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1.  INTRODUCTION

Suisun Bay, situated in the northern part of San
Francisco Bay, USA, has experienced numerous envi-
ronmental changes in the last 2 to 3 decades, some of
which have contributed to a general decline in phyto -
plankton biomass (Alpine & Cloern 1992, Lehman
1996, 2000, Jassby 2008). These changes include in -
creased grazing pressure following an invasion by
the Asian clam Potamocorbula amurensis (Carlton et
al. 1990, Alpine & Cloern 1992), increases in nitrogen
(N) inputs from wastewater discharge (Jassby 2008),
exposure to a broad suite of herbicides (Orlando et

al. 2014), changes in water residence times, and
increases in water temperature (Jassby 2008), to
mention a few. These changes were added on top of
a system that already experienced acute light limita-
tion (Cole & Cloern 1984, 1987, Jassby et al. 2002)
resulting from relatively high levels of sediments car-
ried with the Sacramento River and localized wind-
wave sediment resuspension (Goodwin & Denton
1991, Ruhl & Schoellhamer 2004, Moskalski & Torres
2012, Schoellhamer et al. 2012). In turn, the decrease
in phytoplankton biomass has been hypothesized to
be partially responsible for decreases in biomass of
higher trophic levels, including zooplankton and
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pelagic fish (Kimmerer 2002, Müller-Solger et al. 2002,
Sommer et al. 2007, Kimmerer et al. 2017).

Of the bottom-up factors that could negatively
impact phytoplankton growth, the two that have
received the most attention are excessive ammonium
(NH4

+) build-up from wastewater effluent (Dugdale
et al. 2007, Parker et al. 2012, Esparza et al. 2014,
Kraus et al. 2017) and light limitation due to high
 turbidity (Cole & Cloern 1984, 1987, Alpine & Cloern
1988, Jassby et al. 2002). These factors are linked in
that light limitation, resulting in low levels of primary
 productivity and biomass, allows dissolved nutrients
to accumulate in the water column. As a result, the
median chlorophyll a concentration in Suisun Bay
(2.0 µg l−1) is ~12-fold lower than what could be
expected if the ambient nitrogen available in the
water column was converted into phytoplankton bio-
mass (Cloern & Jassby 2012).

While the impacts of elevated NH4
+ concentrations

and low light have been studied separately in Suisun
Bay, they have not been studied simultaneously
under controlled conditions. The inter action between
light and nutrients is particularly  pertinent to Suisun
Bay as it is a mosaic of different light−nutrient envi-
ronments varying from deep, dark channels to shal-
low, well-lit banks (Alpine & Cloern 1988) superim-
posed by steep concentration gradients in inorganic
nutrients (Dugdale et al. 2007, Jassby 2008). To
investigate the impact of changes in light and nutri-
ents simultaneously on phytoplankton growth in
Suisun Bay, several species of phytoplankton were
isolated into pure cultures (Berg et al. 2017). By using
recent isolates from upper San Francisco Bay, we
avoided issues related to extrapolation of results
using strains from other geographic regions to our
locale as well as issues related to genetic adaptations
resulting from growth at unnaturally high N (in most
cases, nitrate only) concentrations for many decades
(Lakeman et al. 2009). In addition, by using pure cul-
tures rather than field populations, we were able to
ascribe physiology associated with growth on differ-
ent N sources to a particular phytoplankton taxon.

