacking points with respect to

several requisites such as time to target reaching, power
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consumption, or traversed area. In general, these tech-

niques use previous defined parameters, thus finding static

tacking parameters that are applied in any situation. These

parameters can be the number of zigzags, angle from the

target direction, and apart distance from the straight origi-

nal path line to the target (lateral distance).

In resume, the two main contributions (in the context of

sailboat navigation automatic system) are the use of a GS-

like strategy for the control and of the model-based opti-

mization for the tacking. The main goal of this work is to

improve the overall performance of the sailboat navigation

system that, at first instance, consists of both the low-level

controller with variant parameters and the short-term tra-

jectory following including performing the tacking if nec-

essary, and its optimization. The combined application of

these strategies allow the sailboat to reach desirable, pre-

defined points in the environment with a shorter time or

respecting other restrictions.

Related works

There are works in the literature dealing with improved PID

control algorithm, which has been applied to the control of

motorized autonomous surface vehicles.11–13 The most

related to ours is the work of Larrazabal and Penas14 in

which a gain-scheduling approach utilizes PID controllers

whose tuning parameters have been optimized for trajec-

tory tracking by using a GA, for dealing with the different

operation points (GS-PID-GA). That work deals with

course control for trajectory tracking of a motorized USV

that has active control over its linear velocity by changing

the main propeller revolutions per minute (RPM). Applying

a similar control strategy to sailboats is nontrivial, since its

linear velocity rely on unpredictable wind forces, which

translates in a reduction of maneuverability and also makes

it harder to follow predefined trajectories. Thus, the main

difference of our approach is the project of a control system

that meets the movement restrictions of a sailboat by using

less strict control objectives and tries to loosely minimize

lateral distance from river banks while maintaining a gen-

eral heading allowing maneuvering on narrow paths.

Related to robotic sailboat projects, we resume the sev-

eral works that were found in the literature and their control

strategies in Table 1. The SB Met (Sailbuoy)1 listed in the

first row of Table 1 deserves our attention because it is the

first (and only) USV, to date, to complete an Atlantic cross-

ing, achieved on 26th August, 2018. Leaving fom New-

foundland and arriving at the Ireland coast, the sailboat

spent 80 days running totally autonomously at the sea. The

sailboat has traveled approximately 5100 km doing kind of

a tacking around the straight path to the Ireland coast, which

is about 3000 km if considering to follow the (closest)

straight-line planned path (on water surface). It is a 100%
wind-driven unmanned remotely controlled sailboat, capa-

ble of spending up to 6 months on the water, without human

intervention, with efficiency of about 50%. It has been used

in long-term ocean research.15–17 Notice that this relevant

event has opened several lines of research, mainly on opti-

mization of the performed path, which is much greater than

the traveled distance in the case of a conventional (motor-

ized) boat. The positive issue is the autonomy that the SB

Met, as it does not need to use any kind of nonrenewable

energy. Regarding control, the only information found is

that no sail control is present leading us to understand that

only the rudder is controlled, being this done remotely.1,17

The type of controller is not reported anywhere. The Sail-

buoy is self-powered, propelled through a new patent based

on the wind, and is operated and controlled remotely by

qualified personnel from an operations center.17

In Table 1, the projects Iboat,18 Roboat19 and20 use a

fuzzy control strategy for both the rudder and sail control

differing from each other only in the pertinence functions

chosen in each project. The main goal of applying fuzzy

logic to sailboat control is to find rules, based on the knowl-

edge of experienced sailors, that reproduces the sail and

rudder’s movement performed by a human during sailing.

The Hyraii21 project uses optimal control techniques in the

form of a linear–quadratic regulator (LQR) controller. The

VAIMOS22 project uses a line follower controller, which

seeks to keep the sailboat in straight lines established by a

higher level navigation system. The remaining researches

address the control problem by way of using PID heading

controllers. The Avalon3 project uses two PID controllers

in a reference model control scheme. In its first approach,

the FASt2 project found a simple model for sailboats and

derived a control law, finding the proportional and integra-

tive parameters of its PI controller. Several projects, such as

the Aeolus,4 the Aland Sailing Robots,5 the SailBot,6 and

the Kumar proposal7 set the parameters of their controllers

through trial and error experiments. The literature also pre-

sents some advanced control strategies applied to sailboats

such as nonlinear course control23 and line following using

potential fields.24

Nonetheless, all of the PID controllers presented in

Table 1, and their variations, use static control parameters

Table 1. Sailboat projects and their control strategies.

