

J. ICT Res. Appl. Vol. 12, No. 3, 2018, 267-279 267

Received March 1st, 2018, Revised December 20th, 2018, Accepted for publication December 26th, 2018.
Copyright © 2018 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2018.12.3.5

Performance Analysis of BigDecimal Arithmetic Operation
in Java

Jos Timanta Tarigan*, Elviawaty M. Zamzami & Cindy Laurent Ginting

Faculty of Computer Science and Information Technology, Universitas Sumatera Utara,
Jalan Universitas No.9, Padang Bulan, Medan Baru, Kota Medan 20222,

Sumatera Utara, Indonesia
*E-mail: jostarigan@usu.ac.id

Abstract. The Java programming language provides binary floating-point
primitive data types such as float and double to represent decimal numbers.
However, these data types cannot represent decimal numbers with complete
accuracy, which may cause precision errors while performing calculations. To
achieve better precision, Java provides the BigDecimal class. Unlike float and
double, which use approximation, this class is able to represent the exact value of
a decimal number. However, it comes with a drawback: BigDecimal is treated as
an object and requires additional CPU and memory usage to operate with. In this
paper, statistical data are presented of performance impact on using BigDecimal
compared to the double data type. As test cases, common mathematical
processes were used, such as calculating mean value, sorting, and multiplying
matrices.

Keywords: BigDecimal arithmetic operation; floating-point arithmetic; numerical
programming; optimization; programming language.

1 Introduction
Due to the nature of computer processors, providing data as a sequence of
binary digits to represent a 10-base decimal number requires a conversion
process that follows a certain standard. Most programming languages use an
approximation approach to represent decimal numbers. This method may
produce precision problems, depending on the complexity of the calculation
process and the length of the binary digits [1].

A commonly used approach for binary floating point representation is IEEE
754-1985 [2], which has been succeeded by IEEE 754-2008 [3]. This standard
defines four different precisions for binary floating points: single, double, single
extended, and double extended. The single and double precision use 32-bit and
64-bit binary digits to represent decimal numbers. The Java programming
language uses this standard to represent decimal numbers. Java is one of the
most widely used programming languages in computer science. Although it has
consistently been the most popular programming language in recent years [4],

268 Jos Timanta Tarigan, et al.

Java’s popularity in numerical/scientific programming is not equal to that of its
counterparts such as C++, Matlab, or Fortran. There are a few drawbacks that
restrain Java as a scientific computing programming platform, as shown by
Hale, et al. [5]. However, as Bull, et al. has pointed out that the gap between
Java and C++/Fortran has become smaller over the years, making it a viable
platform for scientific computing [6]. Moreover, et al. [6] have proposed an
optimization that may increase numerical computation in Java, making it a
compatible platform for technical computing. The research concluded that while
Java has not reached the level of performance of C++ or Fortran, its features
provide a huge advantage for programmers, which overshadows its deficiencies.

In scientific computation, numerical precision is important. However, detecting
numerical errors such as unexpected rounding results during a lengthy
computational process is not a trivial task. IEEE 754 binary floating point,
which has a limited precision, is prone to this type of error. Fortunately, Java
provides BigDecimal, a built-in class available on its standard platform. This
class is dedicated to provide an exact representation of decimal numbers and
gives full control to the user over how to define decimal digits (both integers
and fractional parts) and how to perform rounding during calculation. These
properties make BigDecimal a suiltable option to perform computations that
require accurate precision, such as scientific and technical computation
processes. However, the advantages of using BigDecimal come at a cost.
Performing calculation using BigDecimal requires more CPU and memory
usage. This issue has motivated us to investigate the performance difference
between using primitive data type double and BigDecimal in common
mathematical computation processes. The objective of this research was to
measure the performance of Java’s BigDecimal in common mathematical
operations. We used three mathematical formula as our test cases: mean
calculation, sort, and matrix multiplication. Two metrics were collected during
the tests: running time and precision.

2 Related Works
Cowlishaw [7] has shown how decimal representation using binary floating
point may cause correctness issues. One of the examples given is the problem of
calculating a 5% sales tax on a $0.70 telephone call. Using manual calculation,
we can easily figure out that total cost would be 0.735. However, a double
precision binary floating point calculation would give us 0.7349999999999999
(which could be rounded to $0.74).