Two of the isolated species, Thalassiosira weissflogii
and Entomoneis paludosa, were endemic to Suisun
Bay and belong to genera that dominate phytoplank-
ton community composition depending on season
and location (Lehman 1996, Cloern & Dufford 2005,
Glibert et al. 2014). These 2 species are ecologically
distinct in that T. weissflogii is a centric diatom resid-
ing in the pelagic zone, whereas E. paludosa is a
 pennate diatom comprising part of the microphyto-
benthos that typically resides on the sediment sur-
face (Ribeiro et al. 2003, Forster & Martin-Jézéquel

2005). Both pelagic and microphytobenthic commu-
nities may be exposed to gradients in irradiance and
nutrients, but these gradients may differ in steep-
ness. For example, gradients in irradiance may be
less steep at the sediment surface compared with
what is experienced by a phytoplankter that is mixed
from the bottom to the surface of the water column.
Because of lower mean irradiances, benthic pro -
ductivity may be less than pelagic water column pro-
ductivity (Kromkamp et al. 1995, Cullen & MacIntyre
1998, Underwood & Kromkamp 1999). In contrast,
gradients in nutrients may be steeper in the sedi-
ments where organic matter deposition and nutrient
remineralization are more concentrated compared
with the water column (Admiraal 1977b, Krom 1991).
In a previous report, both T. weissflogii and E. palu-
dosa isolated from Suisun Bay were found to tolerate
ammonium concentrations in excess of 1000 µmol l−1

(Berg et al. 2017). Environmental parameters such as
salinity and temperature are also important with
respect to the distributions of both pelagic and ben-
thic phytoplankton (Admiraal 1977a, MacIntyre et al.
1996, Underwood & Provot 2000, Boyd et al. 2013).

In addition to gradients at the sediment-water
interface, microphytobenthic communities are fre-
quently exposed to wind-induced waves and tides
that scour the surface of the sediments and suspend
them into the water column (de Jonge & van Beuse -
kom 1995). In San Francisco Bay, currents, tides,
river flow, and wind combine to provide a high level
of turbulence and water column churn (Cloern 1991,
1996, Moskalski & Torres 2012). Benthic diatoms in
this system become suspended together with sedi-
ments into the water column and increasingly domi-
nate pelagic phytoplankton community composition
(Glibert et al. 2014, Kraus et al. 2017). Given recent
increases in contribution of benthic diatoms to
pelagic phytoplankton community com position in
Suisun Bay, high tolerance of benthic diatoms to
ammonium (NH4

+), and elevated concentrations of
NH4

+ in this system, we wanted to investigate
whether tolerance to varying combinations of light
and nutrients could help characterize the ecological
niches of T. weissflogii and E. paludosa.

To characterize the extent to which growth rates of
these diatoms would be modulated by exposure to
varying NH4

+ concentrations in combination with
varying irradiances, the impacts to growth rates of
3 different nitrogen (N) concentrations (under non-
limiting conditions), using nitrate (NO3

−) or NH4
+ as

the sole source of N for growth, under 4 different
irradiances, were investigated in T. weissflogii and
E. paludosa. When T. weissflogii and E. paludosa were
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isolated from Suisun Bay for the present study, both
were key members of the pelagic phytoplankton
community. We also wanted to investigate whether
any of the 3 factors tested (N source, N concentration,
or irradiance) influenced growth rates to the extent
that the factor could affect the outcome of competi-
tion between these 2 species.

2.  MATERIALS AND METHODS

2.1.  Sampling

Samples of phytoplankton were surveyed and col-
lected along a cruise track that traversed Suisun Bay
and its principal freshwater source, the Sacramento
River, on 28 to 29 January 2014. During the survey,
33 discrete stations were sampled from the R/V
‘Questuary’ from the northernmost Stn 32 at the I-80
bridge in the Sacramento River to the southernmost
Stn 1 in Suisun Bay. Samples for enumeration of
phytoplankton abundance and isolation of phyto-
plankton into pure cultures were collected at 1 m
depth from a smaller subset of stations (12 stations)
along this survey track using a rosette sampler. Tem-
perature and salinity data were obtained from a CTD
attached to the rosette sampler. In addition, data on
turbidity at each station was obtained using a YSI
6600v2 sonde.