Projects Rudder control Sail control

Sailbuoy Undefined Undefined
Iboat Fuzzy Fuzzy
Roboat Fuzzy Fuzzy
Hyraii LQR Polar diagram
VAIMOS Line following Human behavior
Avalon PID Polar diagram
Aeolus P, NL control Based on the wind circle
ASR PD, Sin-controller Based on apparent wind
SailBot PI Based on apparent wind
FASt PI Polar diagram
N-Boat PI Based on the wind circle

LQR: linear–quadratic regulator; NL: non-linear; PD: proportional-deriva-
tive; PI: proportional-integral; PID: proportional-integral-derivative.
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for the entire movement of the sailboats. Further, it is not

specified any type of restriction (time to target, energy

consumption, nor side distance) for choosing the right para-

meters. As explained above, this changing of parameters is

attractive mainly because our system works in a highly

nonlinear environment that needs a different strategy at

each situation of wind. So, following the success of gain-

scheduling control strategies in other types of mobile

robots11–14,25–29, we propose to use such approach in this

work for the development of the sailboat control system.

The proposed method uses experimental data obtained in

simulation to decide which controller parameters satisfy

specific constraints. For example, if the sailboat goal is to

reach the target at the smallest amount of time, that is, the

system has a time constraint, our method finds the control

parameters that most satisfy such said constraint. We have

investigated the hypothesis that using more than one pair of

parameters ðKp;KiÞ for the control improves the overall

performance of the system during a specific application.

So the work presented here differs from the others by pro-

posing a model-based method to identify the best controller

for a desired application through simulations. This control-

ler, called gain-scheduling PI controller or GS-PI control-

ler, consists of setting a table with the parameters ðKp;KiÞ
that produces satisfactory results for each initial heading

and wind direction on the sailboat. Instead of using only a

pair ðKp;KiÞ for all sailing maneuverings, the system uses

specific control parameters to each maneuvering, depend-

ing on the context. Simulated experiments are performed to

verify the validity of the initial hypothesis, which will be

shown further.

Works dealing with the upwind situation

Some few references can be found in the literature about

short-term path planning and optimization strategies for

sailboat navigating against the wind. The strategy adopted

to solve this problem can be classified as deterministic or

probabilistic. Deterministic strategies make use of locally

sensed data (instantaneous) about the wind (as speed and

direction) and the boat desired heading to calculate the best

path. The probabilistic approach is based on statistics,

using the wind probability distribution in order to deter-

mine the trajectory that is near the optimum. Some deter-

ministic approaches found can rely on techniques such as

potential fields, in which the dead zone (direction against

the wind) is treated as a virtual obstacle,10 or using the

polar diagram of the sailboat, which is previously deter-

mined, performing by hand annotations of the headings that

are optimum given all of the wind directions.30 Also, there

are other strategies that use fixed values for the heading,

depending only on the wind direction.8

Differently from the above strategies that have been, all

of them, validated in robotic platforms, the strategies rely-

ing on the probabilistic approach have not yet been reported

on autonomous robotic sailboats. They are often used in

regattas to help sailors to take the best actions given certain

weather conditions. Such approaches use Markov decision

processes31,32 and Markov chains9 for estimating the tra-

jectory that is optimum, helping human sailors to take their

decisions.

Work contextualization

The GS-PI heading controller for sailboat robots pro-

posed here uses experimental data obtained in simula-

tion to find near optimal variable control parameters

(Kp, Ki) which meet the control objectives of the desired

application. This approach differ from the above tradi-

tional PID sailboat heading controllers found in litera-

ture, which generally use a single (static) set of

parameters for all maneuverings. Here we show that the

use of a control table that adjusts the control parameters

to each maneuvering improves the sailboat performance

in each particular application. The other problem

addressed here is the short-term path planning method

for executing the tacking, allowing to go to targets in the

dead zone. Our approach differs from the literature as it

introduces a very simple and effective way for executing

the tacking. Basically, information about the available

area for sailing, the sailboat desired target, and the head-

ing is used to calculate, when necessary, the tacking

waypoints from the current position toward the target

position. The resulting tacking trajectory is optimized

using a GA in a model-based approach. This evolution-

ary model provides near optima multiple paths, from

which the best one can be chosen. This method is imple-

mented and tested using the simulator described next,

and it is currently running in the 2.5 m sailboat N-

boat II.

Sailboat dynamics and kinematics
(with a 4-DOF simulator)

In order to test and verify our proposed methods, we

improved a sailboat model developed by researchers of the

University of Southern Denmark.33 This simulator model

describes the dynamics of a sailboat with 4-degrees of free-

dom (DOF), which differs of a traditional sailboat model

because it also considers the roll angle. Figure 1 shows the

used coordinate system and Table 2 shows the notation

adopted in the current work in order to get the simulator

to have a behavior as similar as possible to the real version

of our robotic sailboat.

