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Abstract. In this paper, a solution of coupled fractional Navier–Stokes equation is computed numerically using
the proposed q-homotopy analysis transform method (q-HATM), and the solution is found in fast convergent series.
The given test examples illustrate the leverage and effectiveness of the proposed technique. The obtained results
are demonstrated graphically. The present method handles the series solution in a large admissible domain in an
extreme manner. It offers us a modest way to adjust the convergence region of the solution. Results with graphs
explicitly reveal the efficiency and capability of the proposed algorithm.
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1. Introduction

A fraction in derivative was concieved by Leibnitz and
it was revealed that fractional calculus is more suitable
for modelling real-world problems than classical cal-
culus. The theory of fractional calculus interprets the
reality of nature in an excellent and systematic manner
[1–3]. Recently, it has garnered attention as it can deliver
exact explanation regarding nonlinear complex systems.
Fractional-order derivative has gained more attention in
various areas, e.g. fluid dynamics [4], electrodynamics
[5], nanotechnology, finance, neurophysiology [6], etc.
Differential equations that govern systems with memory
are fractional differential equations (FDEs) [7–9]. Arbi-
trariness in their order introduces more degrees of free-
dom in design and analysis, resulting in more accurate
modelling, better robustness in control and greater flexi-
bility in signal processing. Electrochemical phenomena
such as double-layer charge distribution or diffusion
process can be better explained with a fractional-order
system. As a result, the modelling of lithium in batter-
ies, fuel cells and supercapacitors is carried out with
FDEs. Other promising areas of applications include
the characterisation of ceramic bodies, fractal structures,

viscoelastic materials, and decay rate of fruit and meat
and the study of corrosion in a metal surface.

The advantage of using fractional models of differen-
tial equations in physical models is their non-local prop-
erty. Fractional-order derivative is non-local, whereas
integer-order derivative is local in nature. It shows that
the upcoming state of the physical system is also depen-
dent on all of its historical states in addition to its
present state. Hence, fractional models are more real-
istic [10,11].

In 1822, Navier derived the Navier–Stokes (NS) equa-
tion, which portrays the flow motion of a viscous fluid.
As examples of the motion of a fluid, they described
various physical phenomena, e.g. blood flow, ocean cur-
rent, flow of liquid in pipes and air flow around the arms
of an aircraft. Its exact solution is possible in only a
few cases due to its nonlinear nature. In these cases,
we have to consider a simple configuration for the flow
pattern and certain assumptions need to be made about
the state of the fluid. In most practical situations, these
equations follow the fractional order and not the inte-
ger order. El-Shahed and Salam [12] generalised the
classical NS equation by switching integer-order deriva-
tive to arbitrary-order derivative α (0 < α ≤ 1). Many
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methods are available in the literature to solve fractional-
order NS equations. For more details, we direct readers
to papers [13–15] and references therein.

In this work, we consider a time-fractional NS equa-
tion for an incompressible fluid flow of density ρ and
kinematic viscosity ν = η/ρ. It is given as⎧⎪⎨
⎪⎩

Dα
t U + (U · ∇)U = ρ0∇2U − 1

ρ
∇ p,

∇ · U = 0,

U = 0, on � × (0, T ).

(1)

Here, U = (u, v, w), p and t denote fluid vector, pres-
sure and time, respectively. (x, y, z) represent the spatial
components in �. η is the dynamic viscosity. ρ is the
density and the ratio of η and ρ is ρ0.