2.2.  Experimental conditions

Whole water was brought back to the laboratory
where clonal, non-axenic cultures of the estuarine
diatoms Thalassiosira weissflogii and Entomoneis
paludosa were established by micropipette isolations
of single cells from Suisun Bay according to Berg et
al. (2017). Sterile techniques were used during all
aspects of culturing. Stock cultures were maintained
at 85 µmol photons m−2 s−1 at 15.5°C and a salinity of
10 using NO3

− as the N source. Before the start of an
experiment, cultures were spun down, rinsed with N-
free medium, and re-suspended in triplicate into
dilute batch cultures containing 200 ml of medium
with f/2 nutrient + silica solution lacking N (Goldman
& McCarthy 1978). The nutrient solution was modi-
fied by the addition of N to give final concentrations
of 20, 100, and 1000 µmol l−1, either in the form of
NH4

+ or NO3
−. In the case of the cultures with NH4

+

added, the fraction of total ammonia (NH4
+ + NH3)

that was composed of unionized NH3 at a salinity of
10, temperature of 15.5°C, and pH of 8.3 (i.e. 3−6%;

Khoo et al. 1977) was calculated to range from 0.6
to 1.2 µmol l−1 in the 20 µmol NH4

+ l−1 cultures, 3 to
6 µmol l−1 in the 100 µmol NH4

+ l−1 cultures, and
30 to 60 µmol l−1 in the 1000 µmol NH4

+ l−1 cultures.
Nitrogen concentrations were checked periodically
throughout the growth phase of the cultures. Strains
were cultured at 4 incident irradiances representing
low (25 µmol photons m−2 s−1), intermediate (85 µmol
photons m−2 s−1), high (200 µmol photons m−2 s−1), and
inhibiting (600 µmol photons m−2 s−1) light. The cul-
tures were mainatained on a 12 h light:12 h dark
(L:D) cycle under cool-white fluorescent lights at a
temperature of 15.5 ± 1°C). Each culture was sam-
pled daily, at noon, for physiological evaluations as
described below.

2.3.  Sample analyses

The physiology of each species was evaluated
through daily measurements of the quantum yield of
photosystem II (PSII), cell abundance, and chloro-
phyll a (chl a) concentration. Nitrogen concentrations
(NH4

+ and NO3
−) were assayed periodically. The

quantum yield of PSII (Fv/Fm) was measured by pulse-
amplitude-modulated (PAM) fluorometry (Heinz-
Walz WATER-PAM). The PAM was blanked with
0.2 µm filtered culture media. For assessment with
PAM, aliquots were removed from the primary cul-
ture and dark-adapted for at least 10 min. After dark
adaptation, background chl a fluorescence (F0) and
maximal chl a fluorescence following a saturating
pulse (Fm) were measured to derive the variable (Fv)
over maximum chl a fluorescence according to:

(1)

Samples for cell enumeration were preserved with
acid Lugol’s solution (20 µl Lugol’s per ml culture vol-
ume) and stored cool (4°C) in the dark until enumer-
ation with a Zeiss Axiovert 200 inverted microscope
using a Parsons counting chamber. Geometric shapes
of the cells were based on measurements of 10 or -
ganisms per taxon. Cell volumes were estimated by
ap plying the geometric shapes that most closely
matched the cell shape (Hillebrand et al. 1999).
Abundances were estimated by random field counts
totaling 400 unicells. Cell-specific growth rates (d−1)
were computed by fitting the exponential function:

C =  C0eμt (2)

to the data from the exponential growth phase, where
C is the cell abundance, C0 is the starting cell abun-

F
F

F F F= −( ) /v

m
m 0 m
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dance, μ is the growth constant (d−1), and t is time
(d). All calculations and statistical tests were carried
out using R software (R Core Team 2016).

Samples for chl a determination were collected
onto glass-fiber filters (Whatman GF/F) and pro-
cessed immediately using the non-acidification
method (Welschmeyer 1994). Samples for nutrient
(NO3

− and NH4
+) analysis were filtered (Whatman

GF/F) and stored frozen until processing. Ammo-
nium was analyzed using the orthophthaldialdehyde
(OPA) method, and relative fluorescence units were
obtained via fluorometry (TD-700, Turner Designs)
according to Holmes et al. (1999). Nitrate was ana-
lyzed using a Lachat QuikChem 8500 Flow Injection
Analyst System and Omnion 3.0 software (Lachat
Instruments, Hach).