As said, this modified model is currently implemented

in Matlab using the Simulink toolbox, with a dynamics and

kinematics approach that is approximately (as possible) the

one of our real sailboat. The general vector model that

represents the sailboat movement is given by

Mn_ þ CðnÞnþDðn;hÞ þ gðhÞ ¼ t ð1Þ

4 International Journal of Advanced Robotic Systems



where M (equation (2)), MRB (equation (3)), and MA

(equation (4)) are the system, rigid-body, and added-

mass inertia matrices, respectively. These matrices are

written as

M ¼MRB þMA ð2Þ

MRB ¼
mI2�2 02�2

02�2 I

� �
; I ¼

Ixx �Ixz

�Ixz I zz

� �
ð3Þ

MA ¼ �

X _u X _v X _p X _r

Y _u Y _v Y _p Y _r

K _u K _v K _p K _r

N _u N _v N _p N _r

2
6664

3
7775 ð4Þ

The terms CðnÞ, CRBðnÞ, and CAðnÞ are the system

(equation (5)), rigid-body (equation (6)), and added (equa-

tion (7)) Coriolis-centripetal matrices, respectively, which

are given by

CðnÞ ¼ CRBðnÞ þ CAðnÞ ð5Þ

CRBðnÞ ¼

0 �Mr 0 0

Mr 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775 ð6Þ

CAðnÞ ¼
02�2 CA12ðnÞ

CA21ðnÞ CA22ðnÞ

� �
ð7Þ

The term Dðn;hÞ is the system damping matrix (equa-

tion (8)) taking into account four components: keel

(equation (9)), hull (equation (10)) and the added heel

and yaw damping (equation (11)). These components are

given by

Dðn;hÞ ¼ D kðnÞ þD hðn;hÞ þD heelðnÞ þD yawðn;hÞ
ð8Þ

D kðnÞ ¼

�Lk sinaak þ Dk cosaak

�Lk cosaak � Dk sinaak

ð�Lk cosaak � Dk sinaakÞjzk j
ðLk cosaak þ Dk sinaakÞjxk j

2
6664

3
7775 ð9Þ

D hðn;hÞ ¼

FrhðuahÞ cosaah

�FrhðuahÞ sinaah cos�

ð�FrhðuahÞ sinaah cos�Þjzhj
�FrhðuahÞ sinaah cos�jxhj

2
6664

3
7775 ð10Þ

D heelðnÞ þD yawðn;hÞ ¼

0

0

c _�j _�j
d _qj _qj cos�

2
6664

3
7775 ð11Þ

Figure 1. General coordinate system for a sailboat.

Table 2. Adopted notation.

Notation Description

a; b; c; d Constant coefficients to be determined empirically
aX ; bX Slope and y-intercept of line X
C;CRB;CA System/rigid-body/added-mass Coriolis-centripetal

matrix
da;b Euclidean distance between points a and b
dl Lateral distance
D;Dk;Dh System/keel/hull vector of damping
g Vector of restoring forces
I Principle moment of inertia in 4-DOFs in the b-

frame
J Coordinate transformation matrix
L;D Lift and drag forces acting on the foils
m Total mass of the sailboat
M;MRB;MA System/rigid-body/added-mass inertia matrix
Mr Static-righting moment
Nger Number of generation
p; r Angular velocities on w-frame
P0; Pd Initial and target points
Projm;A Projection of point m in line A
ta Time to target in seconds
u; v Linear velocities on w-frame
x; y Position ðx; yÞ on the w-frame
X=Y=K=N _u�_r Added mass coefficients in the b-frame
a Angle of attack on b-frame
aaw Apparent wind angle on b-frame
atw True wind angle on w-frame
ds; dr Sail and rudder angle on b-frame
h Position and orientation vector on w-frame
qd Desired heading on w-frame
qt; dt Tacking angle and distance
l Tacking points distance constant
n Velocity vector in the b-frame
r Flow density
t Vector of propulsive forces
ua Apparent velocity in the b-frame
�; q Euler’s angles in the w-frame

DOF: degrees of freedom.

dos Santos and Goncalves 5



The terms L and D used in equations (9), (20), and (21)

are the lift and drag forces, which are respectively given by

(equation (12))

L ¼ 1

2
rAu2

a CLðaÞ; D ¼ 1

2
rAu2

a C DðaÞ ð12Þ

The term gðhÞ contains the restoring forces given by

equation (13)

gðhÞ ¼

0

0

a�2 þ b�

0

2
6664

3
7775 ð13Þ

The term h is the vector containing the position and

orientation of the boat with respect to the frame W and is

given by equation (14)

_h ¼ JðhÞn ð14Þ

JðhÞ ¼
J1ðhÞ 02�2

02�2 J2ðhÞ

� �
ð15Þ

J1ðhÞ ¼
cosq � sinq cos�

sinq cosq sin�

� �
ð16Þ

J2ðhÞ ¼
1 0

0 cos�

� �
ð17Þ

Here, the parameter n is the velocity vector with respect

to frame B and is given by equation (18)