Equation (1) can also be represented as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
t u + u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

= ρ0

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
− 1

ρ

∂p

∂x
,

Dα
t v + u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

= ρ0

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
− 1

ρ

∂p

∂x
,

Dα
t w + u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

= ρ0

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
− 1

ρ

∂p

∂x
,

(2)

Fractional derivative is taken in Caputo sense. The aim
is to propose an efficient scheme for fractional-order
NS equations. Liao [16] presented the homotopy anal-
ysis method (HAM) in which an incessant mapping is
formed from initial speculation to an exact solution after
selecting an auxiliary linear operator. The solution con-
vergence is confirmed by the auxiliary parameter. The
q-HAM is actually an improvement of q ∈ [0, 1] in
HAM to q ∈ [0, 1/n], n ≥ 1. The presence of the
term (1/n)m in the solution gives faster convergence
than the standard HAM. The combination of semiana-
lytical methods with a suitable transform reduces the
time consumption in investigating solutions to non-
linear problems describing real-life applications. The
q-homotopy analysis transform method (q-HATM) [17–
20] is an amalgamation of q-HAM and transform of
Laplace. Its superiority is its ability to adjust two strong
computational methodologies for probing FDEs. By
choosing proper h̄, we can control the convergence
region of solution series in a large permissible domain.

A fraction in the time derivative recommends modula-
tion of system memory. Time-FDEs describe the motion
of a particle with memory in time. It is apparent that
viscous fluid flow is influenced by memory. This means

that fractional modelling is suitable for such systems.
Hence, the study of time-fractional NS equations is very
important. The time-fractional NS equations have not
yet been studied by q-HATM. Finding their numeri-
cal solution by q-HATM seems interesting due to the
qualities of q-HATM in that it does not require lineari-
sation or discretisation, shows little perturbations, has
no restrictive assumptions, lessens mathematical com-
putations significantly, offers non-local effect, promises
a big convergence region and is free from obtaining diffi-
cult polynomials, integrations and physical parameters.

This paper is structured in the following manner. Sec-
tion 1 is the introduction. In §2, we give a brief review
of the preliminary description of Caputo’s fractional
derivative and its transform. In §3, the basic plan of
the proposed numerical method q-HATM is shown. In
§4, some trial examples are offered to show the effi-
ciency of the projected technique. Section 5 deals with
the discussion of the obtained numerical results and their
significance. Figures are drawn using the Maple pack-
age. Finally, in §6, we recapitulate our outcomes and
draw inferences.

2. Preliminaries

DEFINITION 1

Caputo fractional order derivative [7] of f (t), f ∈
Cβ, β ≥ −1, is
Dα

t f (t)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dn f (t)

dtn
, α = n ∈ N,

1

Γ (n − α)

∫ t

0
(t − ϑ)n−α−1 f n(ϑ) dϑ,

n − 1 < α < n, n ∈ N.

(3)

DEFINITION 2

Laplace transform [7] of Dα
t f (t) is

L
[
Dα

t f (t)
] = sαF(s) −

n−1∑
r=0

sα−r−1 f (r)
(
0 +)

,

(n − 1 < α ≤ n). (4)

3. Suggested new q-homotopy analysis transform
method

Consider a non-homogeneous and nonlinear fractional-
order PDE:

Dα
t U(x, y, t) + RU(x, y, t) + NU(x, y, t)

= f (x, y, t), n − 1 < α ≤ n. (5)
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Here, Dα
t U is the Caputo derivative and R and N are

linear and nonlinear operators, respectively. f(x, y, t) is
the source term.

Now, employing the transform of Laplace on eq. (5)
and solving, we find

L[U(x, y, t)] − 1

sα

n−1∑
k=0

sα−k−1 Uk(x, y, 0)

+ 1

sα
{L[RU(x, y, t)] + L[NU(x, y, t)]

− L[f (x, y, t)]} = 0. (6)

The nonlinear operator is

N [ϕ(x, y, t; q)] = L[ϕ(x, y, t; q)]

− 1

sα

n−1∑
k=0

sα−k−1 ϕ(k)(x, y, t; q)
(
0 +)

+ 1

sα
{L[Rϕ(x, y, t; q)] + L[Nϕ(x, y, t; q)]

− L[ f (x, y, t)]}. (7)

Here, q ∈ [
0, 1

n

]
is the embedding parameter, n ≥ 1

and ϕ(x, y, t; q) is an unknown function.
Construct a homotopy as

(1 − nq)L[ϕ(x, y, t; q) − U0(x, y, t)]

= hq H(x, y, t)N [ϕ(x, y, t; q)], (8)

where h̄ �= 0 is an auxiliary parameter and U0 is an
initial guess.