Researches on binary floating point mostly fall into two categories: correctness
and performance. Kamble, et al. pinpointed a trend in floating point computer
arithmetic researches [8]. Erle, et al. offers a hardware specification that may

 Performance Analysis of BigDecimal Arithmetic Op. in Java 269

increase the performance of floating point-based calculation while maintaining
its precision [9]. They proposed hardware that supports decimal floating point
calculation natively, which eliminates the need to convert decimals into binary
format. Beauchamp, et al. proposed three architectural modifications of field
programmable gate arrays (FPGA) that may increase the efficiency of floating
point operations. Some researches focused on modifying FPGA to perform a
specific floating point-based operation such as Gaussian filtering [10], matrix
multiplication [11], and image-classifier neural network training [12].

Researches focusing on precision have also been done previously. Joldes, et al.
introduced arithmetic algorithms using floating points expansion, yielding better
precision. The work offers improvement in performing normalization, division,
and square root [13]. Similar work has also been done by Muller, et al., who
focused their research on a multiplication operation algorithm using floating-
point expansions [14]. Ruibo-Gonzalez, et al. proposed Precimonious [15], a
program that is able to assist developers to tune the precision of floating points.
It allows developers to define the desired precision and set floating point
variables to satisfy constraints. It also allows developers to increase the
performance of the program by allowing the use of less precise floating point
variables. Rubio-Gonzalez proposed a method to automate precision analysis of
a floating point operand [16] called Blame Analysis. This method, combined
with Precimonious, allows programmers to have automated data precision and
control in application code. Hull, et al. proposed an architecture design for a
coprocessor that is able to perform variable precision floating point arithmetic.
Ho, et al. created a similar program, which allows developers to perform
floating point precision tuning efficiently [17]. A research from NASA by
Goodloe, et al. focused on verifying the correctness of numerical programs [18].
Chiang, et al. developed a heuristic search algorithm called Binary Guided
Random Testing [19]. The program evaluates floating point routines and finds
input that maximizes the error. By using the evaluation results, a programmer
can allocate resources to a certain routine that requires more precision.

3 Binary Based Floating Point
In Java, there are two primitive data types to represent decimal numbers: float
and double. Both of these data types use IEEE Standard 754 Floating Point
Numbers. This binary based floating point uses base and exponent digits. For
example, the number 145.231 could be represented in its normalized form
1.45231 x 102. IEEE 754 Floating Point Numbers has three basic components:
the sign, the exponent, and the mantissa. These fields are filled as follows:

1. The sign uses 1-bit binary. The value 0 represents a negative number and 1
represents positive numbers.

270 Jos Timanta Tarigan, et al.

2. The exponent is a base-2 exponent with bias value to split the positive and
negative bias value. In 32-bit floating point, the exponent is represented by
8-bit binary, which has 127 as bias value. In 64-bit floating point, the
exponent is represented with an 11-bit exponent, which has 1023 as bias
value.

3. The mantissa represents the fractional bits of the number in normalized
form. A 32-bit floating point has a 23-digit mantissa while a 64-bit floating
point has 52 digits. Since the normalized form does not allow 0 as an
integer part of a number, the mantissa always has one hidden bit with
value 1.

The structure of a binary floating point is visualized in Figure 1.

Figure 1 Structure of 32-bit and 64-bit floating point.

The conversion from decimal to binary floating point can be seen in this
example: given a number of 5.5, the representation in 32-bit floating point is as
follows:

1. The sign would be 1 since it is a positive number.
2. The exponent would be the largest number smaller than 5.5, which is 4 (or

22). This number gives us an exponent value of 129.
3. The mantissa would be 1.375, which is the result of 5.5/4. Since the integer

part has already been defined in the rule, we only need to represent 0.375 in
binary form, which is 011 0000 0000 0000 0000 0000.

Hence, the 32-bit floating point of 5.5 is 1 1000 0001 011 0000 0000 0000 0000
0000.