3.  RESULTS

At the time of sampling, phytoplankton belonging
to the Thalassiosira genus dominated phytoplankton
community biomass throughout Suisun Bay, whereas
Entomoneis paludosa dominated phytoplankton com-
munity biomass at stations in the X2 region where the
salinity changes from freshwater to brackish water
(Fig. 1). For the current study, T. weissflogii was iso-
lated from Stn 6, while E. paludosa was isolated from
Stn 19. Salinities were 11.5 and 1.4, and turbidities
were 5 and 15 NTU, at Stns 6 and 19, respectively
(Fig. 1A,B). The temperature was 11°C at both sta-
tions. These newly isolated diatom species were rela-
tively large (Fig. 2). The dimensions for E. paludosa
were approximately 50 µm length by 20 µm width,
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yielding a mean cell volume of 15 580 ± 2500 µm3.
The mean diameter of T. weissflogii was 32 µm, yield-
ing a mean cell volume of 6447 ± 804 µm3 (Fig. 2).

Fv/Fm was slightly greater in E. paludosa (ranging
from 0.49 to 0.76) than T. weissflogii (ranging from
0.39 to 0.74) particularly at the intermediate irradi-
ance (Fig. 3A−D). However the difference in Fv/Fm as
a function of species was not statistically significant
(F1,142 = 3.4, p = 0.07). Nor was the difference in Fv/Fm

as a function of N source statistically different in
either E. paludosa (F1,70 = 0.02, p = 0.89) or T. weiss-
flogii (F1,70 = 1.2, p = 0.27). Similarly, there was no
significant effect of N concentration on Fv/Fm in
either E. paludosa (r2 = 2.11 × 10−5, F1,70 = 0.0015, p =
0.97) or T. weissflogii (r2 = 0.025, F1,70 = 1.8, p = 0.18).
In contrast to the aforementioned factors, Fv/Fm de -
creased significantly with increasing irradiance in
both E. paludosa (r2 = 0.75, slope = −3.20 × 10−4,
F1,70 = 209, p < 2 × 10−16) and T. weissflogii (r2 = 0.76,
slope = −3.43 × 10−4, F1,70 = 222, p < 2 × 10−16). In
E. paludosa, the decrease in Fv/Fm was greatest
between 85 and 200 µmol photons m−2 s−1 (Fig. 3A,B),
whereas in T. weissflogii, it decreased with each step
increase in irradiance (Fig. 3C,D).

Chl a quota (chl a cell−1) was significantly less for E.
paludosa, ranging from 32 to 91 pg cell−1, compared
with T. weissflogii (F1,142 = 179, p < 2 × 10−16), where
it ranged from 61 to 283 pg cell−1 (Fig. 3E−H). There
was no significant effect of N source on cell quota in
either species (E. paludosa F1,70 = 0.8, p = 0.38; T.
weissflogii F1,70 = 0.5, p = 0.48). There was a slight
effect of N concentration on cell quota in E. paludosa
(r2 = 0.06, slope = 0.01, F1,70 = 4.8, p = 0.03) but not in
T. weissflogii (F1,70 = 0.5, p = 0.48). The effect of irra-
diance also differed with re spect to the chl a quota in
the 2 diatoms. There was no significant effect of irra-
diance on the chl a quota in E. paludosa (F1,70 = 0.08,

p = 0.78), which de creased between the
low and intermediate irradiance followed
by a slight in crease above the intermedi-
ate irradiance (Fig. 3E,F). In contrast with
E. paludosa, there was a significant neg-
ative effect of irradiance on the chl a
quota in T. weissflogii (r2 = 0.45, slope =
−0.21, F1,70 = 57, p = 1.2 × 10−10). In T.
weissflogii, the chl a quota decreased
with each step increase in irradiance
between low and high irradiance when
grown on NH4