_n ¼ �M�1CðnÞn �M�1Dðn;hÞ �M�1gðhÞ

þ M�1tðh; n; dr; ds; utw;atwÞ

ð18Þ

The current state-space representation of the sailboat

is given by equations (14) and (18). Finally, t is the

vector with the resulting propulsive forces of the sailboat

given by equation (19), where tsðh; n; ds; utw;atwÞ and

trðn; drÞ are the sail and rudder resulting forces, respec-

tively, given as

tðh; n; dr; ds; utw;atwÞ ¼ tsðh; n; ds; utw;atwÞ þ trðn; drÞ
ð19Þ

tsðh; n; ds; utw;atwÞ ¼

Ls sinaaw � Ds cosaaw

Ls cosaaw þ Ds sinaaw

ðLs cosaaw þ Ds sinaawÞjzsj
�ðLs sinaaw � Ds cosaawÞxsm sinds

þðLs cosaaw þ Ds sinaawÞðxm � xsm cosdsÞ

2
666666666664

3
777777777775

ð20Þ

trðn; drÞ ¼

Lr sinaar � Dr cosaar

Lr cosaar þ Dr sinaar

ðLr cosaar þ Dr sinaarÞjzrj
ð�Lr cosaar � Dr sinaarÞjxrj

2
6666664

3
7777775

ð21Þ

The simulator has a state equation structure, and the

sailboat state vector is given by ½x; y;�; q; u; v; p; r�. Its pro-

cessing flow is composed by a heading control, a sailboat

model, itself, and by some user interface, a graphical com-

ponent. As named, the heading control component is a

controller for allowing the sailboat to execute some prede-

fined trajectory. Its input is a reference direction, as for

example the azimuth given by the actual position of the

sailboat and a target waypoint, for which the actual sailboat

direction is computed. The displacement error from this

reference direction to the actual sailboat direction (sailboat

orientation given by the sensors) is calculated in order to

adjust the rudder orientation, with respect to the sailboat.

The second block, the sailboat model, is responsible for

determining the following sailboat states, based on the

current state and the new calculated parameters, using

the equations above introduced for defining the type of

movement to be performed by the sailboat, which are also

abovementioned. Finally, the sailboat and the environment

are redrawn in the graphical interface that provides the

sailboat visualization in three-dimensional (3-D), as seen

in Figure 2. This provides to the user a way to track the

behavior of the sailboat as the simulation goes on.

As said, the original simulator model developed by Xiao

et al. at University of Southern Denmark (USD)33 has been

modified in our work to agree with the requirements of our

sailboat project. The first modification that was necessary is

to replace the original heading control by the GS-PI control-

ler developed in this work. We also changed the original

sailboat parameters to meet the specifications of our sailboat.

The proposed guidance and control system

Different types of applications imply different control

objectives. For example, a water quality monitoring

6 International Journal of Advanced Robotic Systems



mission on a river may require maneuvering in small or

narrow areas or respecting some power use requirements

where velocity is not a relevant issue. Notice that such

restrictions imply that the best path is usually not the fastest

path. On the opposite, in a rescue mission, the sailboat must

reach the target in the smallest possible time even if this

compromises energy management. Long-term missions may

require the execution of maneuverings that reduces energy

consumption, preserving the robot energy autonomy with

self-sufficiency. Thus, the control challenge addressed in

this work is the development of a method to find GS-PI

low-level controllers for each specific application.

Gain schedule PI control: GS-PI

The idea behind GS-PI is to design specialized controllers

that meet the specific restrictions of each application. In this

way, a higher level agent can select the best available con-

troller according to the current maneuvering being per-

formed, increasing system efficiency. In the sailboat, the

low-level controller must act specifically on the rudder and

on the sail to obtain the desired motion. Acting on the sail is

simpler, the problem can be summarized in finding an angle

within the sail’s movement space, according to the actual

wind direction given by the wind sensor. For the rudder, a

PI-type heading controller is used due to its simplicity,

robustness, and fast implementation. Changes in the propor-

tional and integral parameters modify the rudder behavior

and consequently affect the movement of the sailboat. The

control problem is then reduced to finding the Kp and Ki

parameters of the rudder controller that result in the desired

movement of the sailboat according to each application.

The proposed solution consists of finding the best PI

controller for a certain application through simulations.

Field experiments show that the variables with the highest

influence on the movement of the sailboat are the initial

orientation (q) and the wind direction (aaw). Therefore, the

following method takes into account changes only in those

two variables. Initially, it is necessary to identify the

restrictions associated with the desired mission in which

the sailboat will be applied. Then, the initial conditions

of the simulation and the parameters of the controller are

discretized. The initial heading is divided into eight cases

(0�, +45�, +90�, +135�, 180�) and the wind direction is

separated into four cases (45�, 90�, 135�, 180�). Each pair

of initial conditions represents a maneuver in which a pair

of satisfactory control parameters must be found according

to the established restrictions. In each case, simulation tests

are performed, varying the values of Kp and Ki and the best

response for the maneuvering is stored in a table. At the end

of the process, a control table is assembled, containing the

best pairs found for each of the 32 established maneuvers.

A static PI controller is found for the same application, in

order to compare its performance with that of the GS-PI.

The strategy used to find this controller (static PI) is to

identify the worst case for the application, that is, the man-

euvering with the worst result. The parameters of the static

PI controller are then defined as a pair (Kp;Ki) that pro-

duces the best result for this maneuvering and are found by

trial and error, a common approach in sailboat control.