Another way to represent decimal numbers in Java is to use the BigDecimal
class. This class is dedicated to represent signed decimal numbers with
unlimited precision. Unlike float and double, which use approximation with a
certain precision, BigDecimal uses the exact value of the number and has
arbitrary precision. BigDecimal also gives users control over the rounding and
precision used in the calculation. The data representation of BigDecimal
consists of a BigInteger to represent the unscaled value and an integer to
represent the scale of the value. The scale value will then define the radix point
that separates the integer part of the number and its fractional part. Given a
number 313.0123, the unscaled value is 3130123 and the scale value is 4, noting

 Performance Analysis of BigDecimal Arithmetic Op. in Java 271

that there are 4 numbers to represent the frictional part. BigInteger itself is a
class of Java that represents a virtually unlimited integer value. This class uses
an array of integers to create large integer values. Theoretically, since an integer
value is represented by a 32-bit value and the maximum index of an integer
indexed array is 232, the maximum value of BigInteger is 232Integer.MAX_VALUE.
However, as of Java 8 the value supported by BigInteger is in the range
of -2Integer.MAX_VALUE to +2Integer.MAX_VALUE. Hardware-wise, this range of values
may take up 2 GB of memory space, depending on the number represented.

The current version of Java’s BigDecimal has been substantially improved to
support many functionalities including math operations, multiple rounding
modes, and formatting. However, it is important to note that due to its nature as
a class, BigDecimal requires an additional process of creating a new object
when performing an operation that returns a new number, such as addition,
multiplication or exponentiation. BigDecimal also does not support the use of
mathematical operators. Instead, we have to perform a method call, such as
add(BigDecimal val1, BigDecimal val2) or mult(BigDecimal val1, BigDecimal
val2).

4 Implementation
Our objective is to observe the performance behavior of using BigDecimal
compared to double data type. The observation was focused on two data:
running time and precision. We collected running time data by calling Java’s
built-in method System.nanoTime() at the beginning and the end of each
process. As for data precision, we used an absolute error formula: given a value
𝑝 and its approximation 𝑝∗, the absolute error 𝑒 = |𝑝∗ − 𝑝|.

To conduct the test, a routine was created that generates random numbers based
on a certain length of digits. These numbers were created by generating
sequences of characters (strings) consisting of numbers. These strings were
assigned to our BigDecimal objects using a built-in constructor that converts
strings into decimal numbers. To test whether the length of the number affected
the performance, we used two kinds of numbers in the test: 5 integer and
fractional digits (denoted by (5, 5)) and 10 integer and fractional digits (denoted
by (10, 10)). An identical set of double numbers was created by converting
BigDecimal objects to primitive type double. While it is important to note that
this data initialization may take a long amount of time during the test, this
process was excluded from the data since our observations focused on operation
performance.

Our test consisted of three cases: mean (average) value calculation, sorting, and
matrix multiplication. For each data, the test was performed 10 times and the

272 Jos Timanta Tarigan, et al.

values were averaged to justify the result. Without trying to manipulate the
result, outlier data that could distort the result were filtered out. It was assumed
that such events are rare and irrelevant since they may be caused by OS service
interruption, Java Garbage Collection, or simply a ‘bad’ set of random numbers
generated during the initialization.

The hardware specification and software environment used for the test were as
follows:

1. Retina Macbook Pro (late 2013) with macOS High Sierra 10.13.3,
2. Intel Core i7 2.3 GHz Quad Core, 256 KB L2 cache (per code), 6 MB L3

cache,
3. Memory 16 GB 1600 MHz DDR3,
4. Java SE Runtime Environment 1.8.0.

It is important to note that modern CPUs have caches to store recently
used/accessed data other than the memory. Moreover, modern CPUs and
compilers have various optimization methods that may also affect the
performance. While these features may in some cases affect performance
significantly, it was assumed that the massive amount of data overwhelmed
these optimizations.

