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Abstract: The overcurrent protection on the traditional distribution system uses local measurements and settings as a basis for
decision-making. However, connection of multiple distributed generators with different short-circuit characteristics makes the
local measurements unpredictable, leading to possible loss of protection coordination. In order to solve this problem, this study
proposes an algorithm that achieves its protection function through load flow and sensitivity calculations based on voltage
measurements. The algorithm is built on a modelling approach that splits the distribution network into a series of overlapping
protection zones. The overlapping feature is realised logically through peer-to-peer communications between intelligent agents
located in adjacent zones. A sensitivity-based electrical signature was identified that is generated when a fault occurs within a
zone. Simulation results show that the proposed protection algorithm is able to identify the zone in which the fault has occurred
and the specific faulted node or line section in that zone. The fault current contributions, or no contributions, of the distributed
generators (DGs) do not impact the operation of this algorithm.

1 Introduction
The increasing connection of distributed generators (DGs) to the
distribution system has brought about many technical challenges
including protection. The existing protection on the traditional
distribution system is based on predictable unidirectional current
flows. The stand-alone protection devices use local measurements
and settings as a basis for decision-making. However, connection
of different types of DGs makes the local current magnitude
measurements unpredictable [1, 2] and the applied protection
settings become invalid, leading to possible loss of coordination [3,
4].

A wide range of strategies have been proposed in the literature
to mitigate the impact of DG integration on distribution system
protection. The work presented in [5] attempts to minimise the
changes in fault current levels by minimising the change in the bus
impedance matrix for each possible system state through optimal
planning (location and size) of the resistive–inductive–capacitive
fault current limiters, thereby maintaining short-circuit levels and
the relay settings. Optimal sizing and location of DGs strategies as
reported in [6, 7] attempt to minimise the impact of DG connection
on the protection settings and fuse sizes.

Adaptive protection schemes have also been proposed [4, 8, 9]
that require the protection settings to adapt to the prevailing system
state that depends on the DGs status – whether connected or
disconnected. Adaptive schemes that use multi-agent systems
(MAS) have also been proposed [10–12]. MAS systems avoid or
mitigate the impact of different kinds of failure, including
communication failure, and ensure correct adaptive operation of
the protection.

Impedance and admittance-based methods have been proposed
for application at the distribution level [13, 14]. However, the
connection of DGs at multiple locations creates problems of in-
feeds that may cause the impedance relays to under-reach [15].
Additionally, this method may not function correctly with inverter-
interfaced DGs that limit the fault current to a fixed level [16].

Artificial intelligence methods have been proposed that analyse
information and patterns generated by techniques such as principal
component analysis [17, 18] and wavelet analysis [19, 20] to
identify and locate faults.

Research efforts are reported in the literature that attempt to
influence the inverter design and control in order to enable

inverter-interfaced DGs to contribute short-duration fault current
sufficient to aid the detection of faults [21–23]. However, the
inverter control required for protection is in conflict with that
required to give the DG FRT capability [24–26]. The FRT
capability ensures the power system's post-fault stability and fast
recovery [27–29].

Protection techniques based on voltage measurement have been
reported and have potential to overcome the challenges of
protecting distribution networks integrated with multiple types of
DG, including inverter-interfaced DG. Researchers in [30, 31]
proposed protection schemes which apply modal transformations
on the measured system voltages. Any disturbance resulting from
short-circuit fault condition is reflected as a disturbance to the DC
d–q values when compared with the reference values with no fault.
The use of the total harmonic distortion (THD) of a DG unit's
point-of-coupling voltage is proposed in [32] as a tool for detecting
faults. However, it is established in [33] that protection
discrimination through THD may be difficult.

A wide body of research is reported on the use of travelling
waves (TW) for the detection and location of faults. TW fault
detection methods have been developed for the transmission
system [34] and have also been proposed for the distribution
system in [35–37]. The research results are promising, but some
challenges still persist with regard to the implementation
technologies. The voltage transformers (VTs), at the current state
of technology, are not suited for the measurement of high-
frequency transients without additional measures, because of
limited bandwidth [38]. Research on the development of non-
conventional instrument transformers is ongoing. The non-
conventional VTs promise to provide better accuracy, transient
response, and wider bandwidth compared to the conventional VT
for the future grid [39].

This paper proposes a new protection algorithm that achieves its
protection function through load flow and sensitivity calculations
based on voltage measurements only. The algorithm is built on a
modelling approach that splits the distribution network into a series
of overlapping segments. The protection algorithm identifies a
‘unit’ segment over which it monitors power flows. A fault
signature is generated when a ‘leakage’ or fault occurs within this
segment causing power flow imbalance. Through peer-to-peer
communications, the protection algorithm is able to identify the
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‘unit’ segment in which the fault has occurred and the specific
faulted node or line section in that segment.