+ (Fig. 3G) and between
intermediate and high irradiance when
grown on NO3

− (Fig. 3H).
Growth rates differed significantly be -

tween the 2 diatoms tested here (F1,142 =
18, p = 3.7 × 10−5), with rates being greater in T.
weissflogii (0.76 ± 0.3 d−1) compared with E. paludosa
(0.58 ± 0.2 d−1) across all treatments (Fig. 3I−L).
Growth rates in both E. paludosa (r2 = 0.17, slope =
0.0038, F1,70 = 14, p = 0.00038) and T. weissflogii (r2 =
0.41, slope = 0.0008, F1,70 = 48, p = 1.6 × 10−9) were
significantly impacted by irradiance. In both diatoms,
the largest increase in growth rate occurred between
the low and intermediate irradiances when grown on
NH4

+ (Fig. 3I,K). When grown on NO3
−, there was an

additional increase between the intermediate and
high irradiance (Fig. 3J,L).

In contrast with irradiance, there was no significant
impact on growth rate in E. paludosa (F1,70 = 0.3, p =
0.6) or T. weissflogii (F1,70 = 3.5, p = 0.07) by either N
source or N concentration (F1,70 = 4, p = 0.06 and F1,70 =
0.02, p = 0.88, respectively) across all irradiances
(Fig. 3I−L). However, there was a negative interaction
between growth on the highest NH4

+ concentration
and the 2 highest irradiances in E. paludosa (Fig. 3I).
As a result, growth rates in E. paludosa decreased
40% from the intermediate to high irradiance when
grown at 1000 µmol NH4

+ l−1 (Fig. 3I). No such de-
crease was observed when grown on NO3

− (Fig. 3J).
There was an effect of N source on growth rate at

the intermediate irradiance in T. weissflogii (Fig. 3K−L,
F1,16 = 187, p = 3.05 × 10−10). At this irradiance,
growth on NH4

+ was 69% faster than growth on NO3
−

(Fig. 4). Although not statistically significant, growth
rates were also faster (28%) on NH4

+ than on NO3
− in

E. paludosa at the intermediate irradiance (Fig. 4).
This difference in growth rates with N source at the
intermediate irradiance can be attributed to the
 difference in irradiance at which maximum growth
rates were reached when growing on NH4

+ vs NO3
−.

In both species, near-maximum growth rates were
reached at the intermediate irradiance when grow-
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(B) T. weissflogii. Scale bar = 25 µm
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ing on NH4
+, while the maximum was not reached

until the high irradiance when growing on NO3
−

(Fig. 3J,L). As a result, the difference in growth rates
between the 2 N sources was greatest at the interme-
diate irradiance. At the highest irradiances, growth
rates on NO3

− had caught up to rates on NH4
+, and

there was no substantial difference. At the lowest
irradiance, growth rates were similarly low on both N
sources in both species (Fig. 4).

4.  DISCUSSION

In recent years, blooms of benthic diatoms have
become more common in Suisun Bay in the northern
portion of San Francisco Bay. In particular, occasional
blooms of the benthic chain-forming diatom Ento -
moneis paludosa have been observed throughout
Suisun Bay (e.g. Glibert et al. 2014). Because E. palu-
dosa is a benthic species and therefore acclimated to
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high NH4
+ concentrations fluxing out of the sedi-

ments (i.e. Admiraal 1977b, Jauffrais et al. 2016), and
water column NH4

+ concentrations in Suisun Bay are
relatively high (Jassby 2008), it is possible that
pelagic blooms of this species are related to shifts in
N concentration and species. It has been hypo the -
sized that growth of pelagic diatoms is inhibited by
NH4