4.1 Mean Calculation
The purpose of this test was to observe the performance of using BigDecimal to
do addition. Mean calculation consists of a series of addition operations
followed by one division operation. The formula used to calculate the mean
value was as follows: given a set of number 𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, . . . , 𝑠𝑛}, the mean
value 𝑠̅ of set 𝑆 is:

 𝑠̅ = ∑ 𝑠𝑖𝑛
𝑖=0
𝑛

 (1)

Based on this equation, we can conclude that finding the average of a set with
𝑛 amount of numbers takes 𝑛 amount of additions and one division. The test
result was in Table 1. In the first test, a series of tests was performed with the
amount of numbers from 10 to 107 (using 108 numbers exceeded the physical
memory). As expected, the test showed that using BigDecimal gave a
significant performance hit compared to double. The performance ratio,
however, varied based on the amount of data. Interestingly, the performance
ratio decreased for the data from (5, 5) until n = 106. At n = 106, using
BigDecimal was only 2-3 times slower than using primitive type double.
However, increasing the amount to 107 increased the ratio 10.98 times on
average. The data from (10, 10) showed a much higher average ratio, up to
76.79 times at 102. It dropped to 24.75 at 102 but increased from 103 upward.

 Performance Analysis of BigDecimal Arithmetic Op. in Java 273

Table 1 First test of mean value calculation.

N
(5,5) (10,10)

BigDecimal
(ms)

double
(ms) Ratio BigDecimal

(ms)
double

(ms) Ratio

10 6.4x10-2 7.85x10-4 81.52 1.11x10-2 5.97x10-4 18.58
102 1.034x10-1 1.8x10-3 55.40 1.79x10-1 2.33x10-3 76.79
103 9.48x10-1 2.04x10-2 46.47 1.45 2.24x10-2 60.41
104 2.90 1.58x10-1 18.35 4.53 0.18 24.75
105 4.82 3.5x10-1 13.714 11.68 0.23 50.78
106 16.02 5.72 2.80 319.01 5.67 56.26
107 169.22 10.986 10.98 642.91 10.50 61.22

A larger amount of numbers was also tested to see the consistency of the ratio
behavior. The result was in Table 2.

Table 2 First test of mean value calculation.

N
(x107)

(5,5) (10,10)

BigDecimal
(ms)

double
(ms) Ratio BigDecimal

(ms)
double
(ms) Ratio

1 169.22 10.986 10.98 642.91 10.50 61.22
1.5 194.93 13.95 13.97 897.05 18.18 49.34
2 216.48 19.90 10.87 1,564.91 21.83 71.68

2.5 267.95 28.46 9.41 1,882.82 25.84 72.86
3 322.82 27.14 11.89 2220.82 31.676 70.11

3.5 353.74 44.195 8.00 2629.99 44.19 59.51

The table above shows that using BigDecimal (5, 5) requires 20 times more
computation time than using double on average. Using a larger BigDecimal (10,
10) may require more than 70 times extra computation time.

The precision error from the test was also collected. The data show a higher
error in the (10, 10) tests with an average value of 2.04x10-4 compared to
8.6x10-6 for the (5, 5) tests. However, the data precision fluctuated and highly
depended on the random numbers generated during the initialization.

4.2 Sorting
In the sorting algorithm, most of the operations consist of comparing and
swapping. This method is effective to observe how BigDecimal may affect
memory access operation. Our sorting algorithm was based on this rule: given a
set of random number 𝑆 = {𝑠1, 𝑠2, 𝑠3, 𝑠4, . . . , 𝑠𝑛} as the input, the algorithm will

274 Jos Timanta Tarigan, et al.

sort until all members of the set follow the rule 𝑠𝑘 < 𝑠𝑘+1 where 0 < 𝑘 < 𝑛.
In this test, we used selection sort, which follows the following steps:

1. Split the list into two lists: sorted and unsorted. Initially set the size of the
sorted list to 0.

2. Find the smallest number in the unsorted list and put this number in the
sorted list (usually performed by swapping it with the first number of the
unsorted list).

3. Increase the size of the sorted list by one and repeat step two until the size
of the sorted list is the same as that of the unsorted list (hence, no more
numbers are left in the unsorted list).

We also used 2 sets of data for this test: sorted and reversely sorted. These two
cases are known as the best and worst cases for selection sort. Based on the
steps previously explained, sorting a sorted list with 𝑛 amount of numbers
requires 𝑛2 compare operations and no swap operations. In contrast, sorting a
reversely sorted list requires 𝑛2 swap operations and 𝑛 swap operations.