This paper is organised as follows: Section 2 gives the
background theory of the proposed protection algorithm.
Simulation results and discussion to evaluate the performance of
the algorithm are given in Section 3. The conclusions are given in
Section 4.

2 Proposed fault detection algorithm
The proposed algorithm is built on a modelling approach
introduced in [40] that splits the distribution network into a series
of overlapping segments or ‘units’, as illustrated in Fig. 1. A ‘unit’
segment (or protection zone in this context) consists of a ‘home’
node and its neighbouring nodes only. Fig. 1 shows two of the
segments of a seven-bus network; segment 1 consists of node 5 and
its neighbouring nodes 3, 6, and 7; segment 2 is centred at node 3.
Other segments can be added centred at each node. The
overlapping feature is realised logically through intelligent agents
(in the form of intelligent electronic devices, IEDs) located in each
segment (at the ‘home’ node) that exchange information with the
agents in the adjacent segments. 

The load flow at the ‘home’ node k of a segment with N nodes
can be expressed as [40]

Pk = Vk
2Ykkcos( − δkk)

+ ∑
j = 0

(k + 1)N − 1

VkV jYk jcos(δk − δj − δk j)
(1)

Qk = Vk
2Ykksin( − δkk)

+ ∑
j = 0

(k + 1)N − 1

VkV jYk jsin(δk − δj − δk j)
(2)

where Pk and Qk are the real and reactive power flow at node k; Vk
and δk, respectively, the voltage magnitude and angle at node k; Vj
and δj the voltage magnitude and angle at node j; Ykj and δkj,
respectively, the magnitude and argument of the element (k, j) in
the network's admittance matrix.

Now, the neighbouring nodes are one node away from the
‘home’ node. In other words, the neighbouring nodes are within (k 
± 1) range of the home node, irrespective of the number of these
neighbouring nodes. The admittance matrix of the network shows
that

Yk j = 0 if j < (k − 1) or j > (k + 1) (3)

Hence, the summation range is shown in (1) as (k + 1)N − 1 simply
to indicate that the (N − 1) neighbouring nodes are within (k ± 1)
range of node k.

Changes in P and Q are related to changes in voltage by the
partial differential equations [40]

ΔP
ΔQ

=

∂P
∂δ

∂P
∂V

∂Q
∂δ

∂Q
∂V

⋅ Δδ
ΔV

= JPQδV . Δδ
ΔV

(4)

JPQδV  is the Jacobian matrix of the network. The elements of the
Jacobian matrix give the sensitivity between power flow and bus
voltage changes.

From (4), the change in active and reactive power at node k (of
the unit segment or protection zone as described in this paper) may
be expressed as

ΔPk = ∂Pk
∂δk

Δδk + ∑
j = 0

(k + 1)N − 1 ∂Pk
∂δj

Δδj

+ ∂Pk
∂Vk

ΔVk + ∑
j = 0

(k + 1)N − 1 ∂Pk
∂V j

ΔV j

(5)

ΔQk = ∂Qk
∂δk

Δδk + ∑
j = 0

(k + 1)N − 1 ∂Qk
∂δj

Δδj

+ ∂Qk
∂Vk

ΔVk + ∑
j = 0

(k + 1)N − 1 ∂Qk
∂V j

ΔV j

(6)

Equations (5) and (6) are the non-decoupled equations describing
the P–Q–V–δ relationship for the unit segment.

Manipulation of (5) and (6) reveals a sensitivity function Sk
whose magnitude depends on changes in the voltage and power
injection at the node (k) following fault occurrence, thus

Sk = Fn(ΔVk, ΔPk) (7)

Sk is calculated at each node of the network. Using voltage phasor
measurement units, the IED running this algorithm takes the
synchronised voltage measurements from the local and
neighbouring nodes as inputs. Considering segment 1 in Fig. 1, for
example, the relay located at node 5 takes the voltage
measurements from node 5 as well as nodes 3, 6, and 7. The
algorithm performs load flow and sensitivity calculations over the
specific protection zone (or segment) to determine ΔPk and Sk.
When the power flowing into the protection zone equals the power
flowing out, the function Sk takes a value equal to zero. However,
Sk is non-zero when there is a ‘leakage’ or fault within the segment
causing power flow imbalance. This sensitivity function can thus
be regarded as an electrical signature that is generated when a fault
occurs within the respective unit segment.