The mission of water quality monitoring in rivers is used

to test the described method. In this application, the available

navigation area is narrow, which implies a smaller area for

the execution of the maneuverings. In this case, the control-

ler must keep the sailboat in a safe zone, which may be

previously known by a higher level agent looking a map for

example or obtained in real time using cameras and/or 3-D

sensors. In this situation, a control restriction is to ensure that

the sailboat is always inside the safe area. It is then necessary

to check the available lateral distance (dl) for navigation

when starting a new maneuvering. The proposed solution

to this problem is to use a lateral distance restriction, that

is, to find the pair (Kp, Ki) that results in the shorter dl.

Algorithm 1 presents a possible implementation of the

above idea. The loops in lines 3 and 5 generate the initial

conditions of the maneuvering, which are represented in the

algorithm by variables q and aaw. The loops in lines 7 and 8

vary the parameters Kp and Ki for each wind situation and

initial sailboat heading. The pair ðKp;KiÞ is then simulated

using the sim function (line 9). This function modifies the

initial conditions of wind direction and the heading for

simulation. The sim function returns�1 if the sailboat does

not reach the target point in an established simulation time.

Lines 10–14 store the parameters ðKp;KiÞ that resulted in

the shortest lateral distance in position (is, iw) of matrix N .

These steps are repeated for each wind direction and sail-

boat heading (lines 3 and 5), so that after the algorithm

execution the N matrix will contain the best ðKp;KiÞ found

for each tested maneuver.

Figure 2. Visual representation of the sailboat simulator.
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Short-term path planning in upwind situations

In this work, the wind direction can be determined in rela-

tion to the sailboat and the target direction using a wind

vane sensor. The sailboat direction can simply be deter-

mined by way of a compass or a more precise sensor in

case of a high-precision mission. Moving the sailboat

toward a target position is a question of choosing the best

strategy if this target position is not directly against the

wind. If the desired position is directly against wind, new

waypoints have to be calculated (and optimized) coming up

with a zigzag path for the tacking. This new path will be

composed of a series of alternated waypoints, to one side

and to another side of the straight line defined by the actual

sailboat position to the target position, which composes the

tacking maneuvering. The amount of waypoints to be used

and associated zigzag angles are determined as a function

of the surrounding conditions (available area for maneuver-

ing) and on the mission requirements, providing the sail-

boat navigation to the goal as fast as desired.

This upwind path planning method has to find points in-

between and laterally to the straight line linking the actual

sailboat position and the desired position, in order for the

sailboat to navigate to the target in situations that it is

directly against the wind. Our proposal for solving this

situation is to create a path planning method that can be

used to determine alternated waypoints, in such a way that

all of them can be reachable, from one to the next one. This

condition is fulfilled if the paths from each of them to the

next are outside the dead zone, which implies that they are

reachable in straight line. This can be done by choosing

appropriate tacking distance dt and orientation qt para-

meters as shown in Figure 3. In the figure, notice that the

parameters that define the equation of line A can be deter-

mined using the actual sailboat position P0 ¼ ðx0; y0Þ and

the target position Pd ¼ ðxd ; ydÞ, as given by equation (22)

aA ¼
yd � y0

xd � x0

; bA ¼ y0 � aAx0 ð22Þ

From these, the parameters of the line B, obeying an

angle of qt with A, can be determined by way of equation

(23). This angle qt, which can be empirically chosen, keeps

the sailboat out of the dead zone

aB ¼
aA þ tanðqtÞ

aA tanðqtÞ � 1
; bB ¼ y0 � aBx0 ð23Þ

A point Pt can then be determined on the line B, respect-

ing a maximum distance dt to line A, which is calculated

using Pp and Pt. The coordinates xt and yt of point Pt are

used by equation (24) in order to determine the parameters

of lines L1 and L2. Notice that these lines are parallel to

each other and to line A, and they have the same distance to

line A. This provides a laterally limited region around the

previous straight path (line A) in the scenario of a narrow

(limited) navigation environment

bL1
¼ yt � aAxt; bL2

¼ 2bA � bL1
ð24Þ

Figure 3. Path planning method illustration, where points P0

(actual sailboat position) and Pd (target position) are used joint
with dt and qt parameters, which are the tacking distance and
orientation, respectively, in order to determine the new way-
points for the tacking.

Algorithm 1. Finding the GS-PI controller.
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The number of tacking points is defined by equation

(25), that gives the quantity k of steps with size d0;p that

are necessary to go from P0 to Pd

k ¼ d0;d

d0;p

� �
ð25Þ

The X and Y necessary steps for advancing a certain

distance d0;p on the P0 � Pd direction are given by equation

(26)

Dxp;0 ¼ xp � x0; Dyp;0 ¼ yp � y0 ð26Þ

After these initial calculations, all of the tacking point

ðx; yÞ coordinates to follow the path can be found. With the

sailboat starting at P0, for k ¼ 1; 2; . . . ; n, a new point Pk

on the line A can be calculated by advancing with kDx and

kDy steps. In even steps, tacking points are given by the

projections of the current point Pk in the line L1. For odd

steps, it is just a matter of switching to line L2. If the target

is not directly against the wind but the sailboat is still in the

dead zone, that is e 6¼ 0 (equation (27)), then the distance

between odd and even tacking points is changed in order to

take the wind angle into account. This allows the sailboat to

keep the same tacking angle according to the wind,

throughout the maneuvering, increasing the robustness of

our method

e ¼ jatw � qtj ð27Þ

Notice that by changing the parameters qt and dt, the

behavior of this approach will also change resulting in a

different tacking strategy. That is to say that different val-

ues of them imply in different tacking points. A possible

implementation of our method is given in Algorithm 2.