It is also important to note that the BigDecimal compare operation starts by
truncating both numbers to integer-representable numbers, starting from the
most significant digit (most left digit). If both numbers are different, the
numbers is compared and returned. If both numbers are equal, more digits to the
right are truncated and the process is repeated. Based on this algorithm, we can
conclude that the performance of the compare operation in BigDecimal depends
on the number.

In our test, random numbers were used without supervision; hence, there was a
possibility, although unlikely, that a set of numbers would require additional
steps during the comparison operation. In the first test, the best case of selection
sort was used, of which the result is shown in Table 3. The second sorting test
consisted of sorting the reversely sorted numbers. The result is shown in Table
4.

Table 3 Test result for sorting the best case.

N
(5,5) (10,10)

BigDecimal
(ms)

double
(ms) Ratio BigDecimal

(ms)
double

(ms) Ratio

10 1.08x10-2 2.51x10-3 4.302 4.72x10-2 2.25x10-3 20.97
102 3.87x10-1 8.52x10-2 4.54 5.28x10-1 1.16x10-1 4.55
103 4.19 1.64 2.55 7.66 1.58 4.84
104 387.58 30.37 12.76 906.07 27.19 33.32
105 25,725.57 2,636.58 9.75 45,297.85 2,802.05 16.16

 Performance Analysis of BigDecimal Arithmetic Op. in Java 275

Table 4 Test result for sorting the worst case.

N
(5,5) (10,10)

BigDecimal
(ms)

double
(ms) Ratio BigDecimal

(ms)
double

(ms) Ratio

10 6.64x10-3 2.58x10-3 2.57 4.75x10-2 2.70x10-3 17.59
102 4.29x10-1 9.78x10-2 4.38 7.26x10-1 1.16x10-1 6.28
103 4.47 1.67 2.67 9.93 1.91 5.19
104 393.44 27.50 14.30 1,082.44 26.49 40.86
105 31,035.92 3,672.31 8.45 52,949.53 7,707.19 6.87

As expected, the result showed a higher value compared to the best case since
there was an additional swap operation during the sort process. The increment,
however, was not significant since the swapping operation only swaps the
reference of the object instead of the value. The running time ratio behavior was
also similar to that in the previous test.

4.3 Matrix Multiplication
Our third test was to perform matrix multiplication. The process of matrix
multiplication consists of multiplication and addition. Given an 𝑛 × 𝑚 matrix
𝐴 and 𝑚 × 𝑝 matrix 𝐵 in Eq.(2):

 𝐴 = �
𝑎11 ⋯ 𝑎1𝑚
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

� , 𝐵 = �
𝑏11 ⋯ 𝑏1𝑝
⋮ ⋱ ⋮

𝑏𝑚1 ⋯ 𝑏𝑚𝑚
� (2)

and the matrix product 𝐶 = 𝐴𝐴 is an 𝑛 × 𝑝 matrix in Eq. (3):

 𝐶 = �
𝑐11 ⋯ 𝑐1𝑝
⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

� (3)

then each entry of the matrix is defined with the following Eq.(4):

 𝐶𝑖𝑖 = ∑ 𝐴𝑖𝑖 ∗ 𝐵𝑘𝑘𝑚
𝑘=1 (4)

The test was performed using various amounts of numbers, but the interesting
part was between 100 to 1000 numbers. The result of our test was in Table 5.
The highest ratio was at 100 numbers, where it reached 115.63 for (5, 5)
numbers and 207.05 for (10, 10) numbers.

We also observed the precision error data during the test and the result was
interesting. Since the multiplication operation has the possibility of doubling the
digits, the primitive data type double encountered a massive error when

276 Jos Timanta Tarigan, et al.

representing large numbers in the (10, 10) test. The table below shows the
precision error comparison between the (5, 5) tests and the (10, 10) test.

Table 5 Test result for matrix multiplication.