+ at concentrations above 4 µmol l−1 (Dugdale et
al. 2007) although this has not been demonstrated on
a physiological level (Collos & Harrison 2014, Berg
et al. 2017). We wanted to investigate how growth
rates of the pelagic diatom Thalassiosira weissflogii,
potentially more sensitive to NH4

+ and less sensitive
to irradiance, and the benthic diatom E. paludosa,
potentially less sensitive to NH4

+ and more sensitive
to irradiance, would compare under  varying condi-
tions of irradiance and N sources and concentration
at non-limiting levels of nutrients. We specifically
tested non-limiting levels as earlier analyses had
hypothesized that changes in N speciation at non-
limiting levels could affect phytoplankton growth
rates and competitive interactions (Dugdale et al.
2007, Glibert et al. 2011). In contrast with earlier
reports, no significant impact of N source on growth
rates were demonstrated in the 2 diatom species
tested here. Of the 3 environmental variables tested,
irradiance had the largest and most significant influ-
ence on growth rates.

At the temperatures used in the current experi-
ments (15.5°C), T. weissflogii outgrew E. paludosa

across all treatments with an average growth rate dif-
ference of 0.18 d−1. This growth rate difference was
greater at high light (0.3 d−1) compared with low light
(0.07 d−1). We noted physiological differences be -
tween these 2 diatoms that could underpin the pat-
tern of a larger growth rate difference at high light
compared with low light. One was a smaller range
in Fv/Fm in E. paludosa compared with T. weissflogii,
0.27 vs. 0.35, respectively. Another was less plasticity
in chl a quota, varying 5-fold in E. paludosa and 11-
fold in T. weissflogii.

Being able to vary photosynthetic efficiency (short-
term acclimation response to excess irradiance) and
chl a quota (longer-term acclimation response to
excess irradiance) can enable a species to acclimate
more readily in response to change and thereby
avoid damage to the cell under high light. Effective
dissipation of excess energy at the point where light
energy is harvested, as heat or fluorescence, called
non-photochemical quenching, can prevent the build-
up electrons that combine with oxygen to form oxy-
gen radicals that damage the D1 protein of PSII (Vass
et al. 1992, Aro et al. 1993, Clarke et al. 1993, Wu et
al. 2012). This damage results in inhibition of photo-
synthesis (photoinhibition) which may or may not be
reversible depending on how efficient the cell’s re -
pair mechanisms are (Vass et al. 1992, Clarke et al.
1993, Nixon et al. 2010, Campbell & Tyystjärvi 2012,
Wu et al. 2012). Temporary diversion of excess
energy reduces the photosynthetic efficiency of the
cell but prevents long-term damage and mortality of
the cells. Cells that do not have the ability to dissi-
pate excess energy do not experience short-term
decreases in photosynthetic efficiency but may not
be able to adapt and as a consequence may not sur-
vive (Cullen & MacIntyre 1998). It is possible that the
ability of T. weissflogii to decrease its photosynthetic
efficiency and its chl a quota to a greater degree than
E. paludosa enables it to maintain a better level of
photopro tection and to attain a higher growth rate at
high  irradiances.

In addition to having less plasticity in photophysio-
logical parameters, there was a negative interaction
of high irradiance and high NH4

+ concentration in E.
paludosa, resulting in a 40% decrease in the growth
rate, which was not evident in T. weissflogii. Such an
interaction has been observed previously for E. palu-
dosa (Admiraal 1977b), and it can be explained phys-
iologically by direct damage to PSII from competitive
binding of NH3 with the oxygen evolution complex
(Kallqvist & Svenson 2003, Drath et al. 2008, Collos &
Harrison 2014). In other words, addition of high con-
centrations of NH4

+, a fraction of which will be com-
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source as a percentage ([μNH4/μNO3 − 1] × 100) as a function of
irradiance in E. paludosa and T. weissflogii. Dotted line rep-
resents no growth rate difference with N source. Line within
box: median; box: interquartile range (IQR); whiskers: max./
min. values ≤1.5 × IQR above/below box; circles: outliers
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posed of NH3 depending on temperature and pH
(e.g. Khoo et al. 1977), will allow NH3 to diffuse freely
into the cell, resulting in photodamage. The impact of
this damage will depend on the photorepair mecha-
nisms present in the cell (Drath et al. 2008). A nega-
tive impact on growth of high NH4