Optimization of the tacking approach

Parameters qt and dt should be empirically determined, in

order for this proposed tacking approach work properly.

Variations in these parameters imply faster or slower tra-

jectories, wider or narrower maneuvering area, or the cre-

ation of undesired tacking points as the situation shown in

the left-hand graph of Figure 8. The number of tacks is the

parameter that most influences the time to target of a beat-

ing maneuvering.34 The problem is that for each maneuver-

ing around the tacking points, the sailboat drastically

reduces its velocity as its has to change its direction passing

through the dead zone. If both the directions of the water

current and wind do not vary, the best strategy is to perform

minimum amount of tacking, which would be one. This is

not always feasible due to environment restrictions nor

possible due to variations in the directions of the wind or

water current. We also notice here that, in practice, expe-

rienced sailors try not to deviate so long from the straight

line to the target due to possible changes in wind direction

(and water current) that would bring the sailboat to a dan-

gerous situation or at least far from the target position. In

fact, this strategy has sometimes made the difference for a

team to be the champions of a regatta.

For the optimization of the tacking, we initially try to

describe the function to be optimized through a series of

initial experiments. This is done in a straightforward way

by varying the values of the parameters (qt; dt), so a brute

force method is used to encounter optimal values of qt and

dt regarding time to target. The parameter qt varies from 20

to 80 and the dt varies from 10% to 90% of the initial

Algorithm 2. Short-term path panning method.
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distance to target. The times to target for one of these

experiments are shown in Figure 4, notice that several local

minima appears in the experiment result. Therefore, an

approximation to the global minimum can be found by way

of using a GA approach. The main reason for using GA is

that this problem relates to a huge search space given sev-

eral parameters, accounting for the several variations that

may happen (heading and initial speed of the sailboat, wind

direction and wind speed). Varying each one of these may

result in a different time to target. Notice that this optimi-

zation should be applied every time that a waypoint is set,

what happens in general at the beginning of each maneu-

vering. So the system just apply this proposed technique

checking its status and using it as the initial condition at the

simulator. The problem is divided in several scenarios and

the performance and validity of the technique are analyzed

for each specific scenario. After that step, this procedure

can be embarked in the sailboat for practical use.

Algorithm 3 implements the idea above, using a tradi-

tional GA approach for the short-term path planning opti-

mization. Binary strings represent individuals and they

contain values for qt and dt. First, an initial population

containing n individuals is randomly generated. The simu-

lator calculates the fitness value for each individual of the

population by simulating their qt and dt. The fitness of an

individual is defined according to its time to target (time

taken to get from start to desired position). Individuals with

shorter time to target are given higher fitness values in

order to minimize time to target. The roulette is then used

for performing the crossover step over a selected part of the

population. The probability of being selected is higher for

individuals with greater fitness values, so the crossover can

be effectively performed. Each portion that represents the

binary qt and dt allows to select the respective points, per-

forming an exchanging of their tails. For each individual,

every bit is tested with the mutation probability that is

present in each bit. The best individuals of this population

are selected to compose the new population, together with

newly reproduced individuals. This process repeats for a

predefined number of generations. At the end, the individ-

ual with the highest fitness in the population is selected to

generate the tacking points. Nonetheless, the above vari-

able gains Kp and Ki as defined by the GS-PI procedure can

also be used here completing, thus, the necessary general

control behavior of the sailboat.

Experiments and results

The proposed navigation technique, as a whole, is analyzed

through a series of experiments, which were planned for

verifying and validating both methods devised here.

Experimental setups and tests are described next for the

GS-PI control approach and for the short-term path planing,

respectively.

Experiments with the control system

We performed a series of simulated experiments to test the

performance and robustness of the GS-PI when compared

with a static PI approach and with a simpler P controller

ðKp ¼ 1;Ki ¼ 0Þ. The navigation mission occurs in narrow

environments where there are restrictions of the areas for

performing the maneuvering. The initial state vector for the

experiments is ½0; 0; 0; q; u; 0; 0; 0�, where q is modified by

the method and u ¼ 2 m=s. The wind velocity is set as

constant at 8 m=s .

Figure 4. Brute force method graph obtained in simulation with
varying parameters dt and qt for scenario 2.

Algorithm 3. Optimization algorithm for short-term path
planning.
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Finding the static PI controller

For the application of navigation in narrow environments,

the worst scenario happens when the wind direction and

initial sailboat orientation result in a route with maximum

lateral distance. Simulation tests have shown that this is the

case when the wind direction is 180� and the initial orienta-

tion of the sailboat is 135�. Figure 5 shows the simulation

result using the exhaustive search method (brute force).