N
(x100)

(5,5) (10,10)

BigDecimal
(ms)

double
(ms) Ratio BigDecimal

(ms)
double

(ms) Ratio

1 123.73 1.07 115.63 242.25 1.17 207.05
2 837.34 25.69 32.59 2,169.00 30.93 54.32
3 3,625.13 93.44 38.79 7,889.80 78.55 100.44
4 8,569.21 190.76 44.92 18,412.64 191.57 96.11
5 16,810.54 382.35 43.96 35,704.13 372.11 95.95
6 28,187.18 581.75 48.45 60,252.33 757.72 79.51
7 44,076.20 3,062.68 14.39 95,303.30 2,877.64 33.11
8 68,344.10 5,673.34 12.04 142,352.66 5,933.57 23.99
9 66,905.45 5,826.40 11.48 207,514.55 9,580.51 21.66

10 135,797.72 14,087.24 9.63 283,057.84 13,834.28 20.46

Table 6 Test result for sorting the worst case.

N (x100) (5, 5) (10, 10)

1 5.394x10-5 555,204.92
2 1.491x10-4 1,595,412.88
3 3.075x10-4 2,898,569.24
4 4.172x10-4 4,540,951.57
5 6.572x10-4 6,641,028.56
6 8.702x10-4 8,207,129.30
7 1.033x10-3 9,567,372.45
8 1.179x10-3 12,828,427.27
9 1.486x10-3 16,106,312.21
10 1.896x10-3 18,805,729.36

The data show that the errors were marginally small in the (5, 5) numbers.
However, the errors were significant in the (10, 10) numbers due to its inability
to represent very large numbers. It is important to note that the error in the (10,
10) numbers reached the integer digit of the original number.

5 Conclusion and Future Work
In this paper, statistical data on how BigDecimal affects performance were
presented. Tests were conducted to compare the performance between primitive
data type double and BigDecimal objects. As expected, BigDecimal required
more CPU and memory usage and in some cases the difference was significant.

 Performance Analysis of BigDecimal Arithmetic Op. in Java 277

However, depending on the purpose of the software, this issue may be
overshadowed by the ability to have a precise value. It is safe to conclude that
Java’s BigDecimal library is a feasible option to perform numerical/scientific
programming that either uses large digit numbers or requires exact precision.

Acknowledgements
The author would like to thank Universitas Sumatera Utara as the author’s
current institution. Moreover, the author would like to thank the head and staff
of ‘Lembaga Penelitian USU’ (Research Center of Universitas Sumatera Utara),
Prof. Dr. Erman Munir, MSc, and staff for all their support during this research.
The author would also like to thank the Dean of the Faculty of Computer
Science and Information Technology, University of Sumatera Utara, Prof. Dr.
Opim Salim Sitompul, M.Sc for his extensive support of this work.

References
[1] Burden, R.L., Faires, J.D. & Burden, A.M., Numerical Analysis, 10th

edition, Boston, MA, United States: Cengage Learning, 2016.
[2] IEEE Computer Society, Microprocessor Standards Committee, Institute

of Electrical and Electronics Engineers, and IEEE-SA Standards Board,
754-1985 – IEEE Standard for Floating-point Arithmetic, New York,
NY: Institute of Electrical and Electronics Engineers, 1985.

[3] IEEE Computer Society, Microprocessor Standards Committee, Institute
of Electrical and Electronics Engineers, and IEEE-SA Standards Board,
754-2008- IEEE Standard for Floating-point Arithmetic, New York, NY:
Institute of Electrical and Electronics Engineers, 2008.

[4] Cass, S., The 2017 Top Programming Languages, IEEE Spectrum, 18-
Jul-2017.

[5] Bull, J.M., Smith, L.A., Pottage, L. & Freeman, R., Benchmarking Java
against C and Fortran for Scientific Applications, Proceedings of the
2001 Joint ACM-ISCOPE Conference, Palo Alto, California, pp. 97-105,
2001.

[6] Moreira, J.E., Midkiff, S.P. & Gupta, M., From Flop to Megaflops: Java
for Technical Computing, ACM Transactions on Programming
Languages and Systems, 22(2), pp. 265-295, Mar. 2000.

[7] Cowlishaw, M.F., Decimal Floating-point Algorithm for Computers,
Proceedings of 16th Symposium on Computer Arithmetic, pp. 104-111,
2003.