+ at high irradi-
ances suggests that E. paludosa has an inferior
photo damage repair mechanism compared with T.
weissflogii. At the lower irradiances (25 to 85 µmol
photons m−2 s−1), growth in E. paludosa was not in hi -
bited by the highest NH4

+ concentration tested here.
The combination of the high NH4

+ concentration
with constant high irradiance used here would not
be expected to occur in Suisun Bay where water col-
umn NH4

+ concentrations typically range from 2 to
11 µmol l−1, fluxes of NH4

+ out of the sediments to
the water column are below 100 µmol NH4

+ m−2 h−1

(Cornwell et al. 2014), and depth-averaged inte-
grated irradiances are typically below 100 µmol pho-
tons m−2 s−1 (Table 1). The intermediate irradiance
used in the current experiments would probably be
more applicable to depth-averaged irradiance condi-
tions encountered in Suisun Bay (Table 1). Interest-
ingly, the difference in growth rates between NH4

+

and NO3
− was the greatest in both species at the

intermediate irradiance.
A large growth rate difference between NH4

+ and
NO3

− at intermediate irradiances, but not at low or
high irradiances, has been observed in several other
phytoplankton species (Paasche 1971, Thompson et

al. 1989; Wood & Flynn 1995, Tong et al. 2016). This
difference can be explained by the maximum growth
rate being reached at a lower irradiance when grow-
ing on NH4

+ than when growing on NO3
− (i.e. Wood

& Flynn 1995), resulting from the requirement of
additional energy (i.e. 25−40%) and enzymatic steps
associated with the reduction of NO3

− (Thompson et
al. 1989, Turpin 1991, Raven et al. 1992, Levasseur et
al. 1993, Herrero et al. 2001, Brown et al. 2009). The
difference in growth rates with N source may not be
easy to detect unless a range of irradiances are tested
as the difference disappears at higher (and lower)
irradiances. Many studies have demonstrated no
 difference in growth regardless of N source, and
some have greater growth rates on NO3

− compared
with NH4

+ (Thompson et al. 1989, Levasseur et al.
1993, Clark & Flynn 2000, Herndon & Cochlan 2007,
Strom & Bright 2009, Thessen et al. 2009, Berg et al.
2017). Whether a lack of growth rate difference with
N source is due to testing at irradiances that are too
high, and/or because the extra energy cost to the cell
when using NO3

− is compensated for by changes in
metabolic parameters, is not clear. Previous studies
have demonstrated variations in chl a quota, N quota,
cellular C:N ratio, and photosynthetic efficiency with
growth on NO3

− versus NH4
+ (Levasseur et al. 1993,

Wood & Flynn 1995, Flynn 2001).
While there was a difference in growth rates with

N source at the intermediate irradiance in the current
experiment, averaged across all the irradiances, this
difference was no longer significant in either diatom.
Because phytoplankton in Suisun Bay are mixed
from the top to the bottom of the water column (i.e.
mixed layer depth is the same as the total water col-
umn depth; Cloern 1991) and therefore experience a
range of irradiances in each mixing cycle, N source
effects should be averaged across a range of irradi-
ances. Another important note with respect to the use
of different N sources is that, as demonstrated here
and in other studies (Paasche 1971, Thompson et al.
1989, Wood & Flynn 1995, Tong et al. 2016), irradi-
ance is the principal driver. At any given irradiance,
phytoplankton are likely to use the same N source or
N mix. Consequently, all phytoplankton are more
likely to use NH4

+ under the low-intermediate irradi-
ances and non-limiting NH4

+ conditions that prevail
in Suisun Bay, and competition among species will be
driven by intrinsic growth rate differences rather
than use of different N sources.