The values of Kp and Ki vary and the maximum lateral

distance is obtained for each maneuvering. This experiment

shows that for the worst scenario, the minimum lateral

distance occurs when ðKp;KiÞ ¼ ð1; 14Þ.

Finding the GS-PI controller

The experiment to find the GS-PI controller is similar to the

static PI, but now the same experiment is applied for sev-

eral wind direction and initial sailboat orientations. The

problem was then divided into 32 cases: 4 wind directions

ð45�; 90�; 135�; 180�Þ and 8 initial orientations ð0�, �45�,
�90�,�135�, 180�, 135�, 90�, 45�Þ. The Table 3 shows the

pairs ðKp;KiÞ obtained with the Algorithm 1.

Discussion

Figures 6 and 7 show the results of the experiments using

three control strategies: P, static PI, and GS-PI. The test

shown in Figure 6 was performed with wind coming from

180 � and initial heading of 45�. In this case, all controllers

were able to keep the sailboat within the safe zone, but the

GS-PI controller reduced the lateral distance by 46:21%

when compared to the static PI controller.

Figure 7 shows the result of another experiment carried

out, where the wind comes from 90� and the initial orienta-

tion of the sailboat is �90�. In this experiment, the con-

troller P was unable to keep the sailboat in the safe zone.

Static PI and GS-PI controllers met this requirement, with

the GS-PI controller reducing the lateral distance by

27:38% when compared to the static PI controller. In gen-

eral, the experiments show that the GS-PI controller is the

most suitable, among the analyzed controllers, for

applications in narrow environments. A size reduction of

the GS-PI controller table is also a possibility, since there

are some cases in which the initial orientations ð�45�;
�90�;�135�, and 45�) have produced similar control para-

meters, indicating that the search space could be reduced.

Table 3. Pairs ðKp;KiÞ of GS-PI controller.

q\atw 45� 90� 135� 180�

0� ð9; 18Þ ð1; 13Þ ð10:5; 20Þ ð10:5; 20Þ
�45� ð10:5; 20Þ ð10:5; 20Þ ð10:5; 20Þ ð10:5; 20Þ
�90� ð1:5; 20Þ ð1:5; 20Þ ð1:5; 20Þ ð1:5; 20Þ
�135� ð1; 15Þ ð1; 15Þ ð1; 16Þ ð1; 14Þ
180� ð10:5; 2Þ ð10:5; 2Þ ð1; 1Þ ð10:5; 2Þ
135� ð1; 14Þ ð1; 13Þ ð2:5; 1Þ ð1; 14Þ
90� ð1:5; 20Þ ð10:5; 13Þ ð3:5; 17Þ ð1:5; 20Þ
45� ð10:5; 20Þ ð10:5; 20Þ ð10:5; 20Þ ð10:5; 20Þ

Figure 5. Graphic representation of the results obtained using
the exhaustive search method.

Figure 6. Sailboat path during first control experiment. Initial
heading ¼ 45�. Wind direction ¼ 180�.

Figure 7. Sailboat path during second control experiment. Initial
heading ¼ �90�. Wind direction ¼ 90�.
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Experiments with the short-term path planning

For testing the path planning for upwind situations, without

loosing generality, lets set the boat starting point at ð0; 0Þ
with heading of q ¼ 0� and the initial sailboat velocity in x

of 2 m/s. In the first experiment, the wind comes from the

North (ð0; 200Þ � ð0; 0Þ direction) which is 0�. The target

position is set to be directly against the wind direction, at

ð0; 200Þ. Figure 8 shows the resulting route for this experi-

ment, in which the parameter dt is set to 30 m and the

parameter qt varies. This represents the situation in which

there is a limitation in the movement of the sailboat. This

example also shows the increase of the tacking points when

the value of qt goes up. Figure 9 shows an experiment with

different initial wind direction set to 25� (still in the dead

zone). Notice that in this case, non-symmetrical tacking

points were generated in order to allow the sailboat to reach

the target. The results show that, under different conditions

of wind, the method produces different tacking points in

order to reach the same target. In these cases, the lowest

time to target paths are those with fewer tacking points.

Figure 10 shows a 30 min-simulated experiment with the

fully operational system (low-level control and tacking). In

this experiment, we set 3 waypoints which the sailboat need

to reach, simulating a water monitoring mission in a lake.

Optimizing the path

In the following, we use the GA with the tacking method

described above to find near optimal tacking parameters

that improve time to target. The performance of this GA

approach is compared against a brute force method, which

consists of setting the tacking parameters by trial and error

similar to what was presented in Figures 8 and 9. To vali-

date this optimization method, we separated the problem in

scenarios. The best parameters, which in this scenario are

the parameters that result in the minimum time to target, are

determined by both methods for each scenario shown in

Table 4.