[8] Kamble, L., Palsodkar, P. & Palsodkar, P. Research Trends in
Development of Floating Point Computer Arithmetic, pp. 0329-0333,
International Conference on Communication and Signal Processing
(ICCSP), 2017.

278 Jos Timanta Tarigan, et al.

[9] Erle, M.A. Schulte, M.J. & Linebarger, J.M., Potential Speedup using
Decimal Floating-point Hardware, Conference Record of the 36th

Asilomar Conference on Signals, Systems, and Computers, Pacific
Grove, California, 2, pp. 1073-1077, 2002.

[10] Pham-Quoc, C. Tran-Thanh, B. & Thinh, T.N., A Scalable FPGA-based
Floating-Point Gaussian Filtering Architecture, 2017 International
Conference on Advanced Computing and Application (ACOMP), Ho Chi
Minh City, Vietnam, pp. 111-116, 2017.

[11] Jia, X., Wu, G. & Xie, X., A High-Performance Accelerator for Floating-
Point Matrix Multiplication, 2017 IEEE International Symposium on
Parallel and Distributed Processing with Applications and 2017 IEEE
International Conference on Ubiquitous Computing and Communications
(ISPA/IUCC), Guangzhou, China, pp. 396-402, 2017.

[12] O’uchi, S.I., Hiroshi, F., Tsutomu, I., Wakana, N., Takashi, M.,
Tomohiro, K., Ryousei, T., Image-Classifier Deep Convolutional Neural
Network Training by 9-bit Dedicated Hardware to Realize Validation
Accuracy and Energy Efficiency Superior to the Half Precision Floating
Point Format, 2018 IEEE International Symposium on Circuits and
Systems (ISCAS), Florence, Italy, pp. 1-5, 2018.

[13] Joldes, M., Marty, O., Muller, J-M. & Popescu, V., Arithmetic
Algorithms for Extended Precision Using Floating-Point Expansions,
IEEE Transactions on Computers, 65(4), pp. 1197-1210, Apr. 2016.

[14] Muller, J.-M., Popescu, V. & Tang, P.T.P., A New Multiplication
Algorithm for Extended Precision Using Floating-point Expansions,
presented at the IEEE 23rd Symposium on Computer Airthmetic
(ARITH), Santa Clara, California, pp. 39-46, 2016.

[15] Rubio-González, C., Nguyen, C., Hong Diep, N., Demmel, J., William,
K., Sen, K., Bailey, D.H., Iancu, C. & Hough, D., Precimonious: Tuning
Assistant for Floating-point Precision, Proceedings of the International
Conference on High Performance Computing, Networking, Storage, and
Analysis, Denver, Colorado, pp. 1-12, 2013.

[16] Rubio-González, C., Hough, D., Nguyen, C., Sen, K., Demmel, J.,
William, K., Iancu, C., Lavrijsen, W. & Bailey, D.H., Floating-point
Precision Tuning using Blame Analysis, Proceedings of the 38th
International Conference on Software Enginering, Austin, Texas, pp.
1074-1085, 2016.

[17] Ho, N-M., Manogaran, E., Wong, W.-F. & Anoosheh, A., Efficient
Floating Point Precision Tuning for Approximate Computing,
Proceedings of 22nd Asia and South Pacific Design Automation
Conference, Chiba, Japan, pp. 63-68, 2017.

[18] Goodloe, A. E., Muñoz, C., Kirchner, F. & Correnson, L. Verification of
Numerical Programs: From Real Numbers to Floating Point Numbers, in

 Performance Analysis of BigDecimal Arithmetic Op. in Java 279

NASA Formal Methods, 7871, G. Brat, N. Rungta, and A. Venet, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 441-446, 2013.

[19] Chiang, W-F., Gopalakrishnan, G., Rakamaric, Z. & Solovyev, A.,
Efficient Search for Inputs Causing High Floating-point Errors, ACM
SIGPLAN Notices, 49(8), pp. 43-52, Feb. 2014.

	1 Introduction
	2 Related Works
	3 Binary Based Floating Point
	4 Implementation
	4.1 Mean Calculation
	4.2 Sorting
	4.3 Matrix Multiplication

	5 Conclusion and Future Work