The following results hold for = 0, 1
n :

ϕ(x, y, t; 0 ) = U0(x, y, t),

ϕ

(
x, y, t; 1

n

)
= U(x, y, t). (9)

By amplifying q, ϕ converges from U0 to U .
Escalating ϕ about q by Taylor’s theorem, we have

ϕ(x, y, t; q) = U0 +
∞∑

m=1

Um(x, y, t)qm, (10)

where

Um = 1

m!
∂mϕ(x, y, t; q)

∂qm

∣∣∣∣
q=0

. (11)

By a proper choice of auxiliary linear operator, U0, n, h̄
and H, series (10) converges at q = 1/n, thereby giving
a solution

U(x, y, t) = U0 +
∝∑

m=1

Um(x, y, t)

(
1

n

)m

. (12)

Now, differentiating eq. (8) m times, dividing by m! and
taking q = 0,

L
[Um(x, y, t) − kmUm−1

(
x, y, t

)]

= h̄ H(x, y, t)
m
( �Um−1

)
, (13)

where the vectors are defined as

�Um = {U0(x, y, t), U1(x, y, t), . . . , Um(x, y, t)}.
(14)

Applying the inverse transform on eq. (13),

Um(x, y, t) = kmUm−1(x, y, t)

+ h̄L−1[H(x, y, t)
m
( �Um−1

)]
.

(15)

Here,


m
( �Um−1

)
= 1

(m − 1)!
∂m−1 N [ϕ(x, y, t; q)]

∂qm−1

∣∣∣∣
q=0

(16)

and

kr =
{

0, r ≤ 1,

n, r > 1.
(17)

Finally, by solving eq. (15), the components of the
q-HATM solution can be easily obtained.

4. Numerical experiments

Now, consider two test examples to illustrate the effi-
ciency and applicability of the proposed technique.

Example 1. Consider a two-dimensional incompress-
ible time-fractional NS equation [13,14]⎧⎪⎪⎨
⎪⎪⎩

Dα
t u+u

∂u

∂x
+v

∂u

∂y
= ρ0

(
∂2u

∂x2 +∂2u

∂y2

)
+g,

Dα
t v+u

∂v

∂x
+v

∂v

∂y
= ρ0

(
∂2v

∂x2 + ∂2v

∂y2

)
−g,

0<α≤1

(18)

and its initial settings

v(x, y, 0) = sin(x + y),

u(x, y, 0) = − sin(x + y). (19)

Taking the Laplace transform on eq. (18) and using
eq. (19), we get

L[u(x, y, t)] + sin(x + y)

s
+ 1

sα
L

{
u
∂u

∂x
+ v

∂u

∂y

− ρ0

(
∂2u

∂x2 + ∂2u

∂y2

)
− g

}
= 0

L[v(x, y, t)] − sin(x + y)

s
+ 1

sα
L

{
u

∂v

∂x
+ v

∂v

∂y
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− ρ0

(
∂2 v

∂x2 + ∂2 v

∂y2

)
+ g

}
= 0. (20)

Define the nonlinear operators:

N 1[ϕ1(x, y, t; q), ϕ2(x, y, t; q)]

= L[ϕ1(x, y, t; q)] + sin(x + y)

s

+ 1

sα
L

{
ϕ1(x, y, t; q)

∂ϕ1(x, y, t; q)

∂x

+ ϕ2(x, y, t; q)
∂ϕ1(x, y, t; q)

∂y

− ρ0

(
∂2ϕ1(x, y, t; q)

∂x2

+ ∂2ϕ1(x, y, t; q)

∂y2

)
− g

}
, (21)

N 2[ϕ1(x, y, t; q), ϕ2(x, y, t; q)]

= L[ϕ2(x, y, t; q)] − sin(x + y)

s

+ 1

sα
L

{
ϕ1(x, y, t; q)

∂ϕ2(x, y, t; q)