The reason that E. paludosa is able to bloom in
parts of Suisun Bay, despite growing at a slower
rate than species of the Thalassiosira genus, may
not be linked to either irradiance or NH4

+ concen-
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Station Depth NH4
+ Irradiance 

(m) (µmol l−1) (µmol photons 
m−2 s−1)

Summer
17 (USGS3) 11.4 2.4 20.7
12 (Grizzly Bay) 6.4 4.5 62.0
8 (Middle Suisun) 5.9 4.7 62.7
6 (USGS5) 11 3.8 46.1
4 (USGS6) 12.5 5.9 41.3
2 (USGS7) 18 10.9 31.4

Winter
17 (USGS3) 11.4 13.2 30.4
12 (Grizzly Bay) 6.4 10.2 78.6
8 (Middle Suisun) 5.9 10.2 15.4
6 (USGS5) 11 10.4 17.7
4 (USGS6) 12.5 10.9 26.1
2 (USGS7) 18 10.9 61.5

Table 1. Typical water column depth, NH4
+ concentrations,

and  irradiances (depth-averaged integrated irradiance) for
select stations along the cruise track in Suisun Bay during
summer and winter. Corresponding USGS long-term moni-

toring station designations in parentheses
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trations. As illustrated in Fig. 1 the distribution of
these 2 genera, when they co-occur, is at opposing
ends of the sal inity spectrum in Suisun Bay. Diatoms
of the Tha lassiosira genus tend to dominate at salin-
ities >1.5, whereas E. paludosa dominates at salini-
ties around 1.5 and less. A number of studies have
indicated that salinity is an important factor with
respect to distributions of phytoplankton and micro-
phytobenthos and competitive interactions (McIntire
1978, Admiraal et al. 1984, Underwood et al. 1998,
Underwood & Provot 2000). Temperature is another
potentially important factor in regulating growth
rates and competitive interactions (Eppley 1972,
Admiraal 1977a, Anderson 2000, Butterwick et al.
2005, Boyd et al. 2013). Studies to date suggest that
the temperature optimum for growth of the Thalas-
siosira genus, between 15 and 20°C (Boyd et al.
2013), is lower than the temperature optimum of E.
paludosa, which is 25°C (Admiraal 1977a). Because
water temperatures have been in creasing by up to
0.21°C per year in upper Suisun Bay and in the
Delta (Jassby 2008), it may be that the warming of
the water has provided an opportunity for E. palu-
dosa to out-grow pelagic diatom species such as
Thalassiosira spp. within a specific salinity range.

In summary, typical NH4
+ concentrations in Suisun

Bay do not inhibit growth of either T. weissflogii or E.
paludosa. At irradiances and mixing regimes charac-
teristic of Suisun Bay, the pelagic diatom T. weiss-
flogii would likely be at a competitive advantage
given its higher growth rates and photophysiological
adaptations suitable for exploiting variable irradi-
ance. Our findings are consistent with global find-
ings that pelagic diatoms are adapted for growth in
low-light environments with a high degree of turbu-
lence (Margalef 1978, Kudela 2010, Edwards et al.
2015, Richardson et al. 2016) and that pelagic
diatoms typically have higher rates of primary pro-
ductivity than benthic diatoms (Kromkamp et al.
1995, Underwood & Kromkamp 1999). Episodic
blooms of pelagic versus microphytobenthic species
in Suisun Bay could be controlled by variations in
water column stability, temperature, and salinity.
Increased residence time, and thereby increased
stratification and temperatures, could accelerate
growth of E. paludosa at the sediment surface, allow-
ing it to build up a large seed community. With an
episodic increase in turbulence, this community
could become suspended into the water column and
outcompete centric pelagic diatoms from the Thalas-
siosira genus, as observed during the spring bloom of
E. paludosa in 2014 at the height of drought condi-
tions (Glibert et al. 2014).
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