Through peer-to-peer communications between the IEDs
located at each node in the network, the protection algorithm is
able to identify the ‘unit’ segment in which the fault has occurred
and the specific faulted node or line section in that segment. This
functionality is similar to that in distance protection schemes where
one relay sends a request to trip to the relay at the remote end of
the feeder. The remote relay trips its circuit breaker having also
detected the fault.

Connection or disconnection of load can also generate the fault
signature. However, experimental results show that the magnitude
of the signal under normal system operations is much smaller
compared to that generated by fault over a wide range of fault
resistances. A threshold can thus be set above which Sk indicates
fault condition.

3 Results and discussion
The generation of the fault signatures is demonstrated through
simulations. The simulations are performed using Digsilent
PowerFactory software on the modified IEEE 34-node test network
illustrated in Fig. 2. 

The modified and re-numbered network was adapted from the
original network available at [41]. The two voltage regulators
between nodes 5–6 and 12–13 in the original network have been

Fig. 1  Protection zones of the proposed algorithm
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bypassed. A mesh is also introduced by connecting a tie-line
between nodes 14 and 23, creating a single mesh in the network.
This is to allow the effectiveness of the proposed algorithm to be
tested on the radial as well as meshed sections of the network.
Three small distributed wind farms each rated 4.6 MW are
connected at nodes 21, 27, and 30.

Various types of faults were simulated at different locations in
the network and the fault signatures were calculated at each node.
The results shown in Figs. 3–6 are representative of the fault
signatures generated for faults at any point in the network. 

A fault is simulated at node 14 and the Sk values are calculated
at each node of the network. The results are shown in Fig. 3. It can
be seen that a fault signature is generated only at node 14
indicating fault occurrence at that node. Everywhere else the Sk
values are insignificant. Fig. 4 shows the results for a phase-to-
phase fault. A significant spike can be seen at node 14 indicating
fault at that node. The fault signatures on the healthy phase at all
nodes for this fault are seen in Fig. 5. The signature magnitudes are
of the order of 10−12 and may be regarded as noise. No fault is

detected anywhere on this phase as the values are well below the
threshold.

The results for a fault at the mid-point of feeders 14–23 are
shown in Fig. 6. It can be seen that two fault signatures are
generated at the two nodes at the ends of the feeder. These are
detected by the respective IEDs. The neighbouring IEDs share
information through peer-to-peer communication and when both
detect a fault it means that the fault is somewhere along the feeder
section between them. Work is in progress to enable the proposed
algorithm to determine the distance to the fault from either of the
two adjacent nodes. The algorithm thus implements a unit
protection scheme and is able to achieve fast fault clearance times.
Hence, this algorithm is suitable for the modern and still evolving
power system that incorporates numerous DGs requiring faster
protection systems for enhanced power system stability.

The algorithm is confined to a specific segment (protection
zone) over which it is responsible, and so does not see the structure
of the network beyond the neighbouring node(s) in this protection
zone. The electrical fault signature is generated only when power
flow imbalance, caused by fault, occurs in the respective zone. It

Fig. 2  Modified IEEE 34-node test system (adapted from [41])
 

Fig. 3  Fault signatures with phase-to-ground fault at node 14
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does not matter what source, conventional or RES, are feeding the
fault. The network might have multiple DG types connected, but
this will not impact the performance of the proposed algorithm.
The simulation results show that the algorithm is able to identify
the unit segment in which the fault has occurred, and the specific
node or line section that has been faulted irrespective of fault type.
The algorithm is applicable to radial or meshed distribution
networks.

Negative fault signatures can be observed at nodes 21, 27, and
30 in Figs. 4 and 6. These are the nodes at which DGs are
connected. Fault causes voltage disturbance in the network and this
impacts the power delivered by the DGs. Hence, the drop in output
power at the DG node is seen as a negative change in power and
manifests as a negative fault signature.

Fig. 7 shows the signatures generated by connection of load at
the various nodes. The signature magnitudes due to the loads are
seen to be positive but much smaller compared to those due to
fault. The pick-up threshold is positive and the negative spikes due
to DG connection are ignored and will not be picked up. It can also
be observed that no loads are connected at nodes 7, 12, and 14. 

4 Conclusion
This paper has proposed a new algorithm that provides fast and
selective clearance of faults, irrespective of fault type, in a
distribution system. The algorithm uses a modelling approach that
splits the distribution system into a series of overlapping segments
and is able to identify the segment in which the fault has occurred
and the specific node or line section in that segment. The algorithm
is shown to be effective when applied to radial and meshed
networks. The algorithm shows that protection techniques based on
voltage measurement have potential to overcome the challenges of

protecting distribution networks integrated with multiple types of
DGs, including inverter-interfaced DGs.
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