∂x

+ ϕ2(x, y, t; q)
∂ϕ2(x, y, t; q)

∂y

− ρ0

(
∂2ϕ2(x, y, t; q)

∂x2

+ ∂2ϕ2(x, y, t; q)

∂y2

)
+ g

}
(22)

and the Laplace operators as

L
[
um(x, y, t) − kmum−1(x, y, t)

]
= h̄ R1,m

[�um−1, �vm−1
]
,

L
[
vm(x, y, t) − kmvm−1(x, y, t)

]
= h̄ R2,m

[�um−1, �vm−1
]
. (23)

Here,

R1,m
[�um−1, �vm−1

] = L
[
um−1(x, y, t)

]
+

(
1 − km

n

)
sin(x + y)

s

+ 1

sα
L

{
m−1∑
i=0

ui
∂um−1 −i

∂x

+
m−1∑
i=0

vi
∂um−1 −i

∂y

− ρ0

(
∂2um−1

∂x2 + ∂2um−1

∂y2

)
− g

}
,

R2,m
[�um−1, �vm−1

] = L
[
vm−1(x, y, t)

]

−
(

1 − km

n

)
sin(x + y)

s

+ 1

sα
L

{
m−1∑
i=0

ui
∂vm−1 −i

∂x

+
m−1∑
i=0

vi
∂vm−1 −i

∂y

− ρ0

(
∂2vm−1

∂x2 + ∂2vm−1

∂y2

)
+ g

}
. (24)

Applying the inverse transform on eq. (23), we get

um(x, y, t) = kmum−1

+ h̄L−1{R1,m
[�um−1, �vm−1

]}
,

vm(x, y, t) = kmvm−1

+ h̄L−1{R2,m
[�um−1, �vm−1

]}
. (25)

Using u0 and v0 in eq. (25), we get

u1 = −2ρ0h̄ sin(x + y)tα

�[α + 1]
,

v1 = 2ρ0h̄ sin(x + y)tα

�[α + 1]
,

u2 = −2(n + h̄)ρ0h̄ sin(x + y)tα

�[α + 1]

− 4ρ2
0 h̄2sin(x + y)t2α

�[2α + 1]
,

v2 = 2(n + h̄)ρ0h̄ sin(x + y)tα

�[α + 1]

+ 4ρ2
0 h̄2 sin(x + y)t2α

�[2α + 1]
,

u3 = −2(n + h̄)2ρ0h̄ sin(x + y)tα

�[α + 1]

− 8(n + h̄)ρ2
0 h̄2 sin(x + y)t2α

�[2α + 1]

− 8ρ3
0 h̄3 sin(x + y)t3α

�[3α + 1]
,

v3 = 2(n + h̄)2ρ0h̄ sin(x + y)tα

�[α + 1]

+ 8(n + h̄)ρ2
0 h̄2 sin(x + y)t2α

�[2α + 1]

+ 8ρ3
0 h̄3 sin(x + y)t3α

�[3α + 1]

and so on.
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Similarly, the rest of the constituents are found. Then,
the q-HATM solution of eq. (18) is obtained as

u(x, y, t) = u0 +
∞∑

m=1

um

(
1

n

)m

,

v(x, y, t) = v0 +
∞∑

m=1

vm

(
1

n

)m

. (26)

For α = 1, h̄ = −1, n = 1 and g = 0, solutions∑N
m=1um(x, y, t)(1/n)m and

∑N
m=1vm(x, y, t)(1/n)m

converge to exact results as N → ∞:

u(x, y, t) = − sin(x + y)

[
1 − 2ρ0t

1! + (2ρ0t)2

2!

−(2ρ0t)3

3! + · · ·
]

= −e−2ρ0t sin(x + y),

v(x, y, t) = sin(x + y)

[
1 − 2ρ0t

1! + (2ρ0t)2

2!

−(2ρ0t)3

3! + · · ·
]

= e−2ρ0t sin(x + y).