For the brute force method, the parameters qt and dt are

discretized and simulated for each scenario. Then, the para-

meters that have generated the lowest time to target are

stored. The GA is executed 10 times for each scenario. The

averages of the running time for the experiment and the

time to target during the experiment are computed and

shown in Table 5. The performance of the tacking points

found with GA is quite similar to the points found by brute

Figure 8. Trajectory against wind from simulated experiment
with constant dt and varying qt. The direction of the wind is 0�.
The black dot is the initial position, black cross is the target
position, and the generated tacking points are the black circles.
The sailboat trajectory is in blue. The parameters used for the left-
hand graph are set as ½qt; dt; ta� ¼ ½30; 30;1� and for the right-
hand graph are set as ½50; 30; 172:8�.

Figure 9. Trajectory against wind with 25� wind angle. The black
dot is the initial position, black cross is the target position, and the
generated tacking points are the black circles. The sailboat tra-
jectory is in blue. The parameters used for the left-hand graph are
set as ½qt; dt; ta� ¼ ½30; 30; 123:89� and for the right-hand graph are
set as ½50; 30; 199:27�.
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force. Furthermore, the use of GA substantially reduces the

simulation time in comparison to brute force. The GA also

found better tacking points for scenarios 1 and 3. This

happened because the GA has better precision and can

reach points in the search area that are not reached by the

brute force approach due to the error introduced by the

discretization (the precision used is not enough to reach

some points). The GA has not obtained the best result in

the second scenario as shown in Figure 11, which indicates

that for this case the GA got stuck in a local minimum.

Even in this scenario, the GA solution is only 8:87% worse

than the best value found by brute force.

Conclusion

A navigation system consisting of both a short-term path

planning and a GS-PI-based low-level heading controller is

proposed in this work that allows a sailboat robot to reach

desired positions autonomously. For the path planning, we

apply a deterministic approach for immediate (short-term)

path redefinition, and a further optimization by GA, in

order to get the best tacking points according to the space

available for maneuvering and appropriate navigation

angle. Experimental results verify and validate our

approach. In all of the experiments with the optimized

method, the sailboat was able to reach the final target point.

The method is versatile, if we consider that the two para-

meters (qt and dt) allow to leave the task of defining the

sailboat high-level behavior to a higher hierarchical agent,

for example, to change the tacking angle in order to get

more roll stability during the sailing. Our optimization pro-

cedure has produced similar or better results when com-

pared to a brute force approach, however the optimized

path planning is about 10 times faster than the brute force.

As a second contribution, we propose to apply a GS

strategy to enhance the low-level control, coming up with

a new PI control approach not used previously in robotic

sailboats. Several pairs of parameters ðKp;KiÞ were found

for 32 specified wind direction and initial heading scenar-

ios. The presented results verify the efficacy of the control-

ler when compared to a conventional PI control strategy

commonly used by sailboat projects in the literature, where

Figure 10. Simulated experiment with 30 min of duration, in
which the low-level control and tacking are fully operating in the
navigation system.

Table 4. Wind scenarios.

Scenario Wind direction Wind velocity

1 60� 10 m/s
2 90� 15 m/s
3 60� 15 m/s

Table 5. Results obtained by both approaches.

Scenario Method Time to target Simulation time

1 Brute force 102.4 s 2364.3 s
GA 97.72 s 176.48 s

2 Brute force 105.2 s 2172.42 s
GA 114.44 s 216.28 s

3 Brute force 82 s 2559.96 s
GA 80.16 s 196.32 s

Figure 11. Comparison of brute force with our approach in
scenario 2 using the best tacking points found by both approaches.
Values for the parameters ½qt; dt; ta� are set as
½51:96; 163:7; 105:2� for the left-hand trajectory and as
½42:05; 48:91; 114:44� for the right-hand one.
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only one single pair ðKp;KiÞ is used during the whole

mission. In the experiments performed, the GS-PI control-

ler is able to keep the sailboat within the safe area also

considerably reducing the lateral distance.

The data obtained in the simulation experiments confirm

the initial hypothesis that the use of a GS-PI controller can

improve the sailboat performance, mainly during area con-

strained missions, when compared to PI controllers that use

static parameters. The strategy to find a GS-PI controller

introduced in this article can be automated by way of using

the mathematical model of a sailboat. The main drawback

for the design of a GS-PI controller is to find suitable

models that faithfully represent the movement of the sail-

boat. The implementation of the method developed in the

N-Boat II and field trials to investigate the impact that

random variables such as water currents and waves have

on the movement of the sailboat are possibilities of future

work.

Future work, that has already been started, consists on

implementing and testing in practice the versions of the

methods proposed for this navigation system, in a larger

sailboat that has finished its construction. Further tests will

be performed in real situations of sailing. This further

implementation will allow the reduction of computational

complexity that is a necessity for the real-time usage of the

developed tools in embedded processors of this larger sail-

boat robot.

Acknowledgements

We thank Coordination for the Improvement of Higher Education

Personnel (CAPES), Brazil, for the grants of Davi Santos under

finance code 001, and National Sponsoring Agency for Research

(CNPq) for the grants of Luiz Gonçalves.
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