Example 2. In eq. (18), we take

v(x, y, 0) = ex+y, u(x, y, 0) = − ex+y . (27)

Taking the Laplace transform on eq. (18) and using
eq. (27), we get

L[u] + ex+y

s
+ 1

sα
L

{
u
∂u

∂x
+ v

∂u

∂y

− ρ0

(
∂2u

∂x2 + ∂2u

∂y2

)
− g

}
= 0,

L[v] − ex+y

s
+ 1

sα
L

{
u

∂v

∂x
+ v

∂v

∂y

− ρ0

(
∂2v

∂x2 + ∂2v

∂y2

)
+ g

}
= 0. (28)

Define nonlinear operators as

N 1[ϕ1, ϕ2] = L[ϕ1] + ex+y

s

+ 1

sα
L

{
ϕ1

∂ϕ1

∂x
+ ϕ2

∂ϕ1

∂y

− ρ0

(
∂2ϕ1

∂x2 + ∂2ϕ1

∂y2

)
− g

}
, (29)

N 2[ϕ1, ϕ2] = L[ϕ2] − ex+y

s

+ 1

sα
L

{
ϕ1

∂ϕ2

∂x
+ ϕ2

∂ϕ2

∂y

− ρ0

(
∂2ϕ2

∂x2 + ∂2ϕ2

∂y2

)
+ g

}
(30)

and Laplace operators as

L
[
um(x, y, t) − kmum−1(x, y, t)

]
= h̄ R1,m

[�um−1, �vm−1
]
,

L
[
vm(x, y, t) − kmvm−1(x, y, t)

]
= h̄ R2,m

[�um−1, �vm−1
]

(31)

where

R1,m
[�um−1, �vm−1

]
= L

[
um−1

] +
(

1 − km

n

)
ex+y

s

+ 1

sα
L

{
m−1∑
i=0

ui
∂um−1−i

∂x
+

m−1∑
i=0

vi
∂um−1−i

∂y

− ρ0

(
∂2um−1

∂x2 + ∂2um−1

∂ y2

)
− g

}
,

R2,m
[�um−1, �vm−1

]
= L

[
vm−1

] −
(

1 − km

n

)
ex+y

s

+ 1

sα
L

{
m−1∑
i=0

ui
∂vm−1−i

∂x
+

m−1∑
i=0

vi
∂vm−1−i

∂y

− ρ0

(
∂2vm−1

∂x2 + ∂2vm−1

∂ y2

)
+ g

}
. (32)

By the inverse transform on eq. (31), we find

um(x, y, t) = kmum−1

+ h̄L−1{R1,m
[�um−1, �vm−1

]}
,

vm(x, y, t) = kmvm−1

+ h̄L−1{R2,m
[�um−1, �vm−1

]}
. (33)

Using u0 and v0, we get from eq. (33),

u1 = 2ρ0h̄ex+ytα

�[α + 1]
, v1 = −2ρ0h̄ex+ytα

�[α + 1]
,

u2 = 2(n + h̄)ρ0h̄ex+ytα

�[α + 1]
− 4ρ2

0 h̄2ex+yt2α

�[2α + 1]
,

v2 = −2(n + h̄)ρ0h̄ex+ytα

�[α + 1]
+ 4ρ2

0 h̄2ex+yt2α

�[2α + 1]
,

u3 = 2(n + h̄)2ρ0h̄ex+ytα

�[α + 1]

−8(n + h̄)ρ2
0 h̄2ex+yt2α

�[2α + 1]
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+ 8ρ3
0 h̄3ex+yt3α

�[3α + 1]
,

v3 = −2(n + h̄)2ρ0h̄ex+ytα

�[α + 1]

+ 8(n + h̄)ρ2
0 h̄2ex+yt2α

�[2α + 1]

− 8ρ3
0 h̄3ex+yt3α

�[3α + 1]

and so on.
Similarly, rest of the constituents are found. The

q-HATM solution of eq. (18) is

u(x, y, t) = u0 +
∞∑

m=1

um

(
1

n

)m

,

v(x, y, t) = v0 +
∞∑

m=1

vm

(
1

n

)m

. (34)

For α = 1 = n, h̄ = −1 and g = 0, solutions∑N
m=1 um(1/n)m and

∑N
m=1 vm(1/n)m converge to

exact solutions as N → ∞.

u(x, y, t)

= −ex+y

[
1 + 2ρ0t

1! + (2ρ0t)2

2! + (2ρ0t)3

3! + · · ·
]

= −ex+y+2ρ0t ,

Figure 3. Plot of q-HATM solution u(x, y, t) vs. t when
n = 1, h̄ = −1, g = 0, ρ0 = 0.5 and x = 0.1 = y with
diverse values of α, for Example 1.

Figure 4. Plot of q-HATM solution v(x, y, t) vs. t when
n = 1, h̄ = −1, g = 0, ρ0 = 0.5 and x = 0.1 = y with
diverse values of α, for Example 1.

Figure 1. Surfaces of (a) approximate solution, (b) exact solution and (c) abs. error = ∣∣uexact − uapprox.

∣∣ when
n = 1 = α, h̄ = −1, g = 0, ρ0 = 0.5 and t = 0.1 for Example 1.

Figure 2. Surfaces of (a) approximate solution, (b) exact solution and (c) abs. error = ∣∣vexact − vapprox.

∣∣ when
n = 1 = α, h̄ = −1, g = 0, ρ0 = 0.5 and t = 0.1 for Example 1.
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Figure 5. Plot of q-HATM solution u(x, y, t) when n = 1,
α = 1, g = 0, ρ0 = 0.5 and x = 0.1 = y with diverse
values of h̄, for Example 1.

Figure 6. Plot of q-HATM solution v(x, y, t) when
n = 1, α = 1, g = 0, ρ0 = 0.5 and x = 0.1 = y with
diverse values of h̄, for Example 1.

Figure 7. h̄-Curves for q-HATM solution u(x, y, t) when
g = 0, ρ0 = 0.5, x = y = 0.1, t = 0.01 and n = 1 with
diverse values of α, for Example. 1.

v(x, y, t)

= ex+y

[
1 + 2ρ0t

1! + (2ρ0t)2

2! + (2ρ0t)3

3! + · · ·
]

= ex+y+2ρ0t .

Figure 8. h̄-Curves for q-HATM solution u(x, y, t) when
g = 0, ρ0 = 0.5, x = y = 0.1, t = 0.01 and n = 2 with
diverse values of α, for Example 1.

Figure 9. h̄-Curves for q-HATM solution u(x, y, t) when
g = 0, ρ0 = 0.5, x = y = 0.1, t = 0.01 and n = 3 with
diverse values of α, for Example 1.

Figure 10. h̄-Curves for q-HATM solution v(x, y, t) when
g = 0, ρ0 = 0.5, x = y = 0.1, t = 0.01 and n = 1 with
diverse values of α, for Example 1.

5. Numerical results and discussion

The efficiency of the proposed algorithm for Example 1
is presented in figures 1 and 2. Here, figures 1a, 1b
and 2a, 2b show surfaces of fourth-order approximate
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Figure 11. h̄-Curves for q-HATM solution v(x, y, t) when
g = 0, ρ0 = 0.5, x = y = 0.1, t = 0.01 and n = 2 with
diverse values of α, for Example 1.

Figure 12. h̄-Curves for q-HATM solution v(x, y, t) when
g = 0, ρ0 = 0.5, x = y = 0.1, t = 0.01 and n = 3 with
diverse values of α, for Example 1.

Figure 15. Plot of q-HATM solution u(x, y, t) vs. t when
n = 1, h̄ = −1, g = 0, ρ0 = 0.5 and x = 0.1 = y with
diverse values of α, for Example 2.

and exact solutions for systems (18) and (19). Figures 1c
and 2c show the competence of q-HATM through an
absolute error. Figures 3 and 4 exhibit the behaviour
of a numerical solution for diverse values of α at n =
1, h̄ = −1, g = 0, ρ0 = 0.5 and x = 0.1 = y for the
system considered in Example 1. From figures 3 and 4,
it is realised that the solution of the fractional-order
system depends not only on time but also on the arbitrary
order α. In figures 5 and 6, distinct values of h̄ are cho-
sen to lessen the error. Effects of asymptotic parameter
n are shown in figures 7–12 for Example 1. Moreover,
the effectiveness of q-HATM solution for Example 2
is presented in figures 13 and 14. Figures 13a, 13b
and 14a, 14b show surfaces of fourth-order approximate
and exact solutions for system (18) with conditions (27).
Figures 13c and 14c reveal the efficiency of q-HATM
through an absolute error. Figures 15 and 16 show the

Figure 13. Surface of (a) approximate solution, (b) exact solution and (c) abs. error = ∣∣uexact − uapprox.

∣∣ when
n = 1 = α, h̄ = −1, g = 0, ρ0 = 0.5 and t = 0.1, for Example 2.

Figure 14. Surface of (a) approximate solution, (b) exact solution and (c) abs. error = ∣∣vexact − vapprox.

∣∣ when
n = 1 = α, h̄ = −1, g = 0, ρ0 = 0.5 and t = 0.1, for Example 2.
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Figure 16. Plot of q-HATM solution v(x, y, t) vs. t when
n = 1, h̄ = −1, g = 0, ρ0 = 0.5 and x = 0.1 = y with
diverse values of α, for Example 2.

Figure 17. Plot of q-HATM solution u(x, y, t) when
n = 1, α = 1, g = 0, ρ0 = 0.5 and x = 0.1 = y with
diverse values of h̄, for Example 2.

Figure 18. Plot of q-HATM solution v(x, y, t) when
n = 1, α = 1, g = 0, ρ0 = 0.5 and x = 0.1 = y with
diverse values of h̄, for Example 2.

behaviour of numerical solution for diverse values of α

at n = 1, h̄ = −1, g = 0, ρ0 = 0.5 and x = 0.1 = y
for the system considered in Example 2. From figures 15

Figure 19. h̄-Curves for q-HATM solution u(x, y, t) when
g = 0, ρ0 = 0.5, x = 0.1 = y, t = 0.01 and n = 1 with
diverse values of α, for Example 2.

Figure 20. h̄-Curves for q-HATM solution u(x, y, t) when
g = 0, ρ0 = 0.5, x = 0.1 = y, t = 0.01 and n = 2 with
diverse values of α, for Example 2.

Figure 21. h̄-Curves for u(x, y, t) when g = 0, ρ0 = 0.5,
x = 0.1 = y, t = 0.01 and n = 3 with different α, for
Example 2.

and 16, it is again found that the solution of fractional-
order system depends not only on time but also on α. In
figures 17 and 18, distinct values of h̄ are preferred to
lessen the residual error. Effects of asymptotic parame-
ter n are shown in figures 19–24 for Example 2.
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Figure 22. h̄-Curves for v(x, y, t) when g = 0,
ρ0 = 0.5, x = 0.1 = y, t = 0.01 and n = 1 with dif-
ferent α, for Example 2.

Figure 23. h̄-Curves for q-HATM solution v(x, y, t) when
g = 0, ρ0 = 0.5, x = 0.1 = y, t = 0.01 and n = 2 with
diverse values of α, for Example 2.

Figure 24. h̄-Curves for q-HATM solution v(x, y, t) when
g = 0, ρ0 = 0.5, x = 0.1 = y, t = 0.01 and n = 3 with
diverse values of α, for Example 2.

6. Conclusions

In the present framework, q-HATM is successfully
applied to find the numerical solution of coupled time-

fractional NS equations. The obtained results demon-
strate the reliability and simplicity of the method. The
proposed algorithm provides parameter h̄ that helps us
to control the convergence region of series solution.
As q-HATM does not necessitate linearisation, small
perturbations or discretisation, it decreases computa-
tions significantly. In comparison with other techniques,
q-HATM is a competent tool to get numerical solution
of coupled nonlinear fractional partial differential equa-
tions (FPDEs